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Summary

We present a solution to the water-wave interaction with a submerged elastic plate of negligible

thickness by the eigenfunction-matching method. The eigenfunction expansion depends on the

solution of a special dispersion equation for a submerged elastic plate and this is discussed

in detail. We show how the solution can be calculated for the case of normal incidence on a

semi-infinite plate in two spatial dimensions and then extend this solution to obliquely incident

waves, to a plate of finite length and to a circular finite plate in three dimensions. Numerical

calculations showing various properties of the solutions are presented and a near-orthogonality

relation for the eigenfunctions is used to derive an energy-balance relation.

1. Introduction

The interaction of linear water waves with submerged plates of small thickness has received con-

siderable research attention, dating back to Dean (1) and Ursell (2). In the simplest cases, the plate

is rigid and either horizontal or vertical, which allows considerable simplifications. If the plate is

inclined then the problems become more complicated and they are commonly referred to as barrier

problems. Recent work is summarised in Mandal and Chakrabarti (3).

The problem of an elastic plate has also been extensively studied, almost exclusively focused on

the problem of plates floating on the water surface (since this has applications to scattering by sea

ice as well as man-made very large floating structures). Early solutions include Fox and Squire (4)

for a semi-infinite plate (by eigenfunction matching) and Meylan and Squire (5) for a finite plate

(using an integral equation). Since then, the elastic plate has been the focus of substantial research

and summaries can be found in the review articles Watanabe et al. (6) and Squire (7). However,

the problem of a submerged elastic plate seems to have not been considered hitherto, despite the

fact that this is the simplest hydroelastic problem with submergence. We present solutions to the

two-dimensional problems of a semi-infinite and a finite plate and the three-dimensional problem

involving a circular plate.

While the submerged elastic plate problem is somewhat idealised, it is likely that any practical

structure that is sufficiently thin to be modelled as of negligible thickness could easily exhibit sig-

nificant bending. The usefulness of submerged horizontal finite structures as breakwaters or wave

barriers has received some research attention, including rigid plates (sometimes referred to as docks)

†On leave from Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan.
‡Corresponding author. (meylan@math.auckland.ac.nz)
§Present address: Institute of Mathematics, University of Augsburg, 86135 Augsburg, Germany.

Q. Jl Mech. Appl. Math, Vol. 62. No. 3 c© The author 2009. Published by Oxford University Press;

all rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication 11 May 2009. doi:10.1093/qjmam/hbp008

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/6

2
/3

/3
2
1
/1

8
9
6
9
2
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



322 MAHMOOD-UL-HASSAN et al.

(8) and membranes (9). In the latter work, it is suggested that it might also be useful to investigate

an elastic plate rather than a membrane and this is the problem considered here. A major advantage

of using horizontal plates (as opposed to structures with vertical extent) is the fact that they allow

exchange of water and hardly disturb (horizontal) currents. The use of a stack of horizontal sub-

merged docks as a breakwater is considered in Wang and Shen (10). The analogous problem with

elastic plates could also be solved by the method presented in this work although we do not follow

this direction here. Furthermore, the solution for a submerged elastic plate will be a useful guide to

techniques, and to checking numerical code, for more complicated problems in hydroelasticity that

involve submergence.

Because the geometry is sufficiently simple, the form of the potential in different regions of the

fluid can be found by separation of variables and the solution can then be obtained using matched

eigenfunction expansions (11). Methods based on eigenfunction matching have been employed in

the context of scattering by plates many times (4, 8, 9, 12), and it is this method we use in this work.

It should be noted that the rapidness of the convergence of the eigenfunction-matching method is

somewhat reduced for a submerged plate owing to the singularity of the fluid velocity at the plate tip.

Several problems of interaction of water waves with semi-infinite plates have also been solved by

more analytic approaches such as the Wiener–Hopf technique or the residue calculus method (the

latter of which is also based on eigenfunction matching), which can lead to more or less explicit

solutions and are not affected by the singularity at the plate tip. These include the submerged dock

(13, 14, 11), the elastic plate at the water surface (15 to 18) and the submerged porous plate (19).

While the Wiener–Hopf method can give much more analytical insight into the solution, it requires

a structure of semi-infinite extent. The residue calculus method is also restricted to semi-infinite

structures but fast convergent representations of the solution to the corresponding finite-structure

problem can be obtained in some cases. Solutions for circular plates are unknown for both methods.

It is not unlikely that the semi-infinite submerged elastic plate problem can also be solved using a

Wiener–Hopf approach or the residue calculus method and that the latter method may also yield a

fast convergent representation of the solution for a finite plate.

Nevertheless, we use standard eigenfunction matching in this work because of its generality and

its simplicity (both derivation wise and implementation wise). Unlike the other techniques, the

eigenfunction-matching method is capable of coping with all three geometries (semi-infinite, finite

and circular) in the same way, only requiring very little modifications to move from one to the other.

It is noteworthy that this fact seems to have been missed by researchers in the past. For example, it

took 10 years to move from the eigenfunction-matching solution for the semi-infinite elastic plate at

the surface (4) to the corresponding circular plate solution (12). The analogous finite plate solution

seems to have not been published so far. It is also worth pointing out that the main difficulty of

the method, that is, the behaviour and the finding of the roots of the dispersion relation in the

plate region (cf. (2.26) below), is also present in the residue calculus method and Wiener–Hopf

technique (except for cases where the Cauchy integral method can be employed to avoid the roots

in a beneficial way, for example, for the porous plate (19)).

