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a b s t r a c t 

Hierarchy of one-dimensional ergodic chaotic maps with Tsallis type of q -deformation are studied. We 

find that in the chaotic region, these maps with q -deformation are ergodic as the Birkhoff ergodic the- 

orem predicts. q -deformed maps are defined as ratios of polynomials of degree N . Hence, by using the 

Stieltjes transform approach (STA), invariant measure is proposed. In addition, considering Sinai-Ruelle- 

Bowen (SRB) measure, Kolmogorov-Sinai (KS) entropy for q -deformed maps is calculated analytically. The 

new q -deformed scheme have ability to keep previous significant properties such as ergodicity, sensitivity 

to initial condition. By adding q -parameter to the hierarchy in order increase the randomness and one- 

way computation, we present a new scheme for watermarking. The introduced algorithm tries to improve 

the problem of failure of encryption such as small key space, encryption speed and level of security. To 

illustrate the effectiveness of the proposed scheme, some security analyses are presented. By considering 

the obtained results, it can be concluded that, this scheme have a high potential to be adopted for wa- 

termarking. It can be concluded that, the proposed novel watermarking scheme for image authentication 

can be applied for practical applications. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Digital watermarking technique is one of the popular research 
fields in signal processing, which can be used for multimedia pro- 
tection [1] . The digital watermark should stick to the host data 
such that it provides a robust way of protecting digital multimedia 
information from illegal manipulation and duplication. The water- 
marking of multimedia information such as images [2,3] , video [4,5] 
and audio [6] is already well developed. At present, many water- 
marking techniques from an aspect of preserving the watermark 
in the host data are categorized to three main groups: robust wa- 
termarking algorithms, fragile watermarking algorithms and semi- 
fragile watermarking algorithms [1,7,8] . On the basis of the infor- 
mation required during extraction algorithm, watermarking tech- 
niques can be classified into three categorizes: non-blind water- 
marking, semi-blind watermarking, and blind watermarking [8,9] . 
If the original host image is required to extract the embedded wa- 
termark, the technique is non-blind watermarking [10] . 
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Yahyavi). 

Digital watermarking methods can be broadly categorized as: 
transform domain watermarking, as in [11,12] , and spatial domain 
watermarking such as in [13] . In most spatial domain techniques, 
watermark data is embedded in the least significant bit of the pix- 
els in the host image [14] . Advantages of this method are their 
simplicity in embedding and extraction algorithm, improving the 
quality of watermarked image using Least Significant Bit (LSB), and 
increasing the speed of embedding and extraction process. Disad- 
vantages of LSB method is weak against to common signal pro- 
cessing attacks on watermarked image [15] . Another method for 
watermarking is used transform domain to embedding and ex- 
tracting the watermark. One of the advantages of this watermark- 
ing methods is the possibility to analyze and control their spec- 
tral properties and robustness against attacks. Taking more pro- 
cessing time for transform and inverse transform is disadvantage 
of this method. Transform domain watermarking schemes first ap- 
ply transformation techniques, such as the discrete cosine trans- 
form (DCT) [16,17] , discrete wavelet transform (DWT) [18,19] , frac- 
tional Fourier transform (FrFT) [20,21] and singular value decom- 
position (SVD) [22,23] to an image. Watermark is then embed- 
ded by modifying the transform coefficients. The majority of wa- 
termarking schemes are using watermarks generated from pseudo 
random number sequences [15] . There is a large number of digi- 
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tal watermarking schemes, which the major drawback of them is 
lack of safety. For last couple of decades, chaotic functions such 
as coupled chaotic maps, skew tent map, Markov maps, Logistic 
map, Arnold map, and Bernoulli maps have been widely used to 
generate watermark sequences [14,15,24,38–40] . These types of wa- 
termark generation schemes require two values, the function seed 
and the initial value, in order to recreate the same watermark at a 
later stage. An advantage of watermarking based on chaotic maps 
is their robustness to low pass attacks. In order to enhance the se- 
curity in watermarking process, it is desirable to use q -deformed 
chaotic maps. 

