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Abstract 

With increasing toxicity and environmental concerns, electrospinning from water, i.e. waterborne 

electrospinning, is crucial to further exploit the resulting nanofiber potential. Most water-soluble 

polymers have the inherent limitation of resulting in water-soluble nanofibers and a tedious 

chemical cross-linking step is required to reach stable nanofibers. An interesting alternative route 

is the use of thermoresponsive polymers, such as poly(N-isopropyl acrylamide) (PNIPAM), as 

they are water-soluble beneath their lower critical solution temperature (LCST) allowing low 

temperature electrospinning while the obtained nanofibers are water-stable above the LCST. 

Moreover, PNIPAM nanofibers show major potential to many application fields, including 

biomedicine, as they combine the well-known on-off switching behavior of PNIPAM, thanks to 

its LCST, with the unique properties of nanofibers. In the present work, based on dedicated 

turbidity and rheological measurements, optimal combinations of polymer concentration, 

environmental temperature and relative humidity are identified allowing, for the first time, the 

production of continuous, bead-free PNIPAM nanofibers electrospun from water. More 

specifically, PNIPAM gelation was found to occur well below its LCST at higher polymer 

concentrations leading to a temperature regime where the viscosity significantly increases without 

compromising the polymer solubility. This opens up the ecological, water-based production of 

uniform PNIPAM nanofibers that are stable in water at temperatures above PNIPAM’s LCST, 

making them suitable for various applications, including drug delivery and switchable cell culture 

substrates. 
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1 Introduction 

Poly(N-isopropyl acrylamide) or PNIPAM is a well-known and commonly applied polymer in 

biomedical applications as its Lower Critical Solution Temperature (LCST) of ca. 30-35 °C in 

water is beneficial for use in drug delivery and cell culture.1–11 As this thermoresponsivity can be 

interpreted as a ‘smart’ behavior, PNIPAM has also been used for the development of novel 

coatings and sensor materials.1,3,6,7,12–17 Below the LCST, hydrogen bonds are present between 

water molecules and the hydrophilic regions of the polymer chains, resulting in excellent water-

solubility of PNIPAM. Yet, if the temperature is raised above the LCST, it becomes 

thermodynamically more favorable for the hydrating water molecules to go back to the bulk water, 

which is an entropic effect. As a result, the partially dehydrated PNIPAM chains become water 

insoluble and agglomerate.7,18–23  

For several applications, including drug delivery, PNIPAM has mainly been applied as a gel or 

as part of a micellar structures, where a (medical) substance can be captured inside.3,4,7,11 When an 

external stimulus causes the temperature to cross the LCST, the gel or micelle structure changes 

its physical structure, which releases the substance. This on-off switching behavior is also being 

used for cell culture.2,3,24–26 Many literature studies report the successful attachment and 

proliferation of cells onto PNIPAM scaffolds after which the produced cell sheet is easily removed 

by simply cooling the PNIPAM support below its LCST.2,3,24–26 Although this concept has shown 

major potential already, there is still need for improvement.27,28  

For many applications a highly porous, open and flexible structure with a large specific surface 

area is also desired.27–33 Nanofibrous membranes have already proven their potential for numerous 

applications requiring a high sensitivity, porosity, and specific surface area as well as versatility 

and easy functionalization.28,31,34–39 Their resemblance to the extracellular matrix makes nanofibers 
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also ideally suited for biomedical applications, e.g. tissue engineering and drug delivery.27,28,31–

33,40,41 

These nanofibrous membranes are ideally fabricated by solvent-electrospinning in which 

nanofibers are drawn from a viscous polymer solution toward a collector plate, due to the 

application of an electrical field.42,43 Since current solvent-electrospinning is mainly based on the 

use of strong acids and/or toxic solvent systems, increasing environmental concerns demand a 

switch to waterborne electrospinning, i.e. electrospinning from water, to provoke industrial 

growth.44–47 Clearly, waterborne electrospinning is a major advantage for biomedical applications, 

as harmful or toxic solvent traces are prevented. 

Thermoresponsive polymers, such as PNIPAM, are appealing materials for waterborne 

electrospinning as their LCST-behavior enables nanofiber production from water below the LCST 

transition, yet provides water stability during application above the LCST transition. However, 

this option has barely been investigated and if considered only with limited success. Previous 

studies report very poor PNIPAM electrospinnability from water and required a combined, harsher 

solvent system, e.g. acetone or toxic solvents such as DMF and THF45,48–52, or the use of 

copolymers where another polymer is introduced in order to facilitate the electrospinning 

process.53–58 It should, however, be highlighted that – to the best of our knowledge – none of these 

studies have fully exploited the LCST behavior to enhance the electrospinnability of PNIPAM. In 

general, ambient parameters such as the environmental temperature and relative humidity have not 

been considered. Yet, it can be expected that tuning of these parameters will be crucial for the 

processability of a thermoresponsive polymer such as PNIPAM. 

Therefore, in the present work, the influence of both the environmental temperature and relative 

humidity is studied thoroughly, hereby fully exploiting the thermoresponsive behavior of PNIPAM 
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to enhance electrospinnability from water. Based on the common insight that a certain viscosity 

and good solubility are required for a stable electrospinning process, systematic rheological 

analysis and turbidimetry measurements are employed to study the effect of temperature control. 

Additionally, the identification of the optimal relative humidity is facilitated and supported by 

detailed Dynamic Vapor Sorption (DVS) analysis.  

It is, thus, aimed to process PNIPAM into continuous, uniform, bead-free nanofibrous mats using 

only water as the solvent. This will provide the first clean and environmental-friendly, fully water-

based fabrication method for PNIPAM nanofibers with water-stability at the temperature of the 

human body, which makes them appealing for many fields including biomedicine. 

