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In wireless sensor networks (WSNs), energy saving is a critical issue. Many research works have been undertaken to save energy.
Data aggregation is one of the schemes that save energy by reducing the amount of data transmission. Normally, researchers focus
on saving energy by aggregating multiple data or turning to achieving short transmission delay in data aggregation; few of them
are concerned with network lifetime. �is work achieves an optimum network lifetime by balancing energy consumption among
nodes in network. Here, we propose a waterfalls partial aggregation, controlled by a set of waterfalls pushing rate vectors. �e 	rst
contribution of this paper is to propose awaterfalls partial aggregation and tomodel it with queuing theory.�e second contribution
is that the optimumnetwork lifetime is achievedmathematically and a near optimumalgorithm is proposed for a given transmission
delay.�e results are compared with existing energy e
cient algorithms and the evaluation results show the e
ciency of proposed
algorithm.

1. Introduction

In the recent development of wireless technology, wireless
sensor networks (WSNs) [1] have attracted researchers’ atten-
tion because of the applicability in many 	elds for e�ective
collection of sensing data with low cost [2]. WSN consists of
a large number of sensor nodes, where sensor nodes sense
events and generate event data, then transmitting the data
to a sink node via intermediate sensor nodes in a multihop
manner [3]. Sensor nodes are battery-powered with limited
energy supply; moreover, in many of the applications, sensor
nodes are deployed in harsh nature environment or vast space
so that the continuous energy supplement is impossible. In
this case, if one of the nodes in the network exhausted energy,
the network would break down and perform reorganization,
where the reorganization of the network also consumesmuch
energy and time. For these reasons, WSNs should be energy
e
cient. For energy saving, many researchers are working
on Medium Access Control (MAC) protocols [4], routing
protocols [5], topology control [6], and data aggregation [7]
in WSNs.

In WSNs, data generated from neighboring sensor nodes
are o�en redundant and highly correlated. Sensor nodes
spend considerable energy for sending or relaying a large
number of redundant data. Moreover, a large number of data
transmissions cause data collisions and data congestion. All
these lead to the turning up of data aggregation technique.
Data aggregation is de	ned as the process of aggregating data
frommultiple sensor nodes to eliminate redundant transmis-
sion and provide fused information to a sink node. In data
aggregation, there aremainly three kinds of aggregationways.
�e 	rst is clustering data aggregation where data are col-
lected and aggregated at a cluster node and then trans-
mitted to a sink node [8, 9]. �e second is hop by hop
aggregation, which means that data are aggregated at each
intermediate node [10]. �e third is partial aggregation,
where data aggregation satis	es a time or energy threshold
[11]. However, all these three kinds of data aggregations have
their drawbacks. In clustering data aggregation, a cluster head
always consumes much energy than others; WSNs always
perform a cluster head selecting algorithm to decide a new
cluster head, which wastes considerable time and energy [12].
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In hop by hop aggregation, data su�er long transmission
delay and nodes on the transmission way su�er unbalanced
energy consumption [10]. Compared to these two, partial
aggregation appears to bemore �exible. In partial aggregation
with scheduling technique always set a time period to collect
data for nodes that have aggregating function. Here, time
period is always decided by a given time threshold or
requested data accuracy but always does not consider the
energy consumption of nodes in the network [11, 13, 14]. As
everyone knows, network lifetime is always decided by nodes’
lifetime; when a node’s energy is exhausted, the network has
to perform reorganization. Hence, even though the partial
aggregation can shorten the transmission delay, it still has
the shortcoming of unbalanced nodes lifetime, which leads
to short network lifetime.

In this paper, to achieve optimum network lifetime, at
	rst, we propose a waterfalls partial aggregation (WPA),
which is a kind of scheduling data aggregation scheme where
optimum network lifetime is achieved by controlling the
data transmitting period. Secondly, by analyzing the data
transmission process of proposed scheme, we determined the
formulations of energy consumption and transmission delay
of the network, which causes advantage for future scienti	c
studies. �en in Section 4, optimum network lifetime is ana-
lyzed mathematically and achieved by a heuristics algorithm.
We present evaluation in Section 5. Finally, we show the
conclusion in Section 6.

2. Related Work

WSNs have various applications. Some applications are
required to send data as soon as possible, while in other
applications energy saving is much more important. For
example, in disaster monitoring or emergency rescue, imme-
diate data transmission ismore important than others; hence,
data are always transmitted to neighboring nodes without
aggregation; we call this nonaggregation. However, in nature
monitoring, energy is more signi	cant than transmission
delay because the replacement of battery for sensor nodes
is supposed to be impossible. In respect to energy saving,
data aggregation technique is widely applied inWSNs that are
composed of large number of sensor nodes and meanwhile
it is not so easy to supply continuous energy. Hence, we call
it full aggregation that processes data aggregation only for
energy saving in the network. In some applications of WSNs,
it is required to trade o� node energy and transmission
delay or some other properties. In this case, data aggregation
should consider corresponding delay or some other required
thresholds; we call this kind of data aggregation a partial
aggregation. In this section, we introduce nonaggregation,
full aggregation, and partial aggregation and then discuss
their advantages and disadvantages.