The outline of this paper is as follows. We begin in section 2 with the problem of a submerged

elastic plate, which we solve by eigenfunction matching. The principal difficulty of this method is

to determine the solution of the dispersion equation for the region in which the submerged plate

is located, and this is discussed in detail. For most parameter values, the dispersion relation has

an infinite number of solutions, which are real and decay, two complex solutions and two purely

imaginary solutions that correspond to travelling waves plus the negative of all these solutions (the

dispersion equation is even in wave number). The existence of two positive imaginary solutions
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WATER-WAVE SCATTERING BY SUBMERGED ELASTIC PLATES 323

means that the submerged elastic plate actually supports two travelling waves with different wave-

lengths. We show that, once the dispersion equation has been solved, the solution can be calculated

straightforwardly, and we present some numerical simulations. In section 3, we modify the solution

for the semi-infinite plate to obtain the solution for the finite plate using symmetry and present fur-

ther numerical solutions. The necessary modification to account for the circular plate are given in

section 4. Section 5 is a brief summary, which is followed by three appendices, in which the solution

for a rigid plate is given briefly in our notation for reference purposes, a near-orthogonality relation

is derived and, finally, an energy-balance relation is determined.

2. Semi-infinite submerged plate

We begin with the problem of a submerged semi-infinite elastic plate. This is the problem we will

consider in most detail. The solutions for the finite plate and the circular plate are a relatively

straightforward extensions of this solution, as will be seen in sections 3 and 4.

2.1 Problem formulation

Cartesian axes are chosen with the mean free surface coinciding with the (x, y)-plane and z mea-

sured vertically upwards. The fluid bottom is at z = −h. We assume invariance with respect to

the y-direction so that the problem is two-dimensional. (We will briefly consider the case of waves

incident at an angle in section 2.8.) A submerged elastic plate of negligible thickness is placed along

z = −d, 0 < x < ∞, −∞ < y < ∞, where −h < −d < 0. We assume that all amplitudes are

small enough that linear theory applies and we make the usual assumptions that the fluid is inviscid,

incompressible and irrotational. We denote the fluid velocity potential by φ(x, y, z, t). It is further

assumed that all motion is time harmonic with angular frequency ω = √
α and that the motion is

independent of the y-direction. Thus, we can write

φ(x, y, z, t) = Re{φ(x, z)e−iωt }, (2.1)

where Re denotes the real part. The displacement of the plate about z = −d is

W (x, y, t) = Re{W (x)e−iωt }. (2.2)

The functions φ(x, z) and W (x) represent the time-independent parts of the complex velocity po-

tential and the plate displacement, respectively.

We consider the equations for the plate–water system in nondimensional form, as the problem is

so well known. The derivation and nondimensionalisation are discussed in detail in Meylan (20).

We nondimensionalise the spatial variables with respect to a length parameter L , the wavelength

of the incident wave, for example, the time variables with respect to
√

g/L and the mass variables

with respect to ρL3, where g is gravitational acceleration and ρ is the density of the water.

The displacement direction is upward positive, so that across z = −d , we have

β∂4
x W (x, t)+ γ ∂t t W (x, t) = f (x, t), (2.3)

where β and γ are related to the stiffness and mass of the plate, respectively, and they are given by

β = D

ρgL4
, γ = ρp H

ρL
, (2.4)
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324 MAHMOOD-UL-HASSAN et al.

where ρp is the density of the plate, D is the rigidity constant of the plate and H is the thickness of

the plate. The function f (x, t) = P(x,−d−, t)− P(x,−d+, t) represents the forcing on the plate

and P is the pressure. The linearised Bernoulli equation gives

∂φ(x, y, z, t)

∂t
+ P

ρ
+ gz = 0. (2.5)

Using the Bernoulli equation (2.5), we find that f (x, t) = ∂tφ(x,−d+, z, t) − ∂tφ(x,−d−, z, t).

The linearised kinematic boundary condition at the plate is

∂W (x, t)

∂t
= ∂φ(x, y, z, t)

∂z
, z = −d. (2.6)

Differentiating (2.3) with respect to time and using (2.1), (2.2) and (2.6), we have

β∂4
x

(

∂φ(x,−d)

∂z

)

− αγ
∂φ(x,−d)

∂z
= −α[φ+(x)− φ−(x)], (2.7)

where φ±(x) = φ(x,−d±) ( + and − denote above and below the plate, respectively).

Under the assumptions above, the spatial velocity potential satisfies the Laplace equation

1φ = 0 (2.8)

in the fluid with the boundary conditions

∂φ

∂z
= αφ on z = 0, (2.9)

∂φ

∂z
= 0 on z = −h, (2.10)

∂φ

∂z

∣

∣

∣

z=−d+
= ∂φ

∂z

∣

∣

∣

z=−d−
, (2.11)

β∂4
x

(

∂φ

∂z

)

− αγ
∂φ

∂z
= −α[φ+ − φ−] on z = −d, 0 < x < ∞, (2.12)

|∇φ| = O(r−1/2) as r = (x2 + (z + d)2)1/2 → 0, (2.13)

with two edge conditions. If the plate is clamped, the edge conditions are

W (0) = ∂x W (0) = 0 (2.14)

and they read

∂2
x W (0) = ∂3

x W (0) = 0 (2.15)

for a plate whose edge is free to move. Condition (2.13) ensures the correct behaviour of the poten-

tial at the plate tip. We also need to apply a radiation condition demanding that the scattered wave

field consists of outgoing waves only.