2 Experimental Section 

2.1 Materials 

PNIPAM with a viscosity average molar mass of ca. 3·105 g·mol-1 was purchased from Scientific 

Polymer Products, Inc. (Ontario, NY) and used as received. The dispersity of the commercial 

PNIPAM was determined as 4.2 with size exclusion chromatography (SEC). SEC was performed 

on an Agilent 1260-series HPLC system equipped with a 1260 online degasser, a 1260 ISO-Pump, 

a 1260 automatic liquid sampler, a thermostatted column compartment, a 1260 diode array detector 

(DAD) and a 1260 refractive index detector (RID). Analyses were performed on a PPS Gram30 

column in series with a PPS Gram 1000 column at 50 C. DMA containing 50 mM of LiCl was 

used as an eluent at a flow rate of 0.6 mL/min. The SEC traces were analyzed using the Agilent 

Chemstation software with the GPC add on. Molar mass and PDI values were calculated against 

polymethylmethacrylate standards. The distilled water used in this work was of type III as 

considered in ISO 3696, having a conductivity below 0.5 µS cm-1. Fluorescein was obtained from 

Sigma Aldrich and used as received. 
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2.2 Electrospinning 

Electrospinning solutions were prepared under acclimatized conditions in a Weiss WK-340/40 

climate chamber at 15 °C, unless stated otherwise, by dissolving a specific amount of PNIPAM in 

water. For the preparation of the fluorescein-doped nanofibers, fluorescein was first dissolved in 

acetone (8.5 mg/ml) and subsequently added to a 10 wt% aqueous PNIPAM solution to achieve a 

concentration of 0.5 wt% fluorescein on polymer mass. Mass concentrations are expressed by 

weight percentages (wt%) defined by the ratio of the polymer mass and the sum of the polymer 

and solvent mass. The (dynamic) viscosity of the solutions was determined using a Brookfield 

viscometer LVDV-II (spindle S18, viscosity range of 1.5 - 3.0 105 mPa·s, average error of 8%). 

All electrospinning experiments were carried out on a mononozzle setup using the solvent 

electrospinning technique with an 18 gauge Terumo mixing needle without bevel. A stable Taylor 

cone was achieved at a flow rate of 0.5 ml·h-1, selecting a tip-to-collector distance of 25 cm, and 

applying a voltage between 15-20 kV. Electrospinning was always performed in the climate 

chamber, as to properly adjust the environmental temperature and relative humidity. It should be 

noted that, at a relative humidity of 25 ± 5 %RH, the temperature could not be set below 17 °C, 

which is therefore a limiting temperature. After electrospinning, the produced nanofibrous samples 

were dried in an oven below the onset of the Tg of PNIPAM, i.e. 130 °C (ESI Figure S1), as to 

remove all remaining water. This drying procedure did not alter the nanofiber morphology 

compared to samples that were dried at lower temperatures, e.g. 80 °C, or compared to samples 

that were not dried (ESI Figure S2). The nanofibrous membranes were stored in a desiccator. 

2.3 Characterization 

All nanofibrous samples were analyzed by an FEI Quanta 200 FFE-SEM at an accelerating 

voltage of 20 kV. Samples were prepared prior to analysis by applying a gold coating using a 
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sputter coater (Balzers Union SKD 030). The nanofiber diameters were measured using ImageJ. 

The average diameters and their standard deviations were based on 50 measurements per sample. 

Water stability of the produced nanofibers was tested by immersion of the samples in water on 

a heating plate as to keep the temperature of the water constant at 37 °C or 50 °C, being above the 

LCST of PNIPAM. Below these temperatures, the nanofibers are always completely dissolved, as 

expected. After immersion of either 30 seconds or 5 minutes, the water was removed from the 

samples by a syringe while the samples were kept on the heating plate as long as there was still 

water present in order to avoid the remaining water to cool down below the LCST of PNIPAM. 

The samples were subsequently dried by four different drying procedures, i.e. drying in a vacuum 

oven at 50 °C, drying in a climate chamber at 50 °C and 15 %RH, drying in a desiccator and drying 

on a well-controlled heating plate at 50 °C or 90 °C. The SEM images given in this paper result 

from the latter drying process since all drying procedures led to the same nanofiber morphology 

(ESI Figure S3).  

Vapor desorption measurements were carried out with a Q5000SA Dynamic Vapor Sorption 

(DVS) apparatus from TA Instruments. Samples of 9.00 ± 0.50 mg were characterized by using 

metalized quartz sample pans. The experiments always started after a 5 minutes stabilization step 

at 20 °C and 98 %RH, after which the temperature and/or relative humidity was equilibrated to the 

actual set point. All mass changes were allowed to reach equilibrium (mass change < 0.05 % during 

60 minutes).  

Rheological measurements to grasp the relevance of physical crosslinking and gel formation 

were performed on an MCR 302 Anton Paar rheometer with a Peltier CTD 180 heating equipment. 

2 ml of each solution was pressed between a profiled, lower measuring plate and a parallel rotating 

measuring plate with a diameter of 50 mm. Prior to recording the actual data, frequency and 
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amplitude sweeps were carried out as to select a suitable working frequency and amplitude 

allowing a sufficient differentiation of the elastic and viscous part over a broad temperature 

window; values of 0.5 Hz and 0.2 %, respectively, resulted. For each experiment, a linear 

temperature ramp from 10 °C to 40 °C at 1° per min was established. Each 30 seconds, a data point 

was taken, allowing a measurement of the loss modulus, storage modulus and complex viscosity 

as a function of temperature. In agreement with literature data, this allows to determine the gel 

point in two consisting manners, i.e. the identification of the largest change in the complex 

viscosity and the crossover of the loss and storage modulus.59–61  

Cloud point determination was carried out by turbidimetry on an Avantium Crystal 16 

turbidimeter. 1 ml of each solution was examined according to cycling the temperature in between 

10 °C and 40 °C and the cloud point temperatures (TCP’s) were determined as the temperature at 

which the transmission had lowered to 50% during heating. As to account for the heating rate 

effect23, different heating rates (0.2 K/min, 0.5 K/min, 1 K/min and 2 K/min) were applied. Similar 

results were obtained for the different heating rates, however, only the results corresponding to 0.5 

K/min are presented in this article as recently recommended.62 

Modulated temperature DSC traces were analyzed with a TA Instruments Q2000, equipped with 

a refrigerated cooling system (RCS90) and using nitrogen as purge gas (50 ml·min-1). The 

instrument was calibrated using TzeroTM technology for standard Tzero aluminum pans using 

indium at the heating rate used during the measurement. The heating rate was set at 2 °/min and 

samples of 2.5 ± 0.5 mg were used. The selected temperature modulation was ± 0.5 °C every 40 

seconds. The samples were analyzed via two heating cycles in which they were heated from 0 °C 

to 250 °C.  



 9 

The fluorescence of the fluorescein-doped nanofibers was analyzed with a Cary Eclipse 

fluorescence spectrophotometer. The emission spectra result from excitation at 450 nm with a 

photomultiplier tube voltage of 470 V and a slit width of 10 nm for both excitation and emission. 