Quantum group theory has greatly contributed by mathemati- 
cians and physicists [25] . The mathematical application of quantum 

groups theory comeback to the1840’s when Heine found its rela- 
tion to the q -hypergeometric functions ( q -series). In fact, promi- 
nent mathematicians such as Fermat, Euler and Jacobi ventured 
into the q -functions much earlier. The q -deformed relations of 
Heisenberg algebra as a model for the noncommutative structure 
that arises from quantum group [26] . The expression q -derivation 
has also been used extensively in the case of the q -derivatives 
with the q -Lorentz generators which gives the q -deformation of 
Poincaré algebra [27] . Generally, there is no unique q -deformation 
for a function. Therefore, various q -deformations for the same 
function can be found in different physical and mathematical con- 
texts. As of yet, significant strides have been made for studding 
of different types of q -deformations for the logistic map, which is 
the famous model of discrete dynamical system. For instance, the 
authors of Ref. [28] showed that the co-existence of attractors in 
q -logistic maps. Patidar et al. [29–31] compared that the dynam- 
ical behavior of the q -deformed Gaussian map. Recently, Shrimali 
et al. [32] demonstrated that the effect of delay on two forms of 
q -deformations of the logistic map. They also argued that chaotic 
behavior is suppressed in a certain region of delay and deforma- 
tion parameter space. In this paper, the hierarchy of q -deformation 
maps has been presented based on the generalized Chebyshev 
polynomials type I and II. Compared with the well-known q - 
deformation chaotic maps, the proposed family of q -deformation 
chaotic maps have good properties such as co-existence of attrac- 
tors, ergodicity, and semigroup property. 

This paper mainly focuses on the application of the q -deformed 
maps in encryption schemes of watermark logos. More specifically 
it aims at proposing a secure watermarking scheme based on DWT 
and q -deformed chaotic maps. This algorithm tries to address the 
shortcoming of the previous watermarking processes such as small 
key space and limited speed. The q -deformed maps are employed 
to improve the security of a watermarked image. The q -series of 
the introduced dynamical system regarding the level of the secu- 
rity and the extra parameter can be used to apply many logos in 
watermarking process. Since q -deformed chaotic maps are sensi- 
tive to initial values, initial values of the q -deformed maps and 
their q -deformed parameters are exploited as secret keys in our 
algorithm. Experimental results and security analysis demonstrated 
that, the watermarked algorithm based on the q -deformed chaotic 
map is advantageous from the point of view of high level of secu- 
rity and large key space. 

The rest of this paper is organized as follows. In Section 2 , a 
brief description of basic deformations of one-dimensional chaotic 
maps is presented. In Section 3 , it is shown how the degree of the 
chaoticity in the Tsallis type deformation system can be measured 
by KS-entropy. The watermarking scheme based on chaotic maps 
is proposed in Section 4 . Also, the selected example and simula- 
tion results are discussed in Section 5 . In Section 6 , security of the 
chaotic encryption algorithm is explored. Section 7 summaries the 
paper. Two appendices are also provided, which contain all alge- 
braic calculations and proofs. 

2. The q -deformation of one-dimensional maps 

The hierarchy of the q -deformed nonlinear maps can be defined 
as: 
{ 

�N (x n +1 , α, q ) = �N ([ x n ] , α) 

[ x ] = 
x 

1 + (1 − q )(1 − x ) 

(1) 

Here q ǫ (−∞ − 2] for x in the interval [0, 1] and x n denotes the 
value of x after n iterations. In addition, when q → 1 an hierar- 
chy of q -deformed nonlinear maps reduces to the original maps. 
By considering the �(2) 

N (x, α) families (See Appendix A ), we have 
produced the following examples with the substitution 1 − q = ε, 

�2 = 
4 α2 (1 + ε) x n (1 − x n ) 

( 1 + ε ) 2 + x n 
(

4(α2 −1) −2 ε 2 −2 ε 
)

+ x 2 n 
(

4(−α2 + 1) + ε 2 
)

(2) 

�3 = 
α2 x n ( x n (3 ε + 4) − 3(1 + ε) ) 

2 

α2 x n ( x n (3 ε + 4) − 3(1 + ε) ) 
2 + ( (1 + ε)(1 − x n ) ) ( x n (ε + 4) − (ε + 1) ) 

2 

which under the limit ε → 0, becomes the canonical maps of Eq. 
(A.2) . 