2.1. Nonaggregation. De	nition of nonaggregation is that a
node transmits received data to an adjacent lower node
immediately a�er receiving data from a neighboring node
which means that all data are sent to a sink node one by one,
as shown in Figure 1.
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Figure 1: Nonaggregation.

From the de	nition of nonaggregation, we 	nd that data
transmission rate at a node becomes larger near a sink node
because of data relaying properties of a node. Hence, energy
consumption of nodes near a sink node is much more than
that in nodes far from the sink. As a result, nodes near the
sink node exhaust energy sooner than others, which results in
short network lifetime.Moreover, when event data generation
rate is large, data congestions occur at nodes around a sink
node and they prolong transmission delay as well as let the
network lifetime become worse [4–6, 15–18]. Sensor MAC
[4] (S-MAC) is proposed for energy saving in wireless sensor
networks based on IEEE 802.11 MAC protocols. In S-MAC,
the network is always assumed to be less in amount of
data transmission; data process and data aggregation can
be performed in the networks where the transmission delay
is considerably tolerant. S-MAC uses a listen/sleep model
and divides the time into frames; each frame has the model
of listen/sleep. Besides, topology control algorithms are
studied for improving network lifetime, and the minimum
spanning tree is the typical one. LMST [16] is a minimum
spanning tree (MST) based topology control algorithm for
multihop wireless networks, called local minimum spanning
tree (LMST). �e topology is constructed from each node,
where a node builds its local MST independently (with the
use of information locally collected) and keeps only one-hop
on-tree nodes as its neighbors.

2.2. Full Aggregation. Full aggregation is that a node pro-
cesses data aggregation when new data generated at itself. In
more detail, the node does not transmit any received data
from neighboring node immediately; all arrival data from
neighboring nodes wait for new generated data. When there
are new data at a node, the node aggregates all arrival data
with its own data and then transmits them to its lower node.
Figure 2 illustrates the full aggregation in detail. It is clear to
see from the de	nition that full aggregation can save much
energy by aggregating data at every relay node. �e only
condition for data transmission is that a new event data
occurs at a node, which means that the data transmission
rate is the same with data generation rate. If we assume data
generation rates at all nodes are the same, then the number
of data transmissions for each node is the same, so that
full aggregation can achieve balanced energy consumption
among nodes.

However, full aggregation has its inevitable defect that
transmission delay is too long for data occurring at nodes far
from a sink node because of the waiting time for generating
data at every intermediate node. And what is more, the
transmission delay is longer when data generation rate is
low at nodes. PEGASIS (Power-E
cient Gathering in Sensor
Information Systems) [10] is one of the energy e
ciency
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Figure 2: Full aggregation.
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Figure 3: Partial aggregation.

chain based data aggregation protocols that employs a greedy
algorithm. �ere are two assumptions in this scheme: one
is that all nodes are far from a sink node; the other is that
nodes except the end nodes fuse the received data and their
own data and then aggregate them into one packet before
transmitting them to another neighboring node. �e main
idea of PEGASIS is forming a chain among the sensor nodes
so that each node will receive from and transmit to fused data
only with a close neighbor.�e fused data are sent from node
by node, and all the nodes take turns to be the leader for
transmission to the sink node.�e disadvantage of PEGASIS
is that transmission delay is too long for nodes that are at the
end of a chain.

2.3. Partial Aggregation. In partial aggregation, data always
wait a period of time to be transmitted for collecting more
data at a node; all collected data are aggregated into one or
several representative data and then transmitted to an upper
neighboring node. �e waiting time at nodes is adjustable
and is always decided by corresponding applications [11, 13,
19–21]. Figure 3 illustrates a most simple class of partial
aggregation in which data wait Δ� time for aggregation at a
node before they are transmitted (1/Δ� is data transmission
rate at a node).Whenwaiting timeΔ� is out, a node aggregates
all generated data and received data into one type of represen-
tative data and then sent it out. In partial aggregation, energy
is traded o� for improving transmission delay, data accuracy,
network lifetime, and so forth. Since full aggregation leads to
long transmission delay and nonaggregation consumesmuch
energy, partial aggregation can balance energy with other
performances inWSN. As the waiting time at nodes is always
decided by applications, one can set the waiting time very
short when they want data with short transmission delay and
otherwise the opposite.