Figure 1 shows the schematic diagram of the problem, along with three regions, which we will

use in the solution process.
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WATER-WAVE SCATTERING BY SUBMERGED ELASTIC PLATES 325

Fig. 1 Schematic setup: submerged elastic plate at z = −d, 0 < x < ∞

2.2 Region I {−h < z < 0, −∞ < x < 0}
The eigenfunction expansion in this region is completely standard and follows from (11), and we

only summarise the results here. We define kn, Mn, φn(z), n = 0, 1, 2, ..., by

α + kn tan(knh) = 0, (2.16)

Mn = h

2

(

1 + sin(2knh)

2knh

)

, (2.17)

φn(z) = cos(kn(z + h))√
Mn

, (2.18)

where kn, n = 1, 2, ..., are real and positive and k0 is negative imaginary. The functions φn(z)

satisfy the orthonormal relation
∫ 0

−h

φn(z)φm(z) dz = δmn (2.19)

and they form a complete set over the interval (−h, 0). A general solution for φ(x, z) in Region I is

thus

φ(x, z) =
∞
∑

n=0

anekn xφn(z)+ Ae−k0xφ0(z), (2.20)

which satisfies (2.8), (2.9) and (2.10), and Ae−k0xφ0(z) is the incident wave from x → −∞ travel-

ling from left to right with amplitude A (in potential).

2.3 Region II {−h < z < 0, 0 < x < ∞}
In Region II, we can separate variables and we find that the potential satisfies

φ(x, z) = e−κxψ(z), (2.21)
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326 MAHMOOD-UL-HASSAN et al.

where ψ(z) satisfies

∂2
zψ = −κ2ψ. (2.22)

We can solve for ψ separately in the Regions IIa and IIb and apply the free surface condition and

the sea floor condition in each respective domain to obtain

ψ(z) =
{

A(κ cos(κz)+ α sin(κz)), −d < z < 0,

B cos(κ(z + h)), −h < z < −d.
(2.23)

Applying the requirement that the normal derivatives above and below the plate match (cf. (2.11)),

we obtain

(κ sin(κd)+ α cos(κd))A = − sin(κc)B, (2.24)

where c = h − d . Therefore, up to multiplication by a constant, ψ can be written as

ψ(z) =
{

− sin(κc)(κ cos(κz)+ α sin(κz)), −d < z < 0,

(κ sin(κd)+ α cos(κd)) cos(κ(z + h)), −h < z < −d.
(2.25)

Applying (2.12) for the Regions IIa or IIb and using (2.24), we get

[βκ4 − αγ ][α cos(κd)+ κ sin(κd)] tan(κc)= α

[

{α

κ
sin(κd)− cos(κd)

}

tan(κc)

−κ sin(κd)+ α cos(κd)

κ

]

. (2.26)

This is the dispersion relation for a submerged elastic plate. Before moving on to find an appropriate

expansion of the potential in Region II, we discuss the dispersion relation (2.26) in some detail.

2.4 Properties of the dispersion equation

The solution of the dispersion equation (2.26) is central to our solution method. First, we note that

the equation is even in κ , so that the solutions occur in plus and minus pairs. Moreover, if we have

a solution with nonzero imaginary part, its complex conjugate also solves (2.26).

In what follows, we will discuss only the roots that lie in the closed fourth or open first quadrant

of the complex plane. The solutions of (2.26) can be divided into three groups for typical plate

parameters. We have two negative imaginary solutions, which , which κ0 and κ1. There is an infinite

number of positive real roots, which correspond to evanescent modes, which we number κn, n > 2.

We also have two complex roots, which we number κ−2 and κ−1. A schematic sketch of the roots is

depicted in Fig. 2. Note that for the case when the plate floats on the water surface, the same kinds

of roots are found except that there is only one nonnegative imaginary solution.

It is known for the situation where the plate is located at the water surface that the roots may not be

distributed in the way presented above. For example, there may be double roots for certain special

parameter values (21). The determination of the exact behaviour of the roots for all parameters

values is a difficult undertaking even for simpler problems, compare (22). We also note that, in

all cases tested, we find only one complex root in each quadrant. However, we have no proof that

this is always the case. In what follows, we consider only parameter values for which the roots are

distributed in the way illustrated in Fig. 2. The phenomenon of the complex roots moving onto the
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WATER-WAVE SCATTERING BY SUBMERGED ELASTIC PLATES 327

Fig. 2 Schematic sketch of the position of zeros of the dispersion relation (2.26) for the submerged elastic

plate

axis is associated with very low fluid density so that the problem approaches that of a plate in a

vacuum.