3 Results and discussion 

In this section, it is first illustrated that a waterborne electrospinning of PNIPAM requires control 

of the solution temperature and relative humidity, considering turbidity, rheological and DVS data. 

Based on the obtained insights, the optimal processing window is subsequently identified for the 

production of stable PNIPAM nanofibers. By performing water stability tests the latter is further 

confirmed. 

3.1 Relevance of temperature control 

In general, the polymer solubility is one of the main requirements for stable solvent 

electrospinning.34,42,43 In the case of waterborne electrospinning of PNIPAM, this means that the 

initial processing or solution temperature needs specific attention as PNIPAM is only water soluble 

beneath its LCST. Many literature studies have investigated the LCST behavior of PNIPAM and 

the phase diagrams as measured by turbidimetry in this work, are in agreement with previous 

studies.60,63–67 The temperature of demixing or the TCP is often taken as an indicative for the LCST 

transition. From Figure 1, it can be concluded that the initial processing temperature of PNIPAM 

in water should be kept well below 30°C in order to have clear solutions, allowing to create 

uniform, bead-less nanofibers. 
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Figure 1. Cloud point temperature (TCP) of PNIPAM in water as function of concentration 

determined by turbidimetry confirms the LCST of PNIPAM of ca. 31 °C. 

Another key parameter for solvent electrospinning is the (dynamic) viscosity of the polymer 

solution as this is an indicative for the amount of chain entanglements, which are needed for the 

formation of nanofibers upon processing. As PNIPAM undergoes partial dehydration leading to 

agglomeration and physical crosslinking during the LCST transition, the viscosity is expected to 

increase drastically around this temperature. Table 1, indeed, illustrates an increased solution 

viscosity with increasing temperature at various electrospinning mass concentrations.  

Table 1. List of the electrospinning mass concentrations with viscosity clearly depending on 

the solution temperature. 

Concen-

tration 

Dissolved at 15 °C 

Viscosity (mPa.s) 

Dissolved at 25 °C 

Viscosity (mPa.s) 

Relative 

values** 

 6 wt% 1.0·10² 1.4·10² 1.4 

 8 wt% 2.9·10² 8.0·10² 2.8 

10 wt% 9.2·10² 6.0·10³ 6.5 

12 wt% 2.0·10³ > 3.0·105* > 150 

14 wt% 7.1·10³ >> 3.0·105* >> 150 

*Viscosity values were higher than the apparatus’ limit, being 3.0·105 mPa·s 

**Relative values are calculated as the ratio of the viscosities of the polymer solutions dissolved at 25 °C and dissolved 

at 15 °C as to illustrate the increase in viscosity upon increasing temperature 
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Of course, at a given temperature the viscosity also increases with increasing polymer 

concentration, yet, at higher polymer concentrations, the temperature effect is more pronounced 

(see last column; ratio of the viscosity values). Strikingly, while the TCP of PNIPAM is hardly 

affected by the polymer concentration (Figure 1), the viscosity at 25 °C and the ratio of the 

viscosity at 25 °C and 15 °C increases tremendously. 

A more thorough analysis of the effect of temperature on the solution viscosity is further 

performed by rheological measurements in which the temperature is gradually increased and the 

viscoelastic change is recorded by measuring the loss and storage modulus and the related  

complex viscosity. 

The complex viscosity was used to analyze the physical crosslinking profile as it directly takes 

into account both the variation of the storage modulus and loss modulus (Figure 2).59–61   

 

Figure 2. Complex viscosity (log scale) as a function of temperature based on rheological 

experiments; gelation: at lower temperatures for higher PNIPAM concentrations and 

determining the ideal viscosity range for electrospinning (highlighted in grey: see Section 

Design of electrospinning conditions). 
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The temperature at which the highest change in complex viscosity occurs, is chosen as an 

indication for gelation.59–61 This temperature is in good agreement with the crossover temperature 

of the loss and storage modulus, as given in Figure 3. 

 

Figure 3. The crossover of loss and storage modulus (log scale), i.e. gel point, is located at 

lower temperatures for increasing concentrations. 

A clear dependence of the complex viscosity on the solution temperature is observed. Below a 

certain threshold temperature, here called the gelation temperature, the loss modulus is at a given 

mass concentration always higher than the storage modulus (Figure 2 and 3), meaning that the 

polymer solution behaves as a viscoelastic liquid. At higher temperatures, it is thermodynamically 

more favorable for the polymer chains to interact with themselves due to partial dehydration. This 

initiates physical crosslinking and, thus, an increase in viscosity eventually resulting in gelation, 

which is reflected by a drastic increase in complex viscosity (Figure 2). Above this gelation 

temperature, the storage modulus dominates the loss modulus (Figure 3), meaning that the polymer 

solution behaves now as a viscoelastic solid gel that is no longer suited for stable electrospinning.  

Very remarkable is the effect of the mass concentration on the gelation temperature, which 

significantly decreases with increasing polymer concentration. For the 6 wt% polymer solutions, 

the gelation temperature more or less coincides with the TCP of PNIPAM as measured by 
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turbidimetry above (Figure 1; 31 °C). This means that a gel is formed at the TCP, followed by 

immediate demixing of the solution. This fast dehydration behavior was also observed for low 

concentration polyisocyanopeptide hydrogels.68 In contrast to the 6 wt% solutions, the gelation 

temperature for the higher PNIPAM concentrations is significantly lower than the TCP and this 

difference increases with increasing mass concentration. For example, at 8 wt% the difference 

amounts to ± 12 °C whereas at 12 wt% this difference is already ± 17 °C. This indicates that, at 

the higher polymer concentrations, partial dehydration of the polymer chains below the TCP can 

already induce sufficient interchain interactions to form a clear transparent gel structure. It should 

be noted that, at this temperature, no formation of particles or other agglomerates due to phase 

separation were observed. Only when the TCP is reached at higher temperatures, further 

dehydration leads to the collapse and phase separation of the PNIPAM chains into non-soluble 

globule-like structures, which results in the formation of opaque gels. Note that in the case of high 

mass concentrations (e.g. 14 wt% solutions), the polymer solution is already in the gel state at 10 

°C.  