In in-network cascading timeout data aggregation [13]
and ATS-DA (Adaptive Timeout Scheduling for Data Aggre-
gation) [11], a sink initially broadcasts a request to all nodes.
Each node waits for a certain time period to receive data
from their child nodes. �e timeout period of each node is
set based on the position of the node in the data aggregation
tree. However, these studies are not applicable when real time
data or short delay data are required. Because all data at a
node have to wait at least SHDavg time, no matter whether

the data are important or not. Moreover, when the data arriv-
ing rate is irregular at nodes, the node energy consumption
is also irregular among nodes, which result in unbalanced
network. In particular, in large scaleWSN, it is very di
cult to
achieve fairness for all nodes from the points of transmission
delay and energy consumption because of data collision and
congestion as well as retransmission.

3. Waterfalls Partial Aggregation

3.1. Sensor NetworkModel. In this research, we apply queuing
theory to analyze and model wireless sensor network. As in
mathematical analysis, too complex network model makes it
too sophisticated to get the analytical result and formulation;
therefore, we de	ne the network model to be the most basic
and simplest model of tandem sensor network; however, the
results can be extensible to other more complex topologies.
�e structure and transmission principle of tandem network
are shown in Figure 4.

In tandem networks, all the nodes deployed in a �at are
allocated omnidirectional antennas with the same transmis-
sion range. Data generated at the nodes are transmitted to
a sink node in multihop manner. �e distance between two
neighboring nodes is the same, and all the nodes are within
the transmission range of their neighboring nodes:

(i) �� denotes the �th node from the sink.

(ii) � is a set of all nodes;� is natural number set.

(iii) �� denotes the energy at node ��.
(iv) �max denotes maximum network lifetime.

(v) 	� denotes the total transmission delay.

(vi) 
� is waterfalls pushing rate at node ��.
(vii) �� is data transmission delay for each node.

3.2. De�nition of Waterfalls Partial Aggregation. To shorten
the data transmission delay and to lengthen the network
lifetime of the network as well as to suppress data congestion
around a sink node, we propose a waterfalls partial aggrega-
tion (WPA). In WPA, data are transmitted to a neighboring
node in two conditions: (a) if there are new local generated
data at a node or (b) a�er waiting a holding time Δ� at a
node. �e inverse of the holding time Δ�� at node �� we
call waterfalls pushing rate and it is denoted as 
� where 
�
becomes smaller to nodes nearer a sink node; it means 
� >
�, � > �, as shown in Figure 5.

In otherwords, data tends to be aggregated rarely at nodes
far from a sink node to suppress delay. When there are new
generated data at a node or the holding time at this node
is over, all data at this node are aggregated and wait for
further transmission. In more detail, the holding time for
nodes nearer a sink node is longer than the ones far from the
sink, so that it results in the decrease of the amount of data
transmission near a sink node. Finally, it can achieve an equal
amount of data transmission at each node by controlling
the waterfalls pushing rate vectors. �e �ow chart of data
aggregation and transmission is shown in Figure 6.
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Figure 4: Tandem sensor network.
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Figure 5: Waterfalls partial aggregation.
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Figure 6: Flow chart of waterfalls partial aggregation.

In the �ow chart, a�er data arriving from neighboring
node, node �� starts to check if there are new generated data
at itself. If yes, node �� aggregates all arrival data with the local
generated data and then waits for service process; if no, node�� checks the holding time; if time is run up, it aggregates
all arrival data and then goes to service process; otherwise,
it checks new generated data.�is process we call data arrival
process to server. A�er aggregating data, node �� checks if
the server is idle or not. If there are no other data waiting
for transmitting, we say the server is idle; otherwise, server
is busy; data queue up in the server and wait for further
transmitting. When server is idle, node checks if the channel
is idle or not.When channel is idle, data transmission process

starts; otherwise, node �� checks the channel until it turns to
idle. Data are sent to a neighboring node if the channel is idle.

3.3. Problem De�nition. In WPA, the waterfalls setting of
holding time is for balancing energy consumption among
nodes as well as suppressing load. As we mentioned in
Section 2 that network lifetime is always decided by the
shortest lifetime node in the network; therefore, to lengthen
the shortest node lifetime is to extend network lifetime.
When tolerable maximum transmission delay is given by
corresponding application, we set the holding time Δ�� for
nodes in the network according to WPA algorithm. �e
reason that set a maximum tolerable transmission delay is
because in a 	nite network there would have several sets of
waterfalls pushing rates vectors corresponding to di�erent
transmission delay. According to our de	nition, waterfalls
pushing rate 
� is inverse of holding time. With larger
waterfalls pushing rate 
�, a node transmits more data and
results in much energy consumption. �us, the problem
becomes how to set the waterfalls pushing rates among nodes
so that all nodes keep having the same energy consumption.