Some well-known situations can be recovered as asymptotic limits of certain parameters. In the

limit as d → 0, we recover the dispersion relation for a floating elastic plate (cf. (4)). As β, γ → ∞
(so that the plate becomes stiff and fixed) (2.26) factorises so that we have two dispersion relations

α cos(κnd)+ κn sin(κnd) = 0 (2.27)

and

tan(κnc) = 0. (2.28)

Equations (2.27) and (2.28) corresponds to the dispersion relations for a rigid dock (see Appendix

A).

For large values of κn , (2.26) becomes

(α cos(κnd)+ κn sin(κnd)) sin(κnc) = 0. (2.29)

and the eigenfunctionsψn tend to zero either in the region −h < z < d or in the region −d < z < 0.

2.5 Expansion of the potential in Region II

We can therefore express the potential in Region II as

φ =
∞
∑

n=−2

bnψn(z), (2.30)

where

ψn(z) =
{

− sin(κnc)(κn cos(κnz)+ α sin(κnz)), −d < z < 0,

(κn sin(κnd)+ α cos(κnd)) cos(κn(z + h), −h < z < −d.
(2.31)

The eigenfunctions are not orthogonal with respect to the standard inner product, but we show in

Appendix B that the eigenfunctions ψn satisfy a near-orthogonality relation. In what follows we
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328 MAHMOOD-UL-HASSAN et al.

assume that the eigenfunctions (2.31) form an overcomplete basis so that we can satisfy the bound-

ary conditions at the plate edge. This is analogous to what is done for the elastic plate on the water

surface (4). In case there is a double root of the dispersion relation (2.26), special eigenfunctions

are necessary similar to problems involving porous structures, compare (23), for example. We do

not consider this case here.

2.6 Formulation of the system of equations for the semi-infinite elastic plate

Continuity of the velocity potential (that is, pressure) across x = 0 gives

Aφ0(z)+
∞
∑

n=0

anφn(z) =
∞
∑

n=−2

bnψn(z). (2.32)

Taking the inner product with φm(z) and using (2.19) and (2.31), (2.32) becomes

am = −Aδm0 +
∞
∑

n=−2

bn Mmn, (2.33)

where

Mmn =
∫ 0

−h

φm(z)ψn(z) dz = − sin(κnc)pmn + (κn sin(κnd)+ α cos(κnd))qmn (2.34)

and where

pmn =
∫ 0

−d

{κn cos(κnz)+ α sin(κnz)}φm(z) dz

= km sin(ckm)(κn cos(κnd)− α sin(κnd))+ κn cos(ckm)(α cos(κnd)+ κn sin(κnd))

(κ2
n − k2

m)
√

Mm

(2.35)

and

qmn =
∫ −d

−h

cos(κn(z + h))ψm(z) dz

= κn sin(cκn) cos(ckm)− km cos(cκn) sin(ckm)

(κ2
n − k2

m)
√

Mm

. (2.36)

Continuity of velocity across x = 0 gives

−Ak0φ0(z)+
∞
∑

n=0

anknφn(z) =
∞
∑

n=−2

−bnκnψn(z). (2.37)

Again, taking the inner product with φm(z) and using (2.19), (2.37) becomes

kmam = −
∞
∑

n=−2

bnκn Mmn + Ak0δm0. (2.38)

We eliminate an from (2.33) and (2.38) and obtain

∞
∑

n=−2

bn Mmn(km + κn) = A(km + k0)δm0. (2.39)
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2.7 Numerical solution

We now need to solve the matching equations (2.33) and (2.39) together with the equations for the

edge conditions. The key to our method is to use two more modes on the plate side than are used on

the open-water side, so that our matching leaves us requiring two extra equations that we get from

the edge conditions (24, 12). If we restrict to N + 1 modes for the water and N + 3 for the plate, we

obtain the following system of equations to be solved

N
∑

n=−2

bn Mmn(km + κn) = (km + Ak0)δm0, (2.40)

plus either the clamped-edge conditions

N
∑

n=−2

bnκn sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0, (2.41)

N
∑

n=−2

bnκ
2
n sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0, (2.42)

or the free-edge conditions

N
∑

n=−2

bnk3
n sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0, (2.43)

N
∑

n=−2

bnk4
n sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0. (2.44)

Once the bn are determined, the an can be found using (2.33).

2.8 Obliquely incident waves

It is relatively simple to include waves incident at an angle. Let us assume that the incident waves

are travelling at an angle θ from the normal direction (so that θ = 0 is head-on incidence, which is

the case we have been considering so far). This means that we have a wave number ky = k0 sin θ in

the y-direction. When we separate variables, we find the same equations in the vertical direction, so

that the wave number in the x-direction is modified and given by k̂n and κ̂n in the open water and

submerged plate region, respectively, where

k̂n =
√

k2
n − k2

y (2.45)

and

κ̂n =
√

κ2
n − k2

y, (2.46)

where we take the root with positive real part or, in the case when it is purely imaginary, the root

with negative imaginary part. Note that for sufficiently large imaginary ky , the roots κ̂n may be real

for n = 0 or 1 (values of n for which κn is imaginary). This corresponds to the case when there is
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only one or no propagating wave in the plate region. The expansion of the potential is then given by

φ̂ =







∑N
n=0anek̂n xφn(z)+ e−k̂0xφ0(z), x < 0,

∑N
n=−2bs

neκ̂n xψn(z), 0 < x .