For electrospinning, this phenomenon of gelation prior to the TCP is extremely important. Firstly, 

it indicates that the viscosity of the polymer solution highly depends on both temperature and 

concentration. Secondly, and more importantly, it also shows that for higher PNIPAM 

concentrations, important rheological changes are manifested before the LCST transition, which 

are expected to be crucial for PNIPAM’s electrospinnability. Above the gelation temperature, the 

PNIPAM solution consists of physically crosslinked solid gels characterized by too low flowability 

to form uniform, bead-free nanofibers. Around the gelation temperature, the viscosity is lower, yet 

high enough to result in a stable electrospinning in case the mass concentration is controlled (see 

further). Hence, only at specific concentrations at which the gelation temperature is significantly 
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below the TCP, good solubility is combined with the required viscosity range for electrospinning. 

Under such premises a solution temperature can be found at which both solubility and viscosity 

are suited for a stable electrospinning process to occur.  

In summary, the turbidity and rheological results show that for electrospinnability not only the 

TCP, which is related to PNIPAM’s solubility should be considered. In addition, also the 

concentration-dependent rheological behavior of the solution prior to the LCST-transition should 

be taken into account as this will determine the appropriate viscosity range. Moreover, for each 

polymer concentration, this viscosity range is located at a different temperature. This 

environmental parameter should, thus, be controlled to obtain a stable electrospinning process. 

Therefore, all electrospinning solutions stated in Table 1 are electrospun under acclimatized 

conditions. 

3.2 Relevance of relative humidity control 

In addition to the temperature, also the relative humidity needs to be controlled during 

electrospinning, as it influences the evaporation and transport of water. DVS analysis (Figure 4 

top; 20 °C) indicates a much slower evaporation of water molecules from the PNIPAM solutions 

in case of a higher relative humidity, which explains poor electrospinnability under these 

conditions (Figure 5). At a low relative humidity, i.e. below 35 %RH, an increase in temperature 

(17 to 24 °C) further enhances the evaporation and transport of water (Figure 4 bottom). 
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Figure 4. DVS shows that a relative humidity below 35% speeds up the water evaporation 

and transport of a 10 wt% electrospinning solution at 20 °C (top). At such a low relative 

humidity (25 %RH, bottom) an increase in the environmental temperature fastens the water 

evaporation and transport. 

 

Figure 5. SEM images of 8 wt% PNIPAM nanofibers after electrospinning at different 

relative humidity, clearly showing non-uniformity and beads at increasing relative humidity. 

Temperature was kept constant at 20 °C based on the rheological results in Figure 2 and 3. 
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These results indicate that, for electrospinnability, the relative humidity should be kept as low 

as possible, taking into account practical constraints. Therefore, all further experiments have been 

performed at a relative humidity of 25 ± 5 %RH. High temperatures ( > 20°C) are also favorable 

for the electrospinning process in terms of solvent evaporation. However, as discussed above 

(Figure 2 and 3), a too high temperature can be accompanied by a too high viscosity and a limiting 

temperature is thus expected.  

For stable electrospinning, it can be concluded that it is crucial to determine the optimal 

temperature and concentration window at a low RH, as explored in the next section. 

3.4 Design of electrospinning conditions 

Figure 6 shows an overview of the nanofibers electrospun from different PNIPAM 

concentrations (6-14 wt%) in water at different temperatures (17-32°C), all at a relative humidity 

of 25 ± 5 %RH to ensure a sufficiently fast water evaporation (Figure 4). 
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Figure 6. SEM-images of the produced nanofibers from different PNIPAM concentrations 

and at different solution temperatures show that electrospinnability depends on both 

parameters (25 ± 5 %RH). Best electrospinning conditions resulting in uniform, bead-less 

nanofibers are highlighted in green. 
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At a concentration of 6 wt% the amount of water is too high and the viscosity too low at the 

lower to intermediate temperatures (< 30°C) to form uniform nanofibers. As the temperature of 

gelation coincides with the TCP (Figure 2; 31°C), a higher temperature does not only result in a 

higher viscosity, which might be appropriate for electrospinning, but also causes undesired 

demixing of the solution.  

A close inspection of the first column in Figure 6 shows that these low polymer mass 

concentrations lead to non-uniform so-called barbed fibers. Together with beads, triangle-shaped 

branches are being formed. At a concentration of 7 wt% PNIPAM the beads disappear and the 

triangle-shaped branches appear more regularly (Figure 7). Holzmeister et al. reported a similar 

morphology for polyvinylalcohol spun from water and named the branches barbed fibers. These 

novel and unique type of nanofibers could pave the way towards new applications, e.g. inhalation 

therapy and fiber reinforcement, as they clearly differ from ordinary uniform nanofibers.51,69,70 

 

Figure 7. SEM images of 6 wt%, 7 wt% and 8 wt% nanofibers electrospun at 20 °C and 25 

± 5 %RH. 6 - 7 wt% provides ideal conditions for the formation of barbed nanofibers, 

whereas 8 wt% provides ideal conditions for the formation of uniform, continuous 

nanofibers. 

For the formation of uniform, bead-free nanofibers, intermediate concentrations of 8 and 10 wt% 

PNIPAM show the best electrospinning results (Figure 6). However, as the concentration increases 

from 8 to 10 wt%, process stability is limited by a decrease in the limiting temperature from 24 °C 

to 20 °C. Nozzle-clogging appears and non-uniform nanofibers arise together with a lot of beads, 
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once the temperature passes the respective threshold. In case of the 8 wt% solutions, the optimal 

feasible temperature range for electrospinning appears to be 18 °C - 20 °C. This temperature range 

is lowered to 17°C – 18 °C in case of the 10 wt% solutions. Solutions of 12 wt% PNIPAM still 

result in nanofibers, however, electrospinning is less stable as nozzle-clogging occurred, the 

nanofibers are less uniform, more beads are present and the nanofibers are characterized by a larger 

diameter. Completely unstable electrospinning is obtained as soon as the PNIPAM concentration 

reaches 14 wt%.  

These results clearly reflect the crucial influence of the temperature- and concentration-

dependent rheological behavior of PNIPAM on its electrospinnability, as discussed above. Indeed, 

the results confirm that PNIPAM is electrospinnable from water, but only at concentrations where 

gelation occurs at feasible electrospinning temperatures that are significantly lower than the TCP. 

A specific temperature range thus exists where good solubility is combined with viscosities that 

allow for stable electrospinning. 