Fig. 1 gives the bifurcation diagram of the �2 ( x n , α, ε) for 
ε = 0 , 4 , −0 . 5 , and −0 . 99 with respect to the different values of 
α. As it can be seen from Fig. 1 (a), the system has regular be- 
havior for parameter values smaller than the critical point α < αc , 
where αc denotes the critical parameter value for the onset of 
chaos ( αc = 

1 
2 ). As shown in this figure for α ∈ [0, 1/2], the fixed 

point x = 0 is stable in the map �2 ( x n , α, ε) and bifurcates with- 
out period −n −tupling scenario to chaos. Fig. 1 (b) shows the bifur- 
cation diagram as a function of control parameter. Obviously, for 
fixed q -deformation q = 4 , confirms chaos suppression via inverse 
tangent bifurcation. Chaos born by applying an negative value of 
q . Fig. 1 (c) and (d), show that chaos cannot be suppressed in the 
negative value of deformation parameter and the stable period-1 
motion becomes chaotic ( α < αc ). By using the q -deformed version 
of the one-dimensional map, it is found that chaotification of the 
system is achieved. In this work, we also find that not only the sys- 
tem is very sensitive to initial conditions and the parameter α but 
also it’s very sensitive to an q -deformation ( q ) parameter. It is an 
interesting phenomenon because generating chaos (also called an- 
ticontrol of chaos or chaotification) has grown up as a challenging 
and interesting research direction in recent years [33–36] . It can 
be observed that generally there are two separate regions in the 
deformation parameter space ( ε; α) which are corresponding to 
the stable and chaotic states. The stable state is a V-shaped region 
at the left-hand side and spread in the whole right of the control 
parameter (See Fig. 2 ). Also, we can show that by increasing the 
value of the parameter α the chaotic motion gets suppressed in 
the V-shaped region. Using mathematical methods, we may infer 
that the q -deformation of the chaotic one-dimensional map leads 
to the suppression of the chaotic region to an stable state (period- 
1). For odd values of N , these maps have only fixed point attrac- 
tor x = 0 for α ∈ ( 1 N , N) , again they bifurcate to a chaotic region at 

α ≥ 1 
N , and remain chaotic for α ∈ (0 , 1 N ) , finally they bifurcate at 

α = N to have x = 1 as fixed point attractor for all α ∈ ( 1 N , ∞ ) . It 
also shows that for the positive value of q -deformation, the nar- 
row channel is formed between the nonlinear map function and 
the diagonal line from the fixed point attractor x = 0 . The regu- 
lar behavior or the laminar region corresponds to an evolution of 
the system in a narrow region or a channel in the phase space. 
Such regular behavior stems from the fact that the system main- 
tains a “ghost” of laminar region. It is clear that, the fixed point 
x = 1 loses stability for negative ε and the chaotic zone reduces 
from the fixed point x = 1 by decreasing the value of ε until −1 . 
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Fig. 1. Bifurcation diagram of the map �2 (x n +1 , α, ε) with respect to α for (a) ε = 0 , (b) ε = 4 , (c) ε = −0 . 5 , (d) ε = −0 . 99 . 

Fig. 2. The parameter space ( α; ε) showing chaotic (red), stable state (blue) (a) �2 (x n +1 , α, ε) (b) �3 (x n +1 , α, ε) . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Parameter ε ( q -deformation parameter) lets us control the inter- 
mittent region and change the lengths of laminar phases. Also, we 
can show that middle V-shaped region by increasing the value of 
the parameter ε, the chaotic motion being increased. In what fol- 
lows, we present the interesting properties of the above-described 
hierarchy of q -deformed nonlinear maps in detail Fig. 3 . 

3. Kolmogorov–Sinai entropy 

Shannon entropy, regardless of what types of probabilities we 
use in it, cannot by itself identify chaos. A characteristic measure of 
chaos is the KS-entropy [37] , which is related to Shannon’s formula. 
If P is a (measurable) partition, its entropy H μ( P ) with respect to 

the measure μ is defined as: 

H μ(P ) = −
∑ 

AǫP 

μ(A ) ln μ(A ) , (3) 

for the introduced family, formula Eq. (3) should be rewritten as 

h (μ, �N (x, α)) = 

∫ 

d xμ(x ) ln | d 
d x 

�N (x, α) | , (4) 

We obtain the following expression for the entropy of the map 
�2 (x n +1 , α) : 

h (μ, �2 (x, α, ε)) = 

∫ 1 

0 

n 
∑ 

l=1 

lim 
x → x l 

(x − x l ) G μ(x ) δ(x − x l ) 

× ln | d 
dx 

�2 (x, α, ε) | dx 
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Fig. 3. Red dotted surface shows the variation of KS-entropy of �2 ( x, α, ε) in terms of the parameters α and ε, while blue dotted surface shows the variation of LCE of 

