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Abstract: Organophosphate esters (OPEs) are widely used as an additive in flame retardants, plasticiz-
ers, lubricants, consumer chemicals, and foaming agents. They can accumulate in aquatic organisms
from water (waterborne exposure) and food (dietary exposure). However, the bioaccumulation
characteristics and relative importance of different exposure routes to the bioaccumulation of OPEs
are relatively poorly understood. In this study, Daphnia magna were exposed to fo typical OPEs (tris(2-
chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-butoxyethyl)
phosphate (TBOEP), and triphenyl phosphate (TPHP)), and their toxicokinetics under waterborne
and dietary exposure routes were analyzed. For the waterborne exposure route, the bioconcentration
factors (BCFs) increased in the order of TBOEP, TCEP, TDCPP, and TPHP, which were consistent with
their uptake rate constants. TPHP might have the most substantial accumulation potential while
TBOEP may have the smallest potential. In dietary exposure, the depuration rate constants of four
OPEs were different from those in the waterborne experiment, which may indicate other depuration
mechanisms in two exposure routes. The biomagnification factors (BMFs) of fur OPEs were all below
1, suggesting trophic dilution in the transfer of four OPEs from Scenedesmus obliquus to D. magna.
Except for TBOEP, the contributions of dietary exposure were generally lower than waterborne
exposure in D. magna under two exposure concentrations. This study provides information on the
bioaccumulation and contribution of OPEs in D. magna via different exposure routes and highlights
the importance of considering different exposure routes in assessing the risk of OPEs.

Keywords: organophosphate esters; bioaccumulation; dietary exposure; waterborne exposure;
toxicokinetics

1. Introduction

As a new type of phosphorus flame retardant, organophosphate esters (OPEs) have
the characteristics of low smoke, low toxicity, and low halogen compared with traditional
brominated flame retardants. Therefore, they are widely used in flame retardants, plasti-
cizers, lubricants, consumer chemicals, and foaming agents as additives. However, since
the addition method is often physical addition rather than chemical bonding, they easily
diffuse into the surrounding environment [1]. OPEs have been widely detected both in
freshwater and marine environment and their food webs, such as Taihu Lake [2–4], the
freshwater environment in South China [5], Yangtze River Basin [6], Laizhou bay [7,8],
Southern European waters [9], surface and tap waters in New York State [10], inland and
coastal waters in northern Greece [11], and Antarctic [12]. In addition to being detected
in the natural environment, many OPEs such as tris(2-chloroethyl) phosphate (TCEP),
tris-2-chloroisopropyl phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP),
tris(2-butoxyethyl) phosphate (TBOEP), tri-n-butyl phosphate (TNBP), and triphenyl phos-
phate (TPHP) have been proven to possess neurotoxicity [13,14], endocrine disruption [15],
viscera toxicity [16], genetic toxicity [1], or mutagenicity [17].
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For aquatic organisms, the routes that pollutants enter the body mainly include
the bioaccumulation of pollutants by filtering the surrounding water (waterborne route)
and the absorption and assimilation of lower-trophic organisms (dietary route). Since
these pollutants enter the body through different pathways, their uptake and depuration
processes and their effects may be different. For example, Guo et al. found that in fish
(Mugilogobius chulae), the uptake and contribution of dietary and waterborne cadmium (Cd),
was positively correlated with the Cd concentration in the chyme [18]. The different relative
importance of hematite nanoparticles (NPs) in tissues via waterborne and dietary exposure
was reported in zebrafish [19], and waterborne exposure caused higher mortality, while the
lower neonate production of Daphnia was observed in dietary exposure to Copper oxide
nanoparticles [20]. De Wit et al. also found that when waterborne exposure reached a steady
state, dietary transfer controlled the bioaccumulation of MeHg [21]. It has been reported
that some OPEs such as TCPP, TBOEP, TCEP, TDCPP, and TPHP have biomagnification
effects [7,12], which means they can be transferred to organisms at a higher trophic level
and may finally have a negative impact on human health. However, the bioaccumulation
process and level via waterborne and dietary exposure may also be different, and the
relative importance of the two exposure pathways in the organism is unclear. Considering
the potential biomagnification effects of OPEs, it is necessary to study the kinetics and
contributions of OPEs via waterborne and dietary exposure in aquatic organisms, which
may help to understand which exposure pathway of OPEs is more critical in organisms at
higher trophic levels.