In case of the 8 wt% solutions, gelation occurs between 18 °C and 20 °C, which is significantly 

lower than the TCP of ca. 31 °C (Figure 1). A transparant “gel” is, thus, formed, which is 

accompanied by an increase in viscosity. Within this temperature range just before solidification, 

the viscosity is sufficiently high to form nanofibers, yet low enough to maintain a stable 

electrospinning process (highlighted in grey in Figure 2). As can be seen from Figure 6, this 

temperature range provides nice, uniform, bead-less nanofibers. If the environmental temperature 

is further increased, the amount of physical crosslinking is also increased, which is accompanied 

by a higher viscosity, resulting in larger nanofiber diameters. Eventually, this results in an unstable 

electrospinning process accompanied with nozzle-clogging. For the 10 wt% PNIPAM 

concentrations, rheological measurements show that physical crosslinking starts at lower 



 20 

temperatures, i.e. 16 °C – 18°C (Figure 2). Again, a transparant “gel” is formed, but at a lower 

temperature. This means that the ideal viscosity range for stable electrospinning is shifted to a 

lower temperature range. Indeed, within the feasible electrospinning temperature range of 17 °C – 

18 °C, 10 wt% PNIPAM solutions show excellent electrospinnability. From 20 °C, physical 

crosslinking has developed too extensively, resulting in too high viscosities. This, again, leads to 

nozzle-clogging and eventually an unstable electrospinning process. For the higher concentrations, 

i.e. 12 wt% and 14 wt%, gelation is initiated even at lower temperatures, moving the ideal viscosity 

range for PNIPAM electrospinning further downwards, out of the feasible electrospinning 

temperature range as determined by equipment limitations.  

In summary, within the concentration range 8 – 10 wt%, aqueous PNIPAM solutions show the 

ideal circumstances for excellent electrospinnability from water. Gelation occurs at a significantly 

lower temperature than PNIPAM’s LCST, which means that the viscosity of the solution increases, 

without reducing the solubility of the polymer chains. Moreover, this temperature is still high 

enough to allow for a practically feasible electrospinning process. If the environmental temperature 

and relative humidity are controlled during the process, optimal conditions have been identified to 

allow for the production of uniform, continuous, bead-less nanofibers by waterborne 

electrospinning.  

As a proof-of-principle to show the potential of waterborne electrospinning of PNIPAM 

nanofibers for biomedical applications, fluorescein was incorporated as biorelevant compound in 

the nanofibrous membranes by dye-doping. A concentration of 0.5 wt% (on polymer mass) 

fluorescein was added to a 10 wt% PNIPAM aqueous solution and consequently electrospun at the 

optimal electrospinning conditions for 10 wt% solutions as determined above. Although the 

viscosity of the polymer solution was increased upon addition of the dye and the process needs 
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further optimization, uniform, bead-less nanofibers were obtained, which showed the characteristic 

fluorescence of fluorescein (Figure 8 and ESI Figure S5). A biorelevant model compound such as 

fluorescein can, thus, be introduced in the nanofibers without compromising significantly the 

nanofiber morphology nor the electrospinning process while preserving the fluorescent character 

of the compound. 

 

Figure 8. 10 wt% PNIPAM nanofibers doped with fluorescein show nice yellow/green 

fluorescence when viewed under UV-light (λext-336 nm). Doping of this fluorescent dye into 

the nanofibers leaves the nanofiber morphology as well as the fluorescent character of the 

compound intact. 

3.5 Water stability testing 

What makes PNIPAM so interesting for many applications is its solubility in water below its 

LCST, yet water stability above this temperature. This means that PNIPAM can be processed from 

water at low temperatures, as discussed above, but can be applied as a water-stable material at 

higher temperatures. For many nanofibrous applications, this water stability is a highly desired 

feature. In order to test the water stability of the PNIPAM nanofibers, the produced nanofibrous 

membranes are immersed in water at temperatures above PNIPAM’s LCST. After immersion, the 

samples are dried at 90 °C, which is well below the glass transition temperature of PNIPAM, in 

order to perform SEM-analysis. As can be seen in Figure 9 and Figure 10, both after immersion in 

water at 37 °C and 50 °C the nanofibrous structure remains.  
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Figure 9. Water stability tests of the produced nanofibers containing 8 wt%, 10 wt% and 12 

wt% PNIPAM (left to right) show that the nanofibrous structure remains intact at 50 °C, 

albeit with some swelling due to water absorption. (a) Before immersion, (b) after 30 seconds 

of immersion, (c) after 5 minutes of immersion. 

 

Figure 10. Water stability tests of the produced nanofibers containing 8 wt%, 10 wt% and 

12 wt% PNIPAM (left to right) show that the nanofibrous structure remains intact at 37 °C, 

albeit with some swelling due to water absorption. (a) Before immersion, (b) after 30 seconds 

of immersion, (c) after 5 minutes of immersion. 
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No dissolution occurs, yet some swelling is observed due to unavoidable interactions with the 

water molecules. The 12 wt% samples seem to be more resistant to this swelling, possibly because 

these nanofibers possess larger nanofiber diameters, as can be seen from Figure 6, making them 

more robust. In contrast, samples that are immersed in water at temperatures below 31 °C, i.e. 

below the TCP of PNIPAM, are completely and immediately dissolved in water, as expected 

indicating the switchable aqueous solubility of these PNIPAM nanofibers. 

4 Conclusions and future outlook 

Water-stable, well-defined, continuous, uniform, and bead-less PNIPAM nanofibers can be 

produced by waterborne electrospinning, facilitated by the rise in solution viscosity at temperatures 

significantly lower than the TCP, which was found to be the case for higher concentrated PNIPAM 

solutions.  

It is reported that for concentrations around 8 wt%, PNIPAM shows gelation at significantly 

lower temperatures than the LCST, resulting in a clear, transparent gel-like structure. This 

phenomenon proved to be crucial for PNIPAM’s electrospinnability as it provides a concentration-

dependent temperature range around the gelation temperature, wherein good solubility is 

combined with an increased viscosity that is suited for stable electrospinning from water. Although 

majorly overlooked in literature today, it is therefore crucial to adjust and control the  

environmental temperature as such. Moreover, also the relative humidity proved to play a crucial 

role, as a lower relative humidity (25 % RH) allows for a sufficiently fast water evaporation, 

required to form uniform nanofibers.  

It can be expected that these insights will not only apply to the electrospinning of PNIPAM but 

also to the electrospinnability of its related copolymers and other thermoresponsive (co)polymers. 