�2 ( x, α, ε) in terms of the parameters α and ε. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

by considering 

d 

dx 
�2 = 

4 α2 (1 + ε) 
(

(ε + 2) 2 − 4 α2 (1 + ε) 
)

γ − χ

×
(

χ (1 − χ ) 

(x − χ ) 2 
+ 

(γ − 1) γ

(x − γ ) 2 

)

(5) 

then 

h (μ, �2 (x, α, ε)) = 

∫ 1 

0 

n 
∑ 

l=1 

lim 
x → x l 

(x − x l ) G μ(x ) δ(x − x l ) 

× ( ln | M(x − γ ) 2 + N(x − χ ) 2 | − 2 ln | x − χ | 
−2 ln | x − γ | ) dx (6) 

where 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

M(γ , χ , α) = 
4 α2 (1 + ε) 

γ − χ
(χ − χ2 ) 

N(γ , χ , α) = 
4 α2 (1 + ε) 

γ − χ
(γ 2 − γ ) 

(7) 

Due to avoid lengthening the present paper, we have considered 
only two terms of polynomial, as it was explained in calculation 
invariant manifold (SRB measure). It is clear that, by increasing 
the order of the summation in Eq. (6) the realistic form of KS en- 
tropy has been formed. We get the following expression for KS en- 
tropy: 

h (α, ǫ, �2 ) 

= ln 

( √ 

(M(K −γ ) 2 +N(K −χ ) 2 )(M(K + γ ) 2 + N(K + χ ) 2 ) 

(K −γ ) 2 (K −χ ) 2 (K +γ ) 2 (K +χ ) 2 

) 

(8) 

where 

K = 

√ 
√ 
√ 
√ 
√ 

(

4 α2 (1 + ε) 
(

(ε + 2) 2 − 4 α2 (1 + ε) 
))2 

χ2 − γ 2 − α2 

1 −α2 

(

(ε + 2) 2 − 4 α2 (1 + ε) 
)4 
(

3 χ2 (1+γ ) 2 

γ 2 + (1 + χ )(γ + 4) 

)

KS entropy and Lyapunov characteristic exponents (LCE) are two 
related ways of measuring ‘disorder’ in an ergodic system. LCE is 
the characteristic exponent of the rate of the average magnification 
of the neighborhood of an arbitrary point X 0 and it is denoted by 

( x 0 ) which is written as: 


(x 0 ) = lim 
n →∞ 

ln | d 
dx 

n 
︷ ︸︸ ︷ 

�N (x n +1 , α, ε) ◦ �N . . . . ◦ �N (x K , α, ε) | 

= lim 
n →∞ 

n −1 
∑ 

k =0 

ln | d�N (x k , α, ε) 

dx 
| , (9) 

where x k = 

k 
︷ ︸︸ ︷ 

�N ◦ �N ◦ . . . . ◦ �N (x 0 ) . Ther e ar e thr ee possibilities: 

• If 
< 0, trajectories go close to each other → stable radial os- 
cillation. 

• If 
 = 0 , the orbits maintain their relative positions, they are 
on a stable attractor. 

• If 
> 0, the orbits never falls within the basin of attraction of 
any periodic orbits → unstable radial oscillation (chaotic be- 
havior). 

For the values of parameters α and ε, such that the deformed 
map �N be measurable, the Birkhoff ergodic theorem implies that 
the equality of KS entropy and the Lyapunov number, that is: 

h (μ, �n ) = 
(x 0 , �N ) , (10) 

Combining the analytic results of KS entropy Eq. (8) and SRB mea- 
sure ( Eq. (B.10) ) with the Lyapunov characteristic exponents ob- 
tained by numerical simulation, we deduce that these q -deformed 
maps are ergodic in certain values of their parameters ( α and ε) 
as the Birkhoff ergodic theorem predicts. 
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Fig. 4. The flowchart of the proposed embedding process. 

4. Watermarking algorithm 

There are two important properties for the performance of 
chaos based watermarked systems, fixed interval and ergodicity of 
chaotic orbits, which most of the unimodal maps are lacking [38–
41] . In order to avoid these lacks, the q -deformed maps are sug- 
gested as ratios of polynomials of degree N . For first time in this 
paper, we use the concept of q -deformed chaotic maps with an in- 
variant measure, for increasing the security of discrete chaotic wa- 
termarking. Certain characteristics of our proposed watermarking 
method which make it distinctive compared to the other schemes, 
can be stated as follows: 

• Have a large key space: It is clear that the complexity of attack 
is determined by the verification complexity of each key and 
the size of the key space. 