In other words, how long should the holding time of
arrival data for data aggregation at a node be to meet the
conditions of balanced energy consumption among nodes
and given transmission delay? For a node, if required trans-
mission delay is given as	�, then what our algorithm should
do is let

	� = �1 + �2 + ⋅ ⋅ ⋅ + �� + ⋅ ⋅ ⋅ + �� (� ∈ �) . (1)

Here, �� is transmission delay for node �� and we deter-
mine the formulation of transmission delay for each node as
well as total transmission delay of the network in Section 3.4.
In WPA, data have to wait for Δ� time at a node for gathering
more data; hence, the transmission delay for a node is
mainly decided by this Δ�. On the other hand, to balance
the energy consumption among nodes, we 	rst obtain total
energy consumption �� for node �� which is composed of
energy of data reception, data transmission, and overhearing.
We show the solution of energy consumption for node ��
and determine the formulations in Section 3.4. For node ��,
data transmission rate is decided by itself and data receiving
rate is decided by its upper neighboring node ��+1 and the
overhearing rate is decided by its lower neighboring node��−1. For node ��, data transmission rate ��� is decided by data
generation rate �� and waterfalls pushing rate 
�. If we set
the maximum network lifetime as �max, then we obtain (2)
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Figure 7: Analytical model of waterfalls partial aggregation at node��.

which means �max is decided by nodes lifetime � � or � when
two arbitrary nodes � and � are balanced on energy �� = ��:

�max = � � or � (�� = ��) (1 ≤ �, � < �) . (2)

�erefore, for achieving balanced energy among nodes, we
	rst determine the optimum set of waterfalls pushing rates 
�
that correspond to given �max in the network:


� = argmax (� (
�)) . (3)

From the above analysis, it is clear that we are trying to obtain
a set of waterfalls pushing rates:

{
� | 
� < 
�+1, 
� ∈ |�| , 1 < � < �} . (4)

For obtaining optimum holding time for each node, it is
necessary to know total delay of the network and energy
consumption for a node. In the following sections, we
determine the total delay and node energy consumption.

3.4. Analytical Model of WPA

3.4.1. Queuing �eory Analysis. For determining the trans-
mission delay, we model the data arrival process and data
transmission process of WPA by queuing theory. �e analyt-
ical model of node �� is shown in Figure 7.

Before explaining the model, we introduce Queuerx,
Queuetx, G, and Server. Queuerx denotes the arrival data
queue in which arrival data are waiting for data aggregation
at node ��. Queuetx denotes the data queue a�er aggregation
in which aggregated data are waiting for transmission to
a neighbor node. G is assumed as a virtual gate between
Queuerx and Queuetx. Data transmitting process of data in
Queuetx is accomplished via Server.

In the analytical model, ����+1 is arrival data rate from
upper node toQueuerx of node �� and is approximately abided
by Poisson distribution. At node ��, event generation rate ��
is assumed to be Poisson distribution.Waterfalls pushing rate
� is assumed to be exponential distribution. In Queuerx, all
arrival data and generated data are aggregated and then join
Queuetx via gate G. ��� is data arrival rate to Queuetx in which

data are waiting for further transmitting. ���� is the data rate
upon exiting from the Server. Next, we analyze the above
model start from data receiving at a node to data that are
transmitted to a neighboring node.

3.4.2. Event Waiting Time. In this subsection, we decide the
time interval that datawait inQueuerx for aggregating at node

���i+1���i+1���i+1���i+1���i+1

0 1 k − 1 k

2�i + �i

2�i + �i 2�i + �i2�i + �i

· · · · · ·

Figure 8: State transition of Queuerx.

��; we call this time interval as event waiting time and denote
it by ��(�) and it is counted from when the 	rst data arrive
to Queuerx until the data are aggregated and join Queuetx.
To determine ��(�), we 	rst determine the amount of data
waiting for event data in Queuerx at node ��. �e amount
of data is denoted as �rx(�) and we describe state transition
rate diagram of Queuerx to determine it in Figure 8. Note
that, at node ��, the arrival data rate ����+1 is approximately
Poisson distribution, and �� is event data generation rate at
node �� and is approximately Poisson distribution. In data
aggregation, service time in queuing theory corresponds to
data aggregating time, which is time interval from last data
aggregation until next data aggregation. �e basic idea of the
analysis is that data waits in Queuerx for the duration accord-
ing to the exponential distribution of average 1/2��; since
data aggregation rate is inverse of the mean aggregating time,
hence data aggregation rate is 2��, andwhen consideringwith
waterfalls pushing rate, data aggregating rate is