(2.47)

The equations to be solved are almost identical to those found before and are given by

k̂mam =
N
∑

n=−2

bn κ̂n Mmn + k̂0δm0, (2.48)

N
∑

n=−2

bn Mmn

(

k̂m + κ̂n

)

= (k̂m + k̂0)δm0, (2.49)

plus either the clamped-edge conditions or the free-edge conditions that are slightly different in this

case. They read
(

∂3

∂x3
− (2 − ν)k2

y

∂

∂x

)

W = 0 (2.50)

and
(

∂2

∂x2
− νk2

y

)

W = 0, (2.51)

respectively, where ν is Poisson’s ratio.

2.9 Numerical results

We present some numerical results. We have taken the water depth to be h = 1 · 5 and mass of the

plate to be γ = 0 ·1 for all the following figures. Figure 3 illustrates the behaviour of the modulus of

the reflection coefficient R = a0 versus frequency for four different stiffnesses (β = 0 · 01 (dashed

curve), β = 1 (dotted curve), β = 100 (chained curve) and β = 10000 (solid curve)) for the semi-

infinite clamped plate. The plate depth is d = 0 · 5. We compared these solutions with the solution

for a rigid semi-infinite plate (bold dotted line) whose solution is discussed in Appendix A. It can

be seen that the amount of reflection increases to a maximum and then decreases with increasing

frequency. This is because the plate stiffness is negligible for low-frequency waves, while the plate

depth is effectively infinite for high-frequency waves. We can also see that the reflection curves get

closer to the rigid plate solution as the plate stiffness is increased and as the frequency increases. In

all cases, we have checked our solution against the energy balance and have found good agreement.

Figure 4 is identical to Fig. 3, except the edge conditions are free. It can be seen that the reflections

in Fig. 4 for different stiffnesses are less than the corresponding reflections for the same stiffnesses

in Fig. 3 as expected since the plate is now free to move. Similarly, the curves in Fig. 4 converge

to the rigid plate solution more slowly than for the clamped plate case seen in Fig. 3. However, the

qualitative behaviour for the clamped and free plates is similar.

Figure 5 shows the effect of changing the plate depth d for the clamped elastic semi-infinite plate.

The plate depths used are d = 0 · 25 (dashed), d = 0 · 5 (dotted) and d = 0 · 75 (dash-dotted). The

reflection increases as the submerged plate becomes closer to the water surface. Figure 6 shows the
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Fig. 3 |R| versus α for the values of β shown for a semi-infinite plate with clamped-edge conditions with

d = 0 · 5, h = 1 · 5 and γ = 0 · 1

Fig. 4 As in Fig. 3 except free-edge conditions apply for the plate
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Fig. 5 |R| versus α for the values of d shown for a semi-infinite plate with clamped-edge conditions with

β = 1, h = 1 · 5 and γ = 0 · 1

Fig. 6 As in Fig. 5 except free-edge conditions apply for the plate
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Fig. 7 Surface and plate displacements for a semi-infinite plate with clamped- and free-edge conditions with

α = 1, d = 0 · 5, h = 1 · 5, β = 1, γ = 0 · 1 and A = 0 · 1. Note that the plate displacement has been drawn

with respect to z = −d

analogous results to Fig. 5 but for the free-edge conditions. Again, the reflection for the free-edge

conditions is less than the reflection for the clamped-edge conditions.

Figure 7 shows the plate and surface displacements for a typical choice of parameters. Note

that we have drawn the plate displacement with respect to z = −d . The beating effect of the two

propagating waves with different wave numbers in the plate region is apparent. Note that we have

set the amplitude of the incident wave to be 0 · 1 to make the figure clearer.

3. Finite elastic submerged plate

In this section, we will consider a finite elastic plate that occupies the line z = −d , −l < x < l,

−∞ < y < ∞. The geometry is symmetric about x = 0, and so we can decompose the solution into

symmetric and antisymmetric solutions about x = 0 (11). The solution procedure is almost identical

for both cases, and the solution method is very similar to that for the semi-infinite submerged plate.

The solution domain is shown in Fig. 8. It is sufficient to consider only the region x < 0 since

the solution can be extended into the whole fluid region using the symmetry relations φ+(x, z) =
φ+(−x, z) and φ−(x, z) = −φ−(−x, z), where φ+ and φ− are the symmetric and antisymmetric

solutions, which satisfy homogeneous Dirichlet and Neumann conditions at x = 0, respectively.

3.1 Symmetric problem

We will first consider the symmetric case. Let the velocity potential in this case be given by φ+. We

begin with the equations in truncated form, so that we have

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/6

2
/3

/3
2
1
/1

8
9
6
9
2
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



334 MAHMOOD-UL-HASSAN et al.

Fig. 8 Submerged finite elastic plate at z = −d

φ+ =







∑N
n=0a+

n ekn(x+l)φn(z)+ Ae−k0(x+l)φ0(z), x < −l,

∑N
n=−2b+

n
cosh(κn x)
cosh(κnl)

ψn(z), −l < x < 0.
(3.1)

If we match the potential and its derivative at x = −l, we obtain

a+
m =

∞
∑

n=−2

b+
n Mmn + Aδm0 (3.2)

and

kma+
m =

∞
∑

n=−2

b+
n κn tanh(κml)Mmn + Ak0δm0. (3.3)