In the natural aquatic food webs, dietary exposure is mainly manifested in the form of
the food chain. Phytoplankton and zooplankton are the leading producers and critical con-
sumers of aquatic ecosystems, respectively. Zooplankton plays a vital ecological role in the
aquatic food web, linking essential resources to higher-level consumers [22]. Scenedesmus
obliquus is an important producer at the first level of the trophic chain in the food web [23].
It is the most widely distributed freshwater microalgae species [24]. Daphnia magna is filter-
feeding zooplankton. As a primary consumer in water bodies, D. magna feeds on algae
and debris in water bodies. Due to their fast reproduction, easy cultivation, and short life
cycle, they have become model zooplankton species for aquatic ecotoxicology research [25].
The effects of TDCPP [26], TCEP [27], TBOEP [28], and TPHP [29] on D. magna have been
investigated. Except for TCEP, the other three OPEs had negative impacts on the growth,
reproduction, and survival of D. magna. Furthermore, TCEP, TDCPP, TBOEP, and TPHP
might have potential biomagnification effects according to field research [7,12]. Therefore,
in this study, we studied and compared the transfer of TCEP, TDCPP, TBOEP, and TPHP
from a solution and Scenedesmus obliquus to Daphnia magna. The primary purpose is to (1)
explore the uptake and depuration kinetics of OPEs in D. magna via waterborne exposure
and dietary exposure with the S. obliquus–D. magna food chain and (2) explore the relative
importance of the two exposure routes to the accumulation of four OPEs in D. magna.

2. Materials and Methods
2.1. Chemicals and Organisms

TCEP, TDCPP, TBOEP, TPHP, and surrogate standards (d12-TCEP, d27-TNBP, and
d15-TPHP) were purchased from Toronto Research Chemicals (Toronto, Canada). High-
performance liquid chromatography (HPLC)-grade dimethyl sulfoxide (DMSO) and
dichloromethane (DCM) were purchased from Bohua Chemical Reagent (Tianjin) Co.,
Ltd. (Tianjin, China). HPLC-grade acetonitrile (ACN) came from Fisher Scientific Co.
(Fair Lawn, NJ, USA). HPLC-grade formic acid was purchased from Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). HPLC-grade hexane, methanol, GCB/NH2
cartridges (200 mg/200 mg, 3 mL), and Envi-18 cartridges (500 mg, 6 mL) were purchased
from Anpel Laboratory Technologies Inc. (Shanghai, China).

Scenedesmus obliquus was purchased from the National Freshwater Algae Seed Bank,
Wuhan Institute of Hydrobiology, Chinese Academy of Sciences, and was incubated in
flasks with BG11 artifact freshwater. Daphnia magna was obtained from the College of
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Environmental Science and Technology, Nankai University, and was maintained in 2 L
beakers with 1.5 L of reconstituted water (KCl, 1.2 mg/L; CaCl2·2H2O, 58.6 mg/L; NaHCO3,
13.0 mg/L; and MgSO4·2H2O, 24.5 mg/L). Both S. obliquus and D. magna were cultured
in a greenhouse at 25 ± 1 ◦C under a 16:8 h light/dark photoperiod. D. magna were fed
S. obliquus daily, and 70% of the reconstituted water was refreshed twice a week.

2.2. S. obliquus Exposure to OPEs

Algae cells were prepared to an initial density of 5 × 106 cells/mL in BG11 (300 mL,
n = 3), then spiked with 0.01% OPEs stock solutions in DMSO to obtain concentrations
of 20 and 100 µg/L and cultured in conditions as described earlier. The solvent control
was prepared with an equal volume of DMSO. All experimental devices were cultured
in a greenhouse for 96 h, which were shaken 3–4 times daily. Each experiment group
was constructed in triplicate. Samples were collected at 0, 24, 48, 72, and 96 h. At each
time point, 15 mL of algae liquid was collected and filtered by a GF/F membrane (pore
size: 0.7 µm, diameter: 47 mm) to separate S. obliquus and the exposure solution. The
exposure solution was transferred into glass tubes. The GF/F membrane with S. obliquus
was rinsed three times using ultrapure water and stored at −20 ◦C for analysis. Test results
are expressed as dry weight (dw).