�agg = 2�� + 
�. (5)

In the diagram, the state variable is the number of data
waiting for an event. Assume that a number of data are
waiting for an event data at node �� in Queuerx. If we let ��,0
and ��,� be the probability when the number of data waiting
for an event is 0 and � in Queuerx at node ��, at state 0,
according to Figure 8, we obtain

��,0����+1 =
∞∑
�=1

��,��agg. (6)

At state �, we obtain
��,�����+1 = ��,�−1����+1 − ��,��agg. (7)

Hence, we obtain

��,� = ����+1����+1 + �agg

��,�−1

��,�−1 = ����+1����+1 + �agg

��,�−2
...

��,1 = ����+1����+1 + �agg

��,0.

(8)
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Bringing these equations into (6), we determine the relation-
ship between ��,� and ��,0 that

��,� = ( ����+1����+1 + �agg

)
�

��,0. (9)

As we know,

∞∑
�=1

��,� = 1. (10)

Let

� = ����+1����+1 + �agg

. (11)

�en we determine

∞∑
�=1

����,0 = 1. (12)

As

∞∑
�=1

�� = 1
1 − � , (13)

hence,

∞∑
�=1

����,0 = 1
1 − ���,0 = 1. (14)

Accordingly, we obtain

��,0 = 1 − �. (15)

Substituting �, we determine

��,0 = 2�� + 
�����+1 + �agg

, (16)

��,� = (����+1)� + �agg

(����+1 + �agg)�+1
. (17)

Now, we determine the amount of data that are received in
Queuerx(�) as

�rx (�) =
∞∑
�=0

���,�. (18)

Taking (17) into the above equation, we obtain

�rx (�) =
∞∑
�=0

� (����+1)� + �agg

(����+1 + �agg)�+1
. (19)

We express the above equation as

�rx (�) =
∞∑
�=0

�( ����+1����+1 + �agg

)
�+1 �agg

����+1 . (20)

0

Y

X

Figure 9: Property distribution of�, �.

Let  = ����+1/(����+1 + �agg), and ! = �agg/����+1; then, we
simplify (20) as

�rx (�) =
∞∑
�=0

� �+1! = ∞∑
�=0

� �−1 2! =  2! ∞∑
�=0

� �−1

=  2! "
" 
∞∑
�=0

 � =  2! "
" 

1
1 −  =  2!

(1 −  )2 .
(21)

As  = ����+1/(����+1 + �agg) and �agg = 2�� + 
�, so we get that

1 −  = 2�� + 
�����+1 + 2�� + 
� . (22)

�erefore, we determine that

 2!
(1 −  )2

= (����+1/ (����+1 + 2�� + 
�))2 (2�� + 
�) /����+1
((2�� + 
�) / (����+1 + 2�� + 
�))2 .

(23)

By calculating the above equations, we determine that

�rx (�) = ����+12�� + 
� . (24)

According to Little’s formula, we determine the event waiting
time as follows:

�� (�) = �rx (�)2�� + 
� =
����+1

(2�� + 
�)2 . (25)

3.4.3. Arrival Process to Queue	
. From the analytical process
of Queuerx(�), we 	nd that arrival data rate ��� to Queuerx(�)
is decided by the waterfalls pushing rate 
� and event data
generation rate �� at node ��. �e event generation rate ��
and waterfalls pushing rate 
� abide by discrete distribution
and they are independent of one another. To determine the
formulation of ���, we calculate the property distribution of�� and 
�. At 	rst, we de	ne that �� and 
� are independent
distribution � and � as shown in Figure 9. We de	ne the
values of � as 1, 2, . . . , �� and the values of � as 1, 2, . . . , ��.
Here, we prove that the property � is bigger than�.
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We determine the property as follows. �� and �� denote
the properties when� = � and � = �:
� [� > �]
= �� (� = 1) �� (� = 2) + �� (� = 3) + ⋅ ⋅ ⋅ + �� (�
= ��)

+ �� (�
= 2) { +�� (� = 3) + ⋅ ⋅ ⋅ + �� (� = ��)}

...
+ �� (�
= ��) { + ⋅ ⋅ ⋅ + �� (� = �� + 1)}
= 
�∑
�=1
�� (� = �){{{


�∑
�=�+1

�� (� = �)}}}
.