This hypothesis as well as the investigation of different molecular weights and the influence of 
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salts, which are known to influence the LCST behavior of PNIPAM, will be the focus of future 

research. Nevertheless, the current results already provide important insights in the rheological 

behavior of the thermoresponsive polymer PNIPAM and its electrospinnability from water, 

showing major potential to many applications in biomedicine, including drug delivery and cell 

culture. 
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6 Supporting Information. Figure S1: DSC traces of commercial PNIPAM powder and 

produced PNIPAM nanofibers. Figure S2: SEM images of produced PNIPAM nanofibers which 

were dried or not dried after electrospinning. Figure S3: SEM images of PNIPAM nanofibers after 

waterstability tests with different drying procedures. Figure S4: Fluorescence spectrum of 

PNIPAM nanofibers doped with fluorescein. 

7 References 

(1)  Zhernenkov, M.; Ashkar, R.; Feng, H.; Akintewe, O. O.; Gallant, N. D.; Toomey, R.; 

Ankner, J. F.; Pynn, R. Thermoresponsive PNIPAM Coatings on Nanostructured Gratings 

for Cell Alignment and Release. ACS Appl. Mater. Interfaces 2015, 7 (22), 11857–11862. 

(2)  Stile, R. A.; Healy, K. E. Thermo-Responsive Peptide-Modified Hydrogels for Tissue 



 25 

Regeneration. Biomacromolecules 2001, 2 (1), 185–194. 

(3)  Ward, M. A.; Georgiou, T. K. Thermoresponsive Polymers for Biomedical Applications. 

Polymers (Basel). 2011, 3 (3), 1215–1242. 

(4)  Guan, Y.; Zhang, Y. PNIPAM Microgels for Biomedical Applications: From Dispersed 

Particles to 3D Assemblies. Soft Matter 2011, 7 (14), 6375. 

(5)  Nolan, C. M.; Serpe, M. J.; Lyon, L. A. Thermally Modulated Insulin Release from 

Microgel Thin Films. Biomacromolecules 2004, 5 (5), 1940–1946. 

(6)  Islam, M. R.; Ahiabu, A.; Li, X.; Serpe, M. J. Poly (N-Isopropylacrylamide) Microgel-

Based Optical Devices for Sensing and Biosensing. Sensors (Basel). 2014, 14 (5), 8984–

8995. 

(7)  Schild, H. G. Poly ( N-Isopropylacrylamide ): Experiment , Theory and Application. Prog. 

Polym. Sci. 1992, 17 (2), 163–249. 

(8)  Hacker, M. C.; Klouda, L.; Ma, B. B.; Kretlow, J. D.; Mikos, A. G. Synthesis and 

Characterization of Injectable, Thermally and Chemically Gelable, Amphiphilic poly(N-

Isopropylacrylamide)-Based Macromers. Biomacromolecules 2008, 9 (6), 1558–1570. 

(9)  Twaites, B. R.; De Las Heras Alarcón, C.; Lavigne, M.; Saulnier, A.; Pennadam, S. S.; 

Cunliffe, D.; Górecki, D. C.; Alexander, C. Thermoresponsive Polymers as Gene Delivery 

Vectors: Cell Viability, DNA Transport and Transfection Studies. J. Control. Release 2005, 

108 (2–3), 472–483. 

(10)  Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive 

Nanocarriers for Drug and Gene Delivery. Journal of Controlled Release. 2008, pp 187–



 26 

204. 

(11)  Miyata, K.; Christie, R. J.; Kataoka, K. Polymeric Micelles for Nano-Scale Drug Delivery. 

React. Funct. Polym. 2011, 71 (3), 227–234. 

(12)  Maji, S.; Cesur, B.; Zhang, Z.; De Geest, B.; Hoogenboom, R. Poly(N-

Isopropylacrylamide) Coated Gold Nanoparticles as Colourimetric Temperature and Salt 

Sensors. Polym. Chem. 2016, 7 (Scheme 1), 1705–1710. 

(13)  Vancoillie, G.; Zhang, Q.; Hoogenboom, R. Chapter 7. Polymeric Temperature Sensors; 

2016; pp 190–236. 

(14)  Hu, J.; Liu, S. Responsive Polymers for Detection and Sensing Applications: Current Status 

and Future Developments. Macromolecules 2010, 43 (20), 8315–8330. 

(15)  Tzeng, P.; Kuo, C.-C.; Lin, S.-T.; Chiu, Y.-C.; Chen, W.-C. New Thermoresponsive 

Luminescent Electrospun Nanofibers Prepared from Poly[2,7-(9,9-Dihexylfluorene)]-

Block-poly(N-isopropylacrylamide)/PMMA Blends. Macromol. Chem. Phys. 2010, 211 

(13), 1408–1416. 

(16)  Muthiah, P.; Hoppe, S. M.; Boyle, T. J.; Sigmund, W. Thermally Tunable Surface 

Wettability of Electrospun Fiber Mats: polystyrene/poly(N-Isopropylacrylamide) Blended 

versus Crosslinked poly[(N-Isopropylacrylamide)-Co-(Methacrylic Acid)]. Macromol. 

Rapid Commun. 2011, 32 (21), 1716–1721. 

(17)  Umapathi, R.; Reddy, P. M.; Kumar, A.; Venkatesu, P.; Chang, C.-J. The Biological Stimuli 

for Governing the Phase Transition Temperature of The “smart” polymer PNIPAM in 

Water. Colloids Surf. B. Biointerfaces 2015, 135, 588–595. 



 27 

(18)  Afroze, F.; Nies, E.; Berghmans, H. Phase Transitions in the System poly(N-

Isopropylacrylamide)/water and Swelling Behaviour of the Corresponding Networks. J. 

Mol. Struct. 2000, 554 (1), 55–68. 

(19)  Baysal, B. M.; Karasz, F. E. Coil-Globule Collapse in Flexible Macromolecules. 

Macromolecular Theory and Simulations. WILEY‐ VCH Verlag December 2003, pp 627–

646. 

(20)  Costa, R. O. .; Freitas, R. F. . Phase Behavior of poly(N-Isopropylacrylamide) in Binary 

Aqueous Solutions. Polymer (Guildf). 2002, 43 (22), 5879–5885. 

(21)  De La Rosa, V. R.; Woisel, P.; Hoogenboom, R. Supramolecular Control over 

Thermoresponsive Polymers. Materials Today. 2016, pp 44–55. 

(22)  Graziano, G. On the Temperature-Induced Coil to Globule Transition of Poly-N-

Isopropylacrylamide in Dilute Aqueous Solutions. International Journal of Biological 

Macromolecules. March 2000, pp 89–97. 