2.3. D. magna Waterborne Exposure to OPEs

Waterborne exposure experiments consisted of a 24 h uptake period followed by a
24 h depuration period and were conducted in a solution of 20 and 100 µg/L OPEs. Each
experiment group was constructed in triplicate. In the uptake period, after 24 h without
feeding, 20 daphnia individuals (approximately 25 days old) and 400 mL of reconstituted
water with OPEs were added to 500 mL beakers. All experimental devices were cultured in
a greenhouse. During the experiment, the D. magna were not fed. Sampling was performed
at 0, 3, 6, 12, and 24 h. Then, the remaining D. magna was transferred into clean reconstituted
water for the depuration experiment. Samples were collected at 3, 6, 12, and 24 h. At each
time point, 20 D. magna individuals were taken in triplicate, and then they were rinsed
three times using ultrapure water and stored at −20 ◦C for analysis. The exposure solutions
were also sampled at each time point to determine the OPEs concentration. Test results are
expressed as dry weight (dw).

2.4. D. magna Dietary Exposure to OPEs

Algae with a density of 5 × 106 cells/mL were exposed to 0, 20, and 100 µg/L OPEs in
the BG11 culture medium for 24 h as described above for the algal uptake experiment. After
24 h without feeding, 20 daphnia individuals (approximately 25 days old) and 30 mL of
clean reconstituted water were added to 50 mL glass tubes. We replaced the reconstituted
water every 3 h and fed new algae pre-exposed for 24 h to ensure that the OPE in the
food was not released into the water. According to the filtration rate (1.5 mL h−1 Ind.−1)
calculated by us, the filtration time of the 30 mL solution was 1 h for 20 daphnia individuals,
so they could absorb the algae in the solution to the maximum extent during 3 h. The OPEs-
contaminated algae were obtained through centrifugation at 6500× g for 5 min at 4 ◦C and
then washed once with ultrapure water. D. magna were fed at a density of 4 × 106 cells/mL
for 12 h. Each experiment group was constructed in triplicate. S. obliquus, D. magna, and
solution samples were collected at 0, 1, 3, 6, 9, and 12 h as described above. Then they were
stored at −20 ◦C for analysis. Test results of S. obliquus and D. magna are expressed as dry
weight (dw).

2.5. Sample Preparation

S. obliquus and D. magna samples were freeze-dried at −50 ◦C for 24 h, weighed, cut
off, and then transferred into 10 mL glass tubes for OPEs determination. The extraction
process was performed according to previous studies [3,30] with a minor modification.
In brief, after the sample was homogenized, 5 ng of an internal standard surrogate was
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added to the sample. Then, ACN was added for extraction. The supernatant was dried
with nitrogen and purified with GCB/NH2 cartridges. More details are attached in the
supporting information.

2.6. Chemical Analysis and Quality Assurance and Control

The analysis of OPEs was performed according to previous studies [3,30]. The com-
pounds were analyzed using UPLC−MS/MS (Xevo TQ-S, Waters, Milford, MA, USA) with
a BEH C18 column (2.1 mm × 50 mm, 1.7 µm, Waters) coupled with a VanGuard precol-
umn (C18 column, 2.1 mm × 5 mm, 1.7 µm). More details are attached in the supporting
information. Milli-Q water (A) and ACN (B), both containing 0.1% formic acid, were used
as binary eluent.

In order to avoid contamination, all glass tubes used in the experiment were soaked in
an H2SO4-K2Cr2O7 solution for more than 24 h before use. Then they were rinsed three
times with methanol and Mili-Q water. Before use, the GF/F filter membrane was fired in a
muffle furnace at 400 ◦C for 6 h. The recoveries in S. obliquus, D. magna, and the solution
(Table S2) were measured by being spiked with 20 ng of TCEP, TDCPP, TBOEP, and TPHP,
ranging from 73.40 ± 2.06% to 113.34 ± 3.02%. Values three times the signal-to-noise ratio
were defined as the method detection limits (MDLs). Values ten times the signal-to-noise
ratio were defined as the method quantification limits (MQLs) (Table S3). More details are
attached in the supporting information.