(26)

When applied to continuous distribution, we obtain

� [� > �] = ∫∞
0
�� (�) [∫

∞

0
�� (5) 65] 6�. (27)

Here, if ��(�) and ��(�) are exponential distribution, then
�� (�) = ��8−��	,
�� (�) = ��8−��	,

� [� > �] = ∫∞
0
�� (�) [∫

∞

0
��8−���65] 6�

= ∫∞
0
�� (�) [−8−���]∞	 6�

= ∫∞
0
�� (�) (8−��	) 6�

= ∫∞
0
��8−��	8−��	6�

= ∫∞
0
��8−(��+��)	6�

= ���� + �� [−8
−(��+��)	]∞0 = ���� + �� .

(28)

Accordingly, we determine the data arrival rate of Queuetx:

��� = �� + ���� + 
� 
�. (29)

3.4.4. Service Process. Since the data generation rate is Pois-
son distribution and the waterfalls pushing rate abides by
exponential distribution, the data arrival rate to Queuetx(�)
approximates to Poisson distribution and each node has one
server. �e ACK packet transmission time is not considered.
Data aggregating time is very short and negligible.�erefore,
the service time is one-hop data transmission time �. In our

work, data transmission rate is ;� and generated data size is?�. Hence, the service time for generated data is

� = ?�;� . (30)

Since ;� and ?� are constant, hence, the service time
for data is 	xed and constant. According to the above
analysis, we can determine that the queuing system on server
approximates to @/	/1 model. As data transmission time
is determined and server utilization ratio is A = ��� × �tx(�),
hence, the average data transmission time �tx(�) is

�tx (�) = �
1 − ���� . (31)

We 	gure up the probability density function of the server
time by means of Laplace transform in queuing theory and
evaluate server waiting time ��(�) that data wait for further
transmitting in server:

�� (�) = ��� (�tx (�))22 (1 − ����tx (�)) . (32)

3.4.5. Channel Waiting Time. In general queuing system,
customers can be served if there are no other customers
waiting in front of them. However, when we apply queuing
theory to model wireless communication, it is necessary to
consider the impact of wireless channel caused by its proper-
ties. In wireless sensor networks, because of the overhearing
of omnidirectional antenna, node has to wait a period of
time if its upper or lower neighbors are transmitting data.
Here, we call this time as channel waiting time ��(�) and it
is determined as follows:

�� (�) = 2 × A × �tx (�) = 2��� × �2tx (�) . (33)

3.4.6. Total Delay. Total delay	� inWPA is the time interval
from when an event data is generated at a node until the
data are received by a sink node in � hops network. �e
formulation is as follows:

	� =
�∑
�=1
(�� (�) + �� (�) + �� (�) + �tx (�)) . (34)

3.4.7. Energy Consumption. �e energy consumption �� for
node �� is the sum of transmission energy consumption,
reception energy consumption, and overhearing energy con-
sumption. Now, we determine the three kinds of energy
consumption in the following paragraphs. Note that �tx and�rx are energy consumption of transmitting or receiving for
each data packet and �tx(�), �rx(�), and �oh(�) are energy
consumption of data transmitting, data receiving, and over-
hearing of node �� in 	� time. As we are trying to obtain
the balanced energy consumption among nodes, hence we
calculate energy consumption per 	� time for each node.
�erefore, we get the data transmission energy consumption
according to Little’s formula as follows:

�tx (�) = ���	��tx. (35)
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�e reception energy consumption is

�rx (�) = ����+1	��rx. (36)

Here, ����+1 is data arrival rate from upper neighboring node��+1; as the service time is one data packet transmission time,
hence the data rate getting out from server is same with data
transmission rate, which means

����+1 = ���+1. (37)

�e overhearing energy consumption is

�oh (�) = ���−1	��rx. (38)

Here, ���−1 is data transmission rate of node ��−1. Hence, we
determine total energy consumption�� for a node in time 	�
as

�� = �tx (�) + �rx (�) + �oh (�) . (39)

4. Optimum Network Lifetime

4.1. Mathematical Solution. According to the analysis in Sec-
tion 3.2, the longest network lifetime is decided by the total
transmission delay and waterfalls pushing rate vectors. Here,
we illustrate the relationship between transmission delay,
energy consumption, and network lifetime, so that at last
we determine the formulations of a set of waterfalls pushing
rates. Accordingly, energy consumption can be written as
follows:

�� = (����tx + ����+1�rx + ���−1�rx)
= ����tx + (����+1 + ���−1) �rx.

(40)

To balance energy among nodes, we have

�1 = �2 = ⋅ ⋅ ⋅ = �� = ⋅ ⋅ ⋅ = ��. (41)

As the service time is one-hop data transmitting time, hence

���� = ���. (42)

Here, �� is the energy consumption for node in time 	�.
Hence, we assume the energy consumption for each unit of
time is �. We assume that �� = � and the network in a 	nite
network. Hence, there are no arrival data to the last node in
the network so that it does not need a waterfalls pushing rate,
and moreover, there is no overhearing for the 	rst node that
counted from the sink node. �erefore, for node ��, we have


� = 0,
��� = �,

�rx (�) = 0,
�oh (1) = 0.