(23)  Halperin, A.; Kröger, M.; Winnik, F. M. Poly(N-Isopropylacrylamide) Phase Diagrams: 

Fifty Years of Research. Angew. Chemie - Int. Ed. 2015, 54 (51), 15342–15367. 

(24)  da Silva, R. M. P.; Mano, J. F.; Reis, R. L. Smart Thermoresponsive Coatings and Surfaces 

for Tissue Engineering: Switching Cell-Material Boundaries. Trends in Biotechnology. 

2007, pp 577–583. 

(25)  Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-

Responsive Polymeric Surfaces; Control of Attachment and Detachment of Cultured Cells. 

Die Makromol. Chemie, Rapid Commun. 1990, 11 (11), 571–576. 



 28 

(26)  Kikuchi, A.; Okano, T. Nanostructured Designs of Biomedical Materials: Applications of 

Cell Sheet Engineering to Functional Regenerative Tissues and Organs. In Journal of 

Controlled Release; 2005; Vol. 101, pp 69–84. 

(27)  Peter X.MA. Tissue Engineering. Encycl. Polym. Sci. Technol. 2004, 12 (3). 

(28)  Fang, J.; Wang, X.; Lin, T. Functional Applications of Electrospun Nanofibers. Nanofibers 

- Prod. Prop. Funct. Appl. 2011, 287–326. 

(29)  Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable 

Electrospun Fibers for Drug Delivery. J. Control. Release 2003, 92 (3), 227–231. 

(30)  Zeng, J.; Yang, L.; Liang, Q.; Zhang, X.; Guan, H.; Xu, X.; Chen, X.; Jing, X. Influence of 

the Drug Compatibility with Polymer Solution on the Release Kinetics of Electrospun Fiber 

Formulation. J. Control. Release 2005, 105 (1–2), 43–51. 

(31)  Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun 

Nanofibers: Solving Global Issues. Mater. Today 2006, 9 (3), 40–50. 

(32)  Vasita, R.; Katti, D. S. Nanofibers and Their Applications in Tissue Engineering. 

International Journal of Nanomedicine. Dove Press 2006, pp 15–30. 

(33)  Goh, Y.-F.; Shakir, I.; Hussain, R. Electrospun Fibers for Tissue Engineering, Drug 

Delivery, and Wound Dressing. J. Mater. Sci. 2013, 48 (8), 3027–3054. 

(34)  Agarwal, S.; Burgard, M.; Greiner, A.; Wendorff, J. Electrospinning: A Practical Guide to 

Nanofibers; De Gruyter Textbook; De Gruyter, 2016. 

(35)  Schoolaert, E.; Steyaert, I.; Vancoillie, G.; Geltmeyer, J.; Lava, K.; Hoogenboom, R.; De 



 29 

Clerck, K. Blend Electrospinning of Dye-Functionalized Chitosan and Poly(ε-

Caprolactone): Towards Biocompatible pH-Sensors. J. Mater. Chem. B 2016, 4 (26), 4507–

4516. 

(36)  Wang, X.; Drew, C.; Lee, S.-H.; Senecal, K. J.; Kumar, J.; Samuelson, L. A. Electrospun 

Nanofibrous Membranes for Highly Sensitive Optical Sensors. Nano Lett. 2002, 2 (11), 

1273–1275. 

(37)  Geltmeyer, J.; Vancoillie, G.; Steyaert, I.; Breyne, B.; Cousins, G.; Lava, K.; Hoogenboom, 

R.; De Buysser, K.; De Clerck, K. Dye Modification of Nanofibrous Silicon Oxide 

Membranes for Colorimetric HCl and NH3 Sensing. Adv. Funtional Mater. 2016. 

(38)  Andrady, L. A. Science and Technology of Polymer Nanofibers; 2008. 

(39)  Steyaert, I.; Rahier, H.; De Clerck, K. Nanofibre-Based Sensors for Visual and Optical 

Monitoring. In Electrospinning for High Performance Sensors; Macagnano, A., Zampetti, 

E., Kny, E., Eds.; 2015; pp 157–177. 

(40)  Slemming-Adamsen, P.; Song, J.; Dong, M.; Besenbacher, F.; Chen, M. In Situ Cross-

Linked PNIPAM/Gelatin Nanofibers for Thermo-Responsive Drug Release. Macromol. 

Mater. Eng. 2015, 300 (12), 1226–1231. 

(41)  Prabaharan, M.; Jayakumar, R.; Nair, S. V. Electrospun Nanofibrous Scaffolds-Current 

Status and Prospects in Drug Delivery. In Biomedical Applications of Polymeric 

Nanofibers; Jayakumar, R., Nair, S., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 

2012; pp 140–262. 

(42)  Bhardwaj, N.; Kundu, S. C. Electrospinning: A Fascinating Fiber Fabrication Technique. 



 30 

Biotechnol. Adv. 2010, 28 (3), 325–347. 

(43)  Ramakrishna, S. An Introduction to Electrospinning And Nanofibers (Google eBook); 

World Scientific, 2005. 

(44)  Sun, J.; Bubel, K.; Chen, F.; Kissel, T.; Agarwal, S.; Greiner, A. Nanofibers by Green 

Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for 

Applications in Medicine, Pharmacy and Agriculture. Macromol. Rapid Commun. 2010, 31 

(23), 2077–2083. 

(45)  Wang, C.; Wang, Y.; Hashimoto, T. Impact of Entanglement Density on Solution 

Electrospinning: A Phenomenological Model for Fiber Diameter. Macromolecules 2016, 

49 (20), 7985–7996. 

(46)  Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial Upscaling of 

Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol. Mater. 

Eng. 2013, 298 (5), 504–520. 

(47)  Agarwal, S.; Greiner, A. On the Way to Clean and Safe Electrospinning-Green 

Electrospinning: Emulsion and Suspension Electrospinning. Polymers for Advanced 

Technologies. John Wiley & Sons, Ltd. March 2011, pp 372–378. 

(48)  Chen, H.; Hsieh, Y. Lo. Ultrafine Hydrogel Fibers with Dual Temperature- and pH-

Responsive Swelling Behaviors. J. Polym. Sci. Part A Polym. Chem. 2004, 42 (24), 6331–

6339. 

(49)  Hoffman, A. S. “Intelligent” Polymers in Medicine and Biotechnology. Artif. Organs 1995, 

19 (5), 458–467. 



 31 

(50)  Okuzaki, H.; Kobayashi, K.; Yan, H. Non-Woven Fabric of poly(N-Isopropylacrylamide) 

Nanofibers Fabricated by Electrospinning. Synth. Met. 2009, 159 (21), 2273–2276. 