• Have a large number of fully developed chaotic maps ( q - 
deformed maps are defined as ratios of polynomials of degree 
N ). 

• Having interesting property of being ergodic in certain values 
of their parameter and in complementary interval of parameter 
they have only a single period one attractive fixed point. Also, 
all n-cycles except for possible period one fixed point are un- 
stable. 

• Having high complexity due to high chaoticity and flexibility 
in attributing different values to the control parameters α and 
ε. Advantage of using two parameters ( α and ε) is for compu- 
tational complexity goal and the structure of the watrmarked 
system for diffusion. So that, these parameters can be used as 
secret keys as well. 

Furthermore, the efficiency of searching-based chaotic water- 
marked system which are based on unimodal maps critically de- 
pendent on the invariant measure associated with the orbits of 
the chaotic map. In this sense, the q -deformed maps are a good 
alternative which has an invariant measure for all values of their 
parameters ( α and ε) as the Birkhoff ergodic theorem predicts. 

In following the framework of our proposed algorithm is de- 
scribed. The embedding process diagram is shown in Fig. 4 and the 

process of extraction of the logo also shown in Fig. 5 . Rests of the 
paper explain the embedding and extraction process of the pro- 
posed algorithm. 

4.1. Watermarking embedding process 

In this section the algorithm of embedding are discussed. The 
watermark logo encryption can be done through the following 
steps: 

• Step1 : Input: cover image, 
• Step2 : By considering the DWT cover image is converted to the 

frequency domain, 
• Step3 : Sub-band coefficients are selected, 
• Step4 : Input: logo, 
• Step5 : The logo image for next processes is clones 3 times with 

redundancy adding process and store in variable W (An advan- 
tage of many logos in watermarking process is the possibility 
to analyze and control their spectral properties), 

• Step6 : Where T is threshold value ( T = 0 . 015 ). The size of the 
logo is denoted by variables ( m, n ) and coordinate ( i, j ) of wa- 
termark pixel is selected by (1, 1), 

• Step7 : Location of the block in the cover image for the embed- 
ding process is selected by pseudo random number generator 
( Eq. (2) ) based on cellular automat and stores in the variable 
block. 

• Step8 : SVD transform on the blocks with size 4 ×4 pixel is done 
and U, S, V coefficients are extracted, 

• Step9: U (1, 1) coefficients is updated as follow: 
{
U(1 , 1) = sign (U(1 , 1) ∗ (U(2 , 1) + T )) If W (i, j) = 1 

U(1 , 1) = sign (U(1 , 1) ∗ (U(2 , 1) − T )) If W (i, j) = 0 

(11) 

• Step10 : Inverse of SVD is computed to obtain block pixels as 
follow: 

Block [4 ×4] = U × S ×V T (12) 

• Step11 : Increase value of the i and j , 
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Fig. 5. The flowchart of proposed extraction process. 

• Step12 : If i < m and j < n then go to step 7 else go to step 13, 
• Step13 : Do the inverse discrete wavelet transform, 
• Step14 : The final result is the watermarked image. 

4.2. Watermarking extraction process 

Watermark extraction process is very similar to the embedding 
process. This process consists of the following major parts: 

• Step1 : Input watermarked image, 
• Step2 : The size of the logo [ m ×n ] inputted and stores in vari- 

able W with size [ m ×3 n ], 
• Step3 : Watermarked image is transferred to the frequency do- 

main with discrete wavelet transform, 
• Step4 : Coefficients related to the selected sub-band are selected, 
• Step5 : Initialize i, j with the value 1, 
• Step6 : Location of the block in the cover image for the em- 

bedding process selected by pseudo random number genera- 
tor ( Eq. 2 ) based on cellular automat and stores in the variable 
block, 

• Step7 : SVD transform on the blocks with size 4 ×4 pixel done 
and U, S, V coefficients extracted, 

• Step8 : If | U (1, 1)| > | U (2, 1)| go to step 9 and else go to step 10, 
• Step9 : The value of the W (i, j) = 1 go to step 11, 
• Step10 : The value of the W (i, j) = 0 go to step 11, 
• Step11 : Increase one unit i and j value, 
• Step12 : If i < m and j < n then go to step 6 else go to step 13, 
• Step13 : Extracted logo has a picture contain 3 same logos beside 

each other, 
• Step14 : Extracted logos (3 logo) compared pixel by pixel and 

which pixel that have more frequency, selected for creating a 
final logo. This step is an error correction step, 

• Step15 : Final logo is created and extracted. 