(43)

Accordingly, we obtain equations as follows:

(� + �
1� + 
1)�tx + (� +
�
2� + 
2)�rx = �

(� + �
2� + 
2)�tx + (2� +
�
1� + 
1 +

�
3� + 
3)�rx = �
...

(� + �
�� + 
�)�tx
+ (2� + �
�−1� + 
�−1 +

�
�+1� + 
�+1)�rx = �
...

��tx + (� + �
�−1� + 
�−1)�rx = �.

(44)

By calculating the above equations, we have


�−1 = ��rx (� + �
�−2/ (� + 
�−2))(�
�−2/ (� + 
�−2)) �rx − ��tx (45)


�−2 = ��rx (�
�−3/ (� + 
�−3)) + � (�rx − �tx) (�
�−1/ (� + 
�−1))(�rx − �tx) (� − �
�−1/ (� + 
�−1)) − �rx (�
�−3/ (� + 
�−3))
...

(46)


� = �2
�+2 (�rx − �tx) / (� + 
�+2) − �2
�+1 (�rx − �tx) / (� + 
�+1) − �2
�+3�rx/ (� + 
�+3)�
�+3�rx/ (� + 
�+3) − �
�+2 (�rx − �tx) / (� + 
�+2) + �
�+1 (�rx − �tx) / (� + 
�+1) − ��rx
...


1 = �2
2 (�rx − �tx) / (� + 
2) − �2
3�rx/ (� + 
3) − �2�rx�
2 (�tx − �rx) / (� + 
2) − �
3�rx/ (� + 
3) + 2��rx − ��tx .

(47)
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Input: �, 
�−1, A,	app

Output: [
1 : 
�−1]
max = 2�
�−1 = 
max[
1 : 
�−1] = G (
�−�)	heu = H (
1 : 
�−1)
While |	app − 	heu| > A do
�−2 = 
�−1 − Δ[
1 : 
�−1] = G(
�−�)	heu = H(
1 : 
�−1)
End
Return [
1 : 
�−1]

Algorithm 1: Heuristics algorithm.

From the above equations, we obtained the relationship
among waterfalls pushing rate. Equation (45) shows that if
�−1 is given, then 
�−2 can be determined. In (46), if 
�−1 and
�−2 are given, then 
�−3 can be determined. In this way, all 
�
can be determined if 
�−1 is known. To determine the values
of 
�, we designed a heuristics algorithm as follows. In light of
real applications ofWSNwhere the threshold of transmission
delay is always given, in the heuristics algorithm, we assume
that the transmission delay is prede	ned by application.
Hence, we set the value of
�−1 and then determine the others.
However, the value of 
�−1 being too large or too little makes
the algorithm too complex to process. �erefore, it is critical
to determine the maximum value of 
�−1.
4.2. Heuristics Algorithm. In a given application, we assume
that data generation rates at all nodes are known and are �.
�us, at node ��−1, if the arrival data from node �� just does
not keep pace with the generated data, then the node needs
waterfalls pushing rate to transmit the arrival data. However,
the processing period of waterfalls pushing rate is decided by
node ��−1; hence, there is again the case that the arrival data
just does not catch up the pace of the waterfalls pushing rate
�−1.�erefore, we determine simply that, for the arrival data,
the average catching up rate of waterfalls pushing rate at node��−1 is �/2. Accordingly, for transmitting all arrival data, the
maximum value of 
�−1 at node ��−1 is


max = 2�. (48)

Hence, a heuristics algorithm is described as shown in
Algorithm 1.

5. Evaluation

5.1. Validation of the Queuing �eory Model. We implement
WPA in the original network simulator written in C++
language. Analytic results in the previous section are shown
as well as simulated result. �e parameters are shown in
Table 1.

In the simulation, data occurs at each node randomly and
independently. Bu�er size of each node is in	nite. Although
analytic model assumes that transmission error is negligible,

Table 1: Simulation parameters of WPA.

Node distance 10 (m)

Transmission range 11 (m)

Transmission rate 250 (kbps)

Data size 4096 (bit)

Current consumption for transmission 17.4 (mA)

Current consumption for reception 19.7 (mA)

MAC CSMA/CA

Routing DSR
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Figure 10: Total delay of WPA.

transmission errors and retransmission may occur in the
simulation. We set data generation rate � = 5 and waterfalls
pushing rate as 
� = {1, 2, 3, 4, 5} for 5-hop tandem network.