2.7. Toxicokinetics Model

For the uptake and depuration kinetics, we used a first-order one-compartment toxi-
cokinetics model to estimate the uptake and depuration constant rates in waterborne and
dietary exposure for D. magna. The equations were constructed in the R program (R Core
Team (2020), http://www.R-project.org/ (accessed on 10 May 2022)) with the packages
“deSolve” and “simecol” according to our previous studies [31,32].

As for D. magna, in the waterborne experiment, Equation (1) was fitted to the observed
concentration to estimate the uptake and depuration rate constant simultaneously, which
referred to a previous study with a slight modification [33]:

dCt1/dt =
{

ku1 · Cw − kd1 · Ct1, t ≤ 24
−kd1 · Ct1, t > 24

(1)

where t is the time (h), Ct1 is the internal concentration of OPEs in D. magna (ng/g) via
waterborne exposure, Cw is the concentration of OPEs in the exposure solution (µg/L),
and ku1 and kd1 are the uptake rate constant (L kg−1 h−1) and the depuration rate constant
(h−1), respectively.

The bioconcentration factors (BCF, L kg−1) in daphnia were calculated from the kinetic
parameters following Equation (2):

BCF = ku1/kd1 (2)

In the dietary experiment, Equation (3) was fitted to the observed concentration to
estimate the uptake and depuration rate constant simultaneously, which referred to a
previous study with a slight modification [33]:

dCt2/dt = ku2 · Cso − kd2 · Ct2 (3)

where t is the time (h), Ct2 is the internal concentration of OPEs in daphnia (ng/g) via
dietary exposure, Cso is the average concentration of OPEs in S. obliquus (ng/g) every three
hours, and ku2 and kd2 are the uptake rate constant (g g−1 h−1) and the depuration rate
constant (h−1), respectively.

http://www.R-project.org/
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The biomagnification factors (BMF) in daphnia were calculated from the kinetic pa-
rameters following Equation (4), which referred to a previous study [23]:

BMF = ku2/kd2 (4)

In our study, we assumed that the internal concentration of algae at 24 h was steady
under their exposure concentration, and that the process of accumulation via waterborne
and dietary exposure does not interfere with each other. Then we could calculate the
contribution of OPEs in daphnia via dietary exposure (F) following Equation (5) according
to a previous study [34]:

F = Ct2/(Ct1 + Ct2) (5)

where Ct1 is the internal concentration of OPEs in daphnia (ng/g) via waterborne exposure
and Ct2 is the internal concentration of OPEs in daphnia (ng/g) via dietary exposure.

2.8. Statistical Analysis

Each experiment group was constructed in triplicate in both waterborne and dietary
exposure experiments. The error bar represents the standard error.

3. Results
3.1. Accumulation of OPEs in D. magna via Waterborne Route

During the 24 h uptake period, the internal concentration of four OPEs in D. magna
increased rapidly within 6 h (Figure 1). The exposure concentration had an impact on the
level of OPEs in D. magna, which is consistent with fish [35]. Among the four OPEs, TPHP
has the highest uptake rate constant (ku1) (Table 1), reaching 21.15 and 138.80 L kg−1 h−1,
and TBOEP has the lowest one, obtaining 0.17 and 0.57 L kg−1 h−1.

Table 1. Parameters in uptake and depuration kinetics of OPEs in D. magna.

Measured Exposure
Concentration

(µg/L)

Waterborne Exposure Dietary Exposure
ku1

(L kg−1 h−1)
kd1

(h−1)
t 1/2
(h)