(51)  Rockwood, D. N.; Chase, D. B.; Akins, R. E.; Rabolt, J. F. Characterization of Electrospun 

poly(N-Isopropyl Acrylamide) Fibers. Polymer (Guildf). 2008, 49 (18), 4025–4032. 

(52)  Song, F.; Wang, X. L.; Wang, Y. Z. Poly (N-Isopropylacrylamide)/poly (Ethylene Oxide) 

Blend Nanofibrous Scaffolds: Thermo-Responsive Carrier for Controlled Drug Release. 

Colloids Surfaces B Biointerfaces 2011, 88 (2), 749–754. 

(53)  Lin, X.; Tang, D.; Cui, W.; Cheng, Y. Controllable Drug Release of Electrospun 

Thermoresponsive poly(N-isopropylacrylamide)/poly(2-Acrylamido-2-

Methylpropanesulfonic Acid) Nanofibers. J. Biomed. Mater. Res. - Part A 2012, 100 A (7), 

1839–1845. 

(54)  Saithongdee, A.; Varanusupakul, P.; Imyim, A. Preparation of Thermally Sensitive poly[N-

Isopropylacrylamide-Co-(Maleic Acid)] Hydrogel Membrane by Electrospinning Using a 

Green Solvent. Green Chem. Lett. Rev. 2014, 7 (3), 220–227. 

(55)  Salehi, R.; Irani, M.; Rashidi, M.-R.; Aroujalian, A.; Raisi, A.; Eskandani, M.; Haririan, I.; 

Davaran, S. Stimuli-Responsive Nanofibers Prepared from poly(N-Isopropylacrylamide-

Acrylamide-Vinylpyrrolidone) by Electrospinning as an Anticancer Drug Delivery. Des. 

Monomers Polym. 2013, 16 (6), 515–527. 

(56)  Song, F.; Wang, X.-L.; Wang, Y.-Z. Fabrication of Novel Thermo-Responsive Electrospun 

Nanofibrous Mats and Their Application in Bioseparation. Eur. Polym. J. 2011, 47 (10), 

1885–1892. 



 32 

(57)  Tran, T.; Hernandez, M.; Patel, D.; Wu, J. Temperature and pH Responsive Microfibers for 

Controllable and Variable Ibuprofen Delivery. Adv. Mater. Sci. Eng. 2015, 2015, 6. 

(58)  Wang, J.; Sutti, A.; Wang, X.; Lin, T. Fast Responsive and Morphologically Robust 

Thermo-Responsive Hydrogel Nanofibres from poly(N-Isopropylacrylamide) and POSS 

Crosslinker. Soft Matter 2011, 7 (9), 4364. 

(59)  Munk, T.; Hietala, S.; Kalliomaki, K.; Nuopponen, M.; Tenhu, H.; Tian, F.; Rantanen, J.; 

Baldursdottir, S. Rheological Behaviour of Poly(N-Isopropyl Acrylamide) in Water-

Acetone Mixtures. Annu. Trans. Nord. Rheol. Soc. 2009, 17. 

(60)  Antunes, F. E.; Gentile, L.; Tavano, L.; Rossi, C. O. Rheological Characterization of the 

Thermal Gelation of poly(N-Isopropylacrylamide) and poly(N-Isopropylacrylamide)co-

Acrylic Acid. Appl. Rheol. 2009, 19 (4), 42064–42069. 

(61)  Winter, H. H. Can the Gel Point of a Crosslinking Polymer Be Detected by the G’-G" 

crossover? Polymer Engineering and Science. Society of Plastics Engineers December 

1987, pp 1698–1702. 

(62)  Zhang, Q.; Weber, C.; Schubert, U. S.; Hoogenboom, R. Thermoresponsive Polymers with 

Lower Critical Solution Temperature: From Fundamental Aspects and Measuring 

Techniques to Recommended Turbidimetry Conditions. Mater. Horiz. 2017, 4 (2), 109–

116. 

(63)  Boutris, C.; Chatzi, E. G.; Kiparissides, C. Characterization of the LCST Behaviour of 

Aqueous poly(N-Isopropylacrylamide) Solutions by Thermal and Cloud Point Techniques. 

Polymer (Guildf). 1997, 38 (10), 2567–2570. 



 33 

(64)  Heskins, M.; Guillet, J. E. Solution Properties of Poly(N-Isopropylacrylamide). J. 

Macromol. Sci. Part A - Chem. 1968, 2 (8), 1441–1455. 

(65)  Van Durme, K.; Rahier, H.; Van Mele, B. Influence of Additives on the Thermoresponsive 

Behavior of Polymers in Aqueous Solution. Macromolecules 2005, 38 (24), 10155–10163. 

(66)  Wintgens, V.; Amiel, C. Physical Gelation of Amphiphilic poly(N-Isopropylacrylamide): 

Influence of the Hydrophobic Groups. Macromol. Chem. Phys. 2008, 209 (15), 1553–1563. 

(67)  Zheng, X.; Tong, Z.; Xie, X.; Zeng, F. Phase Separation in Poly(N-Isopropyl 

acrylamide)/Water Solutions I. Cloud Point Curves and Microgelation. Polym. J. 1998, 30 

(4), 284–288. 

(68)  Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; van Buul, A. M.; Eksteen-

Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom, R.; Picken, S. J.; 

Nolte, R. J. M.; Mendes, E.; Rowan, A. E. Responsive Biomimetic Networks from 

Polyisocyanopeptide Hydrogels. Nature 2013, 493 (7434), 651–655. 

(69)  Holzmeister, A.; Yarin, A. L.; Wendorff, J. H. Barb Formation in Electrospinning: 

Experimental and Theoretical Investigations. Polymer (Guildf). 2010, 51 (12), 2769–2778. 

(70)  Holzmeister, A.; Grelner, A.; Wendorff, J. H. “Barbed Nanowires” from Polymers Wia 

Electrospinning. Polym. Eng. Sci. 2009, 49 (1), 148–153. 

  



 34 

For Table of Contents use only 

Waterborne Electrospinning of poly(N-isopropyl acrylamide) by control of environmental 

parameters  

Ella Schoolaert, Paulien Ryckx, Jozefien Geltmeyer, Samarendra Maji, Paul H.M. Van 

Steenberge, Dagmar R. D’hooge, , Richard Hoogenboom and Karen De Clerck 

 

 

 