We now apply the edge conditions. The clamped-edge conditions (2.14) at x = −l give

N
∑

n=−2

b+
n κn sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0 (3.4)

and

N
∑

n=−2

b+
n κ

2
n sin(κnc){κn sin(κnd)+ α cos(κnd)} tanh(κnl) = 0. (3.5)

The free-edge conditions (2.15) at x = −l give

∞
∑

n=−2

b+
n k3

n sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0 (3.6)

and

N
∑

n=−2

b+
n k4

n sin(κnc){κn sin(κnd)+ α cos(κnd)} tanh(κnl) = 0. (3.7)
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We solve (3.2) and (3.3) with either the clamped-edge ((3.4) and (3.5)) or the free-edge conditions

((3.6) and (3.7)).

3.2 Antisymmetric problem

The antisymmetric solution is very similar to the symmetric problem. We begin with the equations

in truncated form. We have

φ− =
{∑N

n=0a−
n ekn(x+l)φn(z)+ Ae−k0(x+l)φ0(z), x < −l,

∑N
n=−2b−

n
sinh(κn x)
sinh(knl)

ψn(z), −l < x < 0.
(3.8)

Matching the potential and its derivative at x = −l, we obtain

a−
m =

N
∑

n=−2

b−
n Mmn + Aδm0 (3.9)

and

kma−
m =

N
∑

n=−2

b−
n κn coth(κml)Mmn + Ak0δm0. (3.10)

The equations for the clamped-edge conditions are

N
∑

n=−2

b−
n κn sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0 (3.11)

and

N
∑

n=−2

b−
n κ

2
n sin(κnc){κn sin(κnd)+ α cos(κnd)} tanh(κnl) = 0 (3.12)

and the free-edge conditions are

∞
∑

n=−2

b−
n k3

n sin(κnc){κn sin(κnd)+ α cos(κnd)} = 0 (3.13)

and

N
∑

n=−2

b−
n k4

n sin(κnc){κn sin(κnd)+ α cos(κnd)} tanh(κnl) = 0. (3.14)

As for the symmetric case, we solve (3.9) and (3.10) with either the clamped-edge ((3.11) and

(3.12)) or the free-edge conditions ((3.13) and (3.14)). The solution for a wave incident from the

left for a finite plate is given by

φ = 1

2

(

φ+ + φ−) (3.15)

and the reflection and transmission coefficients are given by

R = 1

2
(R+ + R−) (3.16)
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and

T = 1

2
(R+ − R−), (3.17)

where R+ = a+
0 and R− = a−

0 .

3.3 Numerical results

Figure 9 shows |R| versus α for four different lengths 2l of the fixed elastic finite plate, l = 1

(dash-dotted), l = 2 (dotted) and l = 5 (dashed) and the semi-infinite solution (solid). The very

complicated behaviour of the finite plate compared with the semi-infinite plate is apparent in this

figure. This is due to resonance effects caused by multiple reflections at the water–plate and plate–

water boundaries. This is made more complicated by the existence of two travelling waves within

the plate region. It can also be seen that, as the plate length is increased, there are more sharp peaks

in the response. This is due to the existence of more possible lengths, which give resonances for a

longer plate. Figure 10 shows the analogous behaviour of |R| for the free plate. This behaviour here

is very similar to that of the clamped plate (Fig. 9) except that there is significantly less reflection, as

would be expected for a free plate. We also note the existence of very sharp peaks in the reflection

coefficient where the numerical results are close to 1. This is somewhat unusual, and it has never

been shown to occur for the case of a finite plate on the water surface.

Figure 11 shows the surface displacements (solid) at z = 0 and the plate displacements (dashed)

at z = −d for the clamped and free elastic submerged finite plate of length 16 (l = 8). This figure

also shows the beating effect in the plate region caused by the two travelling modes.

Fig. 9 |R| versus α for the values of l shown for a clamped plate with d = 0 ·5, β = 1, h = 1 ·5 and γ = 0 ·1.
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Fig. 10 As in Fig. 9 except free-edge conditions apply for the finite plate

Fig. 11 Surface and plate displacements for the clamped (top) and free (bottom) finite plate. The parameters

are chosen as α = 1, d = 0 · 5, h = 1 · 5, β = 1, γ = 0 · 1, A = 0 · 1 and l = 8

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/6

2
/3

/3
2
1
/1

8
9
6
9
2
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



338 MAHMOOD-UL-HASSAN et al.

4. Circular submerged plate

As the vertical eigenfunctions ψn are known, the problem of water-wave scattering by a circular

submerged elastic plate can also easily be solved. We only give a brief outline here and note that

the derivation for the elastic plate at the surface is given in Peter et al. (12). The derivation of the

system of equations for a submerged plate is almost identical to the one in Peter et al. (12) except

that the more complicated vertical eigenfunctions ψn need to be used. It is also noteworthy that it is

unknown how the problem with circular symmetry can be solved using the Wiener–Hopf technique.