From Figures 10 and 11, we 	nd that our analytical model
meets with simulation results, so that we basically con	rm the
correctness of queuing theory model of WPA.

5.2. Evaluation of OptimumNetwork Lifetime. In this section,
we evaluate the e�ectiveness of the proposedwaterfalls partial
aggregation. Here, we consider network environment as
nature monitoring network, so that we obtain the maximum
network lifetime, which is the same with network lifetime of
full aggregation. We set � in (44) which is equal to �ful-largest,
where �ful-largest denotes the energy consumption of the node
that consumes most energy in the network. �e optimal
results can be achieved by numerical packets; however, the
mathematical calculation results are too complex. For more
understanding of our algorithm, we obtain the pushing rate
vectors applying Excel when the event generation rate is� = 1
for 5-hop tandem network. Nodes are counted from the sink
node, which means that the nearest node with the sink is
node �1 and its waterfalls pushing rate is 
1. �e optimum
waterfalls pushing rates are shown in Table 2 when WPA
has the same network lifetime with full aggregation. �e
analytical model of nonaggregation and full aggregation is
realized by queuing theory; however, for the brevity of the
paper, we omitted the derivation process.
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Figure 12: Lifetime of nodes.

Table 2: Waterfalls pushing rate for optimum network lifetime.

Waterfalls pushing rate Values


1 0.02


2 0.04


3 0.08


4 0.1


5 0.5

Figure 12 shows the lifetime of all nodes in the network
where we set the waterfalls pushing rate of nodes as the same
with Table 2. From the 	gure, we 	nd that all nodes almost
have the same lifetime in WPA. In this case, we can say
that the node energy is utilized optimally in WPA. In full
aggregation, the second and the third node consumed most
energy and the other nodes have less energy consumption
which results in the suboptimum utilization of energy. �e
nonaggregation has very large energy consumption at the
second node, which results in the short lifetime of the entire
network. We 	nd from the 	gure that nonaggregation and
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Figure 13: Transmission delay of network.

full aggregation have the largest energy consumption at
their second node. �e reason is that the 	rst node has no
adjacent upper node, which means that it does not consume
overhearing energy compared with others.

Figure 13 shows the corresponding total delay of the
network where we set the same waterfalls pushing rates with
Table 1. From the 	gure, we 	nd that when it has the same
network lifetime with full aggregation, WPA can shorten the
transmission delay by considerable amount. When data gen-
eration rate becomes larger (larger than 6 types of data/sec),
transmission delay of nonaggregation gets longer rapidly due
to data congestion at nodes. However, in WPA, the rapid
increase of transmission delay arises later (at data generation
rate of 30 types of data/sec) than nonaggregation and full
aggregation on data generation line, which indicates that
WPA can relieve data congestion at nodes. �is is because,
with waterfalls pushing rates, proposed WPA can adjust the
number of data transmissions. Moreover, we 	nd from the
	gure that with the given waterfalls pushing rates there is
minimum transmission delay and we can determine it in
WPA.

5.3. Summary of Evaluation. Firstly, from the presentation
of Section 5.1, we conclude that our analytical model of
WPA meets with simulation results; the diversity of energy
consumption is that we did not consider retransmission
in analytical model and considered it in simulation. Sec-
ondly, in Section 5.2, compared to nonaggregation and full
aggregation, proposed WPA has the superiorities as follows:
nonaggregation consumes much energy and data congestion
occurs easily when data generation rate is larger. In WPA,
a�er data are sent to a neighboring node, the data have
to be aggregated together or aggregated with local data for
further transmitting; hence, WPA is more energy e
cient
than nonaggregation.When data generation rate is larger at a
node, data congestion occurs at nonaggregation, which leads
to long transmission delay; however, proposed WPA can
relieve data congestion via reducing the number of data trans-
missions by aggregating received data at nodes. On the other
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hand, full aggregation can save much energy consumption
and su�er long transmission delay. Compared to full aggre-
gation, proposed WPA has similar energy consumption and
is superior in balancing energy consumption among nodes.
Moreover, with waterfalls pushing rates, WPA can control
data waiting time more reasonably and e
ciently than full
aggregation at nodes, so that transmission delay of WPA is
superior to full aggregation.

6. Conclusion

In this paper, we proposed a waterfalls partial aggregation
that can achieve optimum network lifetime in WSN via
applying data aggregation. At 	rst, we modeled WPA in
queuing theory and then determined transmission delay of
the network and energy consumption of a node. �en, we
continued to model balanced energy consumption among
nodes. �e evaluation parts show the correctness of our ana-
lytical model and demonstrate the superiorities of proposed
WPA.
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