BCF
(L kg−1)

ku2
(h−1)

kd2
(h−1) BMF

TCEP
21.72 3.39 0.12 6.03 29.48 5.82 16.41 0.35
116.67 5.78 0.17 4.13 34.40 1.05 1.71 0.61

TDCPP
17.07 16.04 0.16 4.36 100.86 0.06 0.38 0.17
124.22 23.22 0.11 6.60 221.14 0.03 0.15 0.22

TBOEP
16.71 0.57 0.16 4.28 3.52 0.53 3.59 0.15
135.67 0.17 0.13 5.33 1.29 0.25 3.82 0.07

TPHP
16.29 21.15 0.10 6.66 203.37 0.09 2.05 0.04
99.06 138.80 0.09 7.88 1577.27 0.29 3.88 0.07

During the 24 h depuration period, the internal concentration of OPEs decreased
rapidly in the first 6 h (Figure 1). TPHP has the slowest depuration rate and the longest half-
life (Table 1), likely because it has the strongest hydrophobicity among the four OPEs and
is more difficult to transfer to the external solution. The depuration route mainly includes
transfer to the outside medium or biodegradation [30]. Previous studies have reported that
the biodegradation process of OPEs and organophosphate tri-esters would be transformed
into diesters and hydroxylated triesters, and chlorinated OPEs are relatively difficult to
biodegrade [36]. TCEP was reported to be less accumulative and resistant to metabolism
than TBOEP in salmon [37]. The above results suggested that TCEP and TDCPP should
be mainly transferred to the culture medium, while biotransformation might contribute
more to the removal process of non-chlorinated OPEs, which may be the reason for their
different depuration rates in D. magna. In future research, further experiments should be
constructed to determine the proportion and difficulty of the biotransformation of these
four OPEs in D. magna.
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Figure 1. Uptake (0–24 h) and depuration (24–48 h) kinetics of four OPEs ((a) TCEP, (b) TDCPP,
(c) TBOEP, (d) TPHP) in D. magna via waterborne exposure. Blue lines (toxicokinetics model simula-
tions) and points (experimental data) represent the high-concentration group (100 µg/L), and red lines
(toxicokinetics model simulations) and points (experimental data) represent the low-concentration
group (20 µg/L).

The BCFs of TCEP, TDCPP, TBOEP, and TPHP in D. magna (Table 1) were higher than
in Danio rerio [38], Cyprinus carpion [35,39], and Mytilus galloprovincialis [40], indicating the
accumulation of OPEs in zooplankton may be stronger than in invertebrate and fish. A
similar phenomenon was also found in a lake food web [2]. The total OPEs concentration
in biota generally decreased in the order of plankton, invertebrates, and fish. Wang et al.
illustrated BCFs of TCEP and TDCIPP were low among seven OPEs with a range of
0.5 to 66 and little bioaccumulation potential of TBOEP (BCF = 17.3 L kg−1) and strong
bioaccumulation potential of TPHP (BCF ranged from 45 to 224 L kg−1) in zebrafish [38].
Furthermore, TCEP and TBOEP were relatively less bioaccumulative in carp, with BCF
ranging from 1.0 ± 0.1 to 14.8 ± 0.2 [39]. Meanwhile, Mata et al. found a lower accumulation
of TBOEP (BCF = 207 L kg−1) and a higher accumulation of TPHP (BCF = 3685 L kg−1) in
mussel [40]. These results were all analogous to our study, indicating that the similarity
of the accumulative capacity of OPEs among different species may be determined by the
structure and properties of the substance.