We use a cylindrical coordinate system (r, θ, z) assumed to have its origin at the water surface

above the centre of the circular plate with radius a. A sketch of the setup is given in Fig. 12. The

plate equation in terms of the three-dimensional velocity potential reads

(β △2 −α2γ )
∂φ

∂z
= −α2[φ+(r)− φ−(r)] on z = −d, r < a, (4.1)

where

△ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
. (4.2)

The boundary conditions for the plate also change. The vertical force and bending moments must

vanish, which (see (25)) can be written as

[△ − 1 − ν

r
(
∂

∂r
+ 1

r

∂2

∂θ2
)]W = 0 (4.3)

and

[
∂

∂r
△ +1 − ν

r2
(
∂

∂r
− 1

r
)
∂2

∂θ2
]W = 0, (4.4)

where W = i√
α
φz(r, θ,−d) is the time-independent surface displacement and ν is Poisson’s ratio.

Fig. 12 Submerged circular elastic plate of radius a at z = −d
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4.1 Solution method

Separating variables exploiting the circular symmetry, we can write the potentials as

φ(r, θ, z) = Z(z)

∞
∑

s=−∞
Rs(r)e

isθ , (4.5)

where the vertical eigenfunctions Z(z) are given by φn and ψn for r > a and r < a, respectively.

The appropriate radial eigenfunctions are given in terms of the modified Bessel function Ks(knr)

and Is(κnr) so that

φ(r, θ, z) =
∞
∑

s=−∞

∞
∑

n=0

ans Ks(knr)eisθφn(z)+ φI, r > a, (4.6)

φ(r, θ, z) =
∞
∑

s=−∞

∞
∑

n=0

bns Is(κnr)eisθψn(z), r < a, (4.7)

where

φI = A

∞
∑

s=−∞
(−1)s Is(k0r)φ0(z)e

isθ (4.8)

is the incident potential wave of amplitude A in potential travelling in the positive x-direction. Thus,

the potential in the open water and plate region are entirely determined by the coefficients ans and

bns , respectively.

4.2 Formulation of the infinite dimensional system of equations

We equate the potential and its derivative at r = a for each s and take the inner product by multi-

plying both equations by φs(z) and integrating from −h to 0 to obtain:

AIs(k0a)δm0 + asm Ks(kma) =
∞
∑

n=−2

bsn Is(κna)Mmn (4.9)

Ak0 I ′
s(k0a)δm0 + asmkm K ′

s(kma) =
∞
∑

n=−2

bsnκn I ′
s(κna)Mmn . (4.10)

The edge conditions ((4.3) and (4.4)) can be expressed in terms of the potentials using the fact that

△(Is(κnr)eisθ ) = κ2
n Is(κnr)eisθ , (4.11)

giving
∞
∑

n=−2

bsn

(

κ2
n Is(κna)− 1 − ν

a

(

κn I ′
s(κna)− s2

a
Is(κna)

))

∂zψn(−d) = 0, (4.12)

∞
∑

n=−2

bsn

(

κ3
n I ′

s(κna)− s2 1 − ν

a2

(

κn I ′
s(κna)− 1

a
Is(κna)

))

∂zψn(−d) = 0, (4.13)

where

∂zψn(−d) = −κn sin(κnc)(κn sin(κnd)+ α cos(κnd)). (4.14)
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This system of equations can be solved numerically by truncation for each angular mode just as in

the previous sections.

It is noteworthy that because the solution is automatically expanded in cylindrical eigenfunctions,

it is straightforward to use this method to calculate diffraction transfer operators as are required in

the use of general multiple-body interaction theories (26, 27).

5. Conclusions

We have presented the solution for a submerged semi-infinite elastic plate of negligible thickness

by the eigenfunction-matching method. This can be seen as an extension of the eigenfunction-

matching solutions given for the elastic plate on the water surface and for the submerged rigid plate.

The solution method depends on the solution of a special dispersion equation, which has a more

complicated structure than the dispersion equation for an elastic plate on the water surface. We

showed how the solution for a semi-infinite plate can be extended to waves incident at an angle

and to the case of a plate of finite length and a circular plate in the three dimensions. Numerical

simulations were presented, which show the complicated behaviour of the system, especially for

the finite elastic plate.
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APPENDIX A

Rigid semi-infinite submerged plate—the dock problem

Here, we give a brief description of the problem of a semi-infinite submerged rigid plate, that is, a submerged

dock. The finite and the circular dock can be solved analogously. The solution method presented here is based

on that given by (14), with some modification. The problem is given by (2.8), (2.9), and (2.10), while (2.11)

and (2.12) are replaced by
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∂φ

∂z
= 0, on z = −d; 0 < x < ∞. (A.1)

The eigenfunction expansion in the region x < 0 is identical to that given by (2.20). In the region x > 0, we

expand the potential as

φ =
∞
∑

n=−2

bnψn(z)e
−κn , (A.2)

where either

ψn(z) =
{

cos(κn(z + d)), −d < z < 0,

0, −h < z < −d,
(A.3)

or

ψn(z) =
{

0, −d < z < 0,

cos(κn(z + h)), −h < z < −d,
(A.4)

where κn is either the negative imaginary and positive real roots of the dispersion equation α + κ tan(κd) = 0

or given by κn = nπ/(h − d) for n = 0, 1, . . . ordered with the imaginary root first and then by increasing

size for the positive real roots. We use (A.3) when the κn satisfies the dispersion equation and we use (A.4)

when κn is given by κn = nπ/(h − d). The rest of the solution follows exactly as before.