3.2. Accumulation of OPEs in D. magna via Dietary Route

Different from the waterborne exposure, although the pre-exposed S. obliquus (con-
tained 0.60 ± 0.07 and 2.04 ± 0.56 µg/g dw of TCEP, 3.34 ± 0.49 and 20.49 ± 4.11 µg/g
dw of TDCPP, 0.52 ± 0.05 and 2.96 ± 0.39 µg/g dw of TBOEP, and 3.01 ± 0.60 and 16.69 ±
2.94 µg/g dw of TPHP) was continuously added, the internal concentration of D. magna
reached a stable level within 3 h (Figure 2), and the level was much lower than the internal
concentration in the waterborne exposure. Since the concentration of OPEs depurated
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from the algae into the solution was very low (lower than 1.5 and 6 µg/L under two
exposure groups, respectively) (Figure S3), we ignored OPEs via waterborne exposure
during the dietary exposure period. The depuration rate constant (kd2) of TCEP, TDCPP,
TBOEP, and TPHP under two exposure concentrations were different from the values in
waterborne exposure (Table 1). Another study also found that the depuration rate constant
varied with different exposure routes [41]. This indicated that OPEs entering D. magna via
different exposure routes might have different metabolic pathways, resulting in different
depuration processes.
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For the four OPEs, the exposure concentration changed from 20 µg/L to 100 µg/L,
and the BMFs of TCEP, TDCPP, and TPHP increased from 0.35, 0.16, 0.04 to 0.61, 0.23,
and 0.07, respectively (Table 1), indicating that the delivery efficiency increased as the
concentration increased. The BMF of TBOEP decreases from 0.15 to 0.07, implying that
as the concentration increases, the transfer efficiency decreases. In this study, we found
analogous results in BCF. Only the BCF values of TBOEP decreased with an increasing
exposure concentration. Therefore, TBOEP may not be easily accumulated in D. magna
either via waterborne or dietary exposure. The possible reason was that TBOEP was more
accumulative in algae and was quickly and easily transformed into bis(2-butoxyethyl)
hydroxyethyl phosphate (BBOEHEP) and bis(2-butoxyethyl) 3-hydroxyl−2-butoxyethyl
phosphate (3-OH-TBOEP) in D. magna, according to a previous study in salmon [37]. For
TPHP, which could be biotransformed into diphenyl phosphate, hydroxylated triphenyl
phosphate, and thiol triphenyl phosphate in D. magna [42], its transfer efficiency was also
low (BMF = 0.045 and 0.074). TCEP and TDCPP may not be easily transformed in the
algae, so they have a higher transmission efficiency. However, there are few studies on
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daphnia and algae. In future studies, it may be necessary to explore and compare the
biotransformation ability of OPEs in algae and D. magna in order to fully explain the
difference in transfer efficiency between the different types of OPEs.

In the field studies, there are no uniform conclusions on the biomagnification effect
of OPEs, which may be related to the food web structure of the study area. For example,
Bekele et al. reported the biomagnification of TBOEP, TEHP (tris(2-ethylhexyl) phosphate),
TEP (triethyl phosphate), TCP (tricresyl phosphate), TCPP, and CDPP (cresyl diphenyl
phosphate) with trophic magnification factors (TMFs) ranging from 1.75 to 2.72 [7], while
the TMFs of TCEP, TDCPP, and TPHP were 5.20, 2.92, and 2.74, respectively [12]. TNBP
and TPhP with TMF values of 0.72, 0.57, and 0.62, respectively, in a typical freshwater
food web [5] and TMF values of TBP (tributyl phosphate), TCEP, TBOEP, and TEHP were
all slightly higher than 1 in a food web of the Nansha Islands [43]. In our study, the
BMFs of four OPEs were all below 1, which means trophic dilution in the transfer from
S. obliquus to D. magna. To confirm the biomagnification effect of OPEs in further studies,
it may be necessary to construct a more complex aquatic food chain or even a food web
(a microcosm/mesocosm) for research. Furthermore, the possible impact of the food web
structure may need to be taken into consideration.

3.3. Relative Importance of Waterborne and Dietary Routes to the Accumulation of OPEs
in D. magna

In the algal exposure experiments, we performed a single exposure to S. obliquus.
At 24 h, the internal concentration of almost all OPEs in S. obliquus reached the peak
and then began to decrease (Figure S1). So we assumed that the internal concentration
of algae at 24 h was steady under their exposure concentration. Then we calculated
the contribution of OPEs uptake via the food route relative to the waterborne route (F)
(Figure 3). On the whole, the value of F decreased with exposure time. This may be related
to the bioaccumulation characteristics of waterborne and dietary exposure in D. magna.
Within 3 h, the internal concentration of D. magna had reached a steady state via dietary
exposure, while in waterborne exposure, the internal concentration increased within 12 h.
For compounds with log Kow > 5, the uptake from food (dietary exposure), rather than
from the dissolved phase (waterborne exposure), was a more important exposure route [33].
A previous study showed that BDE-47, with the log Kow value of 6.16, contributed more
from food and was higher than that from filtration to bioaccumulation in D. magna [22].
In our study, except for TBOEP, the contribution of dietary exposure to the other three
OPEs was lower than that of waterborne exposure. This may be because TBOEP had a
stronger potential to accumulate in S. obliquus than in D. magna. Under the same exposure
concentration, the internal concentration of S. obliquus at 24 h was higher than that of
D. magna. It may also be because the biotransformation ability of TBOEP in D. magna
was stronger than that in S. obliquus. Conversely, for the other three OPEs, especially for
TPHP, it might be more bioaccumulative in D. magna (Figure 1) than in S. obliquus (Figure
S1). On the other hand, the biotransformation ability of TPHP in S. obliquus was likely
stronger than that in D. magna, so TPHP might be much easier to accumulate in D. magna
via waterborne exposure.

Some other studies suggested that the differences between food conditions and between
species need to be taken into consideration. Zhang et al. found that in the algae–copepods–
fish food chain, dioxins via dietary exposure were more important for both copepods
and fish, and it was more easily accumulated in the copepods with algae with moderate
bioaccumulation ability for dioxins [41]. Wang and Wang reported that it was equally
important for dichlorodiphenyltrichloroethane (DDT) to be accumulated via waterborne
and dietary exposure in the copepods (Acartia erythraea), while waterborne exposure was a
more important pathway than uptake from food in fish (Lutjanus argentimaculatus) [33].

In future research, it may be possible to focus on the transfer process of metabolites in
the S. obliquus–D. magna food chain, in order to clarify the reasons for the differences in the
contribution of two exposure routes in different OPEs. We may need to pay more attention
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to aquatic organisms at higher trophic levels such as mussels, fish, or frogs, because the
contribution of dietary and waterborne exposure may be different from in D. magna. It
might also be possible to trace the transformation process of OPEs with the isotope labeling
method, such as in previous research dealing with bisphenol a [44] and BDE-47 [22]. At the
same time, algae with different pollutant bioaccumulation abilities might be considered
food for research.
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standard error.

4. Conclusions

The uptake and depuration kinetics of four OPEs via waterborne and dietary exposure
has been investigated in D. magna. Results showed that in the waterborne experiment,
TPHP has the highest uptake rate constant (ku1) and lowest depuration rate (kd1) constant,
which means it is more bioaccumulative in D. magna than the other three OPEs. In com-
parison, TBOEP is the least bioaccumulative. In the dietary experiment, the depuration
rate constant (kd2) was different from kd1, suggesting different metabolism and depuration
processes in the two exposure routes. The BMFs of four OPEs were all below 1, indicating
trophic dilution of OPEs in the aquatic food chain. Except for TBOEP, the contribution of
dietary exposure to the other three OPEs was lower than that of waterborne exposure based
on our hypotheses. Our study suggests that it is possible that, in the natural environment,
OPEs are more easily accumulated by the waterborne exposure route in zooplankton. In
future research, it might be necessary to pay attention to whether there are differences in
the biotransformation of OPEs in organisms at different trophic levels. Meanwhile, the
metabolic processes of OPEs in the food chain should receive more attention, as well as the
possible differences in the biotransformation process in different exposure routes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19159382/s1, Table S1. Specific UPLC-ESI+-MS/MS param-
eters of OPEs for MRM detection; Table S2. Recoveries of OPEs; Table S3. The method quantification
limits (MQLs); Table S4. The actual concentration in waterborne exposure experiment (µg/L); Table
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S5. Chemical and physical properties of OPEs; Figure S1. OPEs ((a) TCEP, (b) TDCPP, (c) TBOEP,
(d) TPHP) in Scenedesmus obliquus (SO) (ng/g dw). Solid points represent the high concentration
group (100 µg/L) and hollow points represent the low concentration group (20 µg/L). The actual
exposure concentration has been shown in the legend. The values were the means ± SD of three
replicates; Figure S2. OPEs ((a) TCEP, (b) TDCPP, (c) TBOEP, (d) TPHP) in exposure solution during
the waterborne exposure experiment (µg/L). Black lines and points represent the low concentration
group (20 µg/L) and red lines and points represent the high concentration group (20 µg/L). The
values were the means ± SD of three replicates; Figure S3. Concentration of OPEs in the solution
during the dietary experiment (µg/L). (a) OPEs in solution at low exposure concentration (20 µg/L).
(b) OPEs in solution at high exposure concentration (100 µg/L). The values were the means ± SD
of three replicates; Figure S4. Structure of four OPEs ((a) TCEP, (b) TDCPP, (c) TBOEP, (d) TPHP).
References [3,30,45] are cited in Supplementary Materials.
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