It is noteworthy that the problem of scattering by a semi-infinite submerged dock was solved analytically

using the Wiener–Hopf technique a long time ago, compare (13). In particular, it was found that the modulus

of the reflection coefficient takes a very simple form, namely |R| = |κ − k|/|κ + k|.

APPENDIX B

Orthogonality relation

The eigenfunctions satisfy a special kind of near-orthogonality relation similar to the one found by Lawrie and

Abrahams (22) for the case of a plate floating on the water surface. We know that
∫ 0

−h
∂2

z ψnψm dz =
∫ 0

−h
ψn∂

2
z ψm dz − ∂zψn(−d)[ψ+

m − ψ−
m ] + ∂zψm(−d)[ψ+

n − ψ−
n ] (B.1)

which means that
(

κ2
n − κ2

m

)

∫ 0

−h
ψnψm dz = β

α
∂zψn(−d)∂zψm(−d)

(

κ4
n − κ4

m

)

. (B.2)

This can be rearranged to give
∫ 0

−h
ψnψm dz = β

α
∂zψn(−d)∂zψm(−d)

(

κ2
n + κ2

m

)

, m 6= n. (B.3)

We will use this in Appendix c.

APPENDIX C

Energy balance

We derive the energy-balance relation for the semi-infinite case for normal incident angle by considering the

integral identity
∫∫

U

(

φ∗∇2φ − φ∇2φ∗
)

dV =
∮

∂U

(

φ∗∂nφ − φ∂nφ
∗) dS, (C.1)
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where φ is the solution to (2.8) to (2.12), ∗ denotes conjugation and U is the region of the plane −h < z <

0, −N < x < N with a cut for the submerged plate. Since the Laplacians vanish, we can rewrite this as

Im

∮

∂U
φ∗∂nφ dS = 0. (C.2)

We now evaluate this integral, the contribution from the free surface and from the sea floor is zero so we are

left with three integrals to evaluate. Assuming that N is sufficiently large that all the decaying modes can be

neglected, we obtain the following contribution from the integral at x = −N

Im

{

(

e−k0 N + a∗
0 ek0 N

)

k0

(

ek0 N − a0e−k0 N
)

∫ 0

−h
(ψ0)

2 dz

}

= k0

i

(

1 − |a0|2
)

. (C.3)

The contribution from the integral at x = N is given by

Im

{

∫ 0

−h
−
(

b∗
0eκ0 Nψ0 + b∗

1eκ1 Nψ1

)(

−κ0b0e−κ0 Nψ0 + κ1b1e−κ1 N
)

ψ1 dz

}

=−κ0

i
|b0|2

∫ 0

−h
ψ2

0 dz − κ1

i
|b1|2

∫ 0

−h
ψ2

1 dz

− Im
{

κ0b∗
0b1e(κ0−κ1)N + κ1b0b∗

1e(−κ0+κ1)N
}

∫ 0

−h
ψ0ψ1 dz. (C.4)

The contribution from the integral around the plate is given by

Im

∫ N

0
[φ− − φ+]∗∂zφ dx = Im

∫ N

0

β

α
∂4

x ∂zφ
∗φn dx (C.5)

and using integration by parts, we obtain

Im

∫ N

0

β

α
∂4

xφ
∗∂zφn dx = Im

{

β

α
∂3

xφ
∗
nφn

∣

∣

∣

∣

x=N

− β

α
∂2

xφ
∗
n∂xφn

∣

∣

∣

∣

x=N

}

(C.6)

= Im
{β

α

(

κ3
0 b∗

0∂zψ0(−d)eκ0 N + κ3
1 b∗

1∂zψ1(−d)eκ1 N
)(

b0∂zψ0(−d)e−κ0 N + b1∂zψ1(−d)e−κ1 N
)

+
(

κ2
0 b∗

0∂zψ0(−d)eκ0 N + κ2
1 b∗

1∂zψ1(−d)eκ1 N
)(

κ0b0∂zψ0(−d)e−κ0 N + κ1b1∂zψ1(−d)e−κ1 N
)}

(C.7)

= 2
β

α

κ3
0

i
∂zψ0(−d)2|b0|2 + 2

β

α

κ3
1

i
∂zψ1(−d)2|b1|2

+ Im
β

α

((

κ3
0 + κ2

0κ1

)

b∗
0b1e(κ0−κ1)N +

(

κ3
1 + κ2

1κ0

)

b∗
1b0e(κ1−κ0)N

)

∂zψ0(−d)∂zψ1(−d). (C.8)

We use the identity given by (B.3),

∫ 0

−h
ψ0ψ1 dz = β

α
(κ2

0 + κ2
1 )∂zψ0(−d)∂zψ1(−d), (C.9)
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and observe that (because κ0 and κ1 are purely imaginary) all contributions with terms involving both b0 and

b1 vanish. We are left with the equation

k0|a0|2 + κ0|b0|2
∫ 0

−h
ψ2

0 dz + κ1|b1|2
∫ 0

−h
ψ2

1 dz

−2
β

α
κ3

0∂zψ0(−d)2|b0|2 − 2
β

α
κ3

1∂zψ1(−d)2|b1|2 = k0, (C.10)

which represents energy balance.
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