5. Experimental results 

In this section the experimental results of our proposed scheme 
are discussed to demonstrate the efficiency of the proposed water- 
marking algorithm. The performance of the proposed method by 

considering the nine standard gray scale pictures (Lena, Zelda, ba- 
boon, camera man,...) and one sample picture “MADINEH” has been 
tested. The image size selected as 512 ×512 pixels. Logo with size 
32 ×32 in binary form have been added to the pictures. This sec- 
tion is a review of the visual quality measures and the overview 

of attacks in introduced pictures, also we compare the results with 
other methods. 

5.1. Visual quality measures 

The visual performance of the proposed method from an aspect 
of visual quality, impeccability and quality of extracting logo in this 
paper by considering, Peak Signal to Noise Ratio (PSNR), Bit Error 
Rate (BER) and Normalized Correlation (NC) evaluated. 

5.1.1. Peak signal to noise ratio 

This measure shows the effect of the embedding algorithm and 
noises on the cover image. PSNR measured by the decibel (dB) unit 
in the range 20 dB (low quality) to 40 dB (high quality). PSNR for 
Gray scale images defined as, 

P SNR = 10 × log 10 
255 2 

MSE 
(dB ) , (13) 

where 

MSE = 
1 

M × N 

M 
∑ 

i =1 

N 
∑ 

j=1 

(H i, j − H́ i, j ) . (14) 

it denotes the mean square error between the original image and 
watermark image. In this equation, H i, j and H́ i, j are value of pix- 
els in the position ( i, j ) in the cover image and watermark image 
respectively, and M ×N is the size of the image. The value of the 
PSNR for the proposed method is shown in Table. 1 for standard 
test images. In this table proposed method compares with similar 
methods like [42,43] . The results show the advantage of the pro- 
posed method in most test images. 
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Table 1 

The PSNR (dB) results for different 

watermarked images. 

Image name Proposed method 

Lena 40.89 

Baboon 38.45 

Barbara 36.95 

Boat 37.98 

Couple 38.67 

F-16g 38.90 

Goldhill 40.67 

Peppers 40.08 

Zelda 43.58 

5.1.2. Bit Error Rate and Normalized Corrolation 

The quality of the extracted logo from the cover image, evaluate 
by BER and NC measure. BER defined with the following formula: 

BER = 
B 

M × N 
× 100 (15) 

where B is the number of detected error on extracted logo. In this 
measure, zero means that the embedding algorithm doesn’t have 
any effect on the logo. Also, NC is defined by the following formula, 

NC = 
1 

W h ×W w 

W h −1 
∑ 

i =0 

W W −1 
∑ 

j=0 

w (i, j) × ẃ (i, j) (16) 

Where W h and W w are height and width of the watermarked im- 
age respectively. w ( i, j ) is declare the inserted logo and ẃ (i, j) 

is shows the extracted logo. One is the best value for NC and it 
shows the inserted logo extracted without any distortion. The ob- 
tained results of exams presented in Tables. 2 and 3 , and compared 
with [42,44] . Therefore, there is no obvious perceptual distortion 
between watermarked image and original one; the embedded wa- 
termark does not degrade the quality of the original host image. 
We have to use the same parameters for attacks in order to have a 
valid comparison. Tables shows the good performance of the pro- 
posed method against attacks such as compression, scaling and 
various types of filtering Table 4 . 

5.2. Robustness against attacks 

Stirmark is a powerful tool for measuring and testing the ro- 
bustness of watermarking algorithms. In this study by consider- 
ing Stirmark benchmark [45] including the geometric and non- 
geometric attacks the robustness of watermarking algorithms has 
been examined. Tests includes: 

• JPEG compression: It is a universal format of compression in 
the images [46,47] . 

• Median filtering: Median filter is a filter that replaces median 
of the neighboring pixels to the input pixel [48] . 

• Low-pass filtering: It is a filter that passes (attenuates) sig- 
nals with a frequency lower (higher) than a certain cutoff fre- 
quency [49] . 

• Gamma correction: It is the name of a nonlinear operation 
used to code and decode luminance or tristimulus values in im- 
age [49] . 

• Blurring: Blurring is used in preprocessing steps, such as the 
removal of small details from an image prior to (large) object 
extraction, and bridging of small gaps in lines or curves. Noise 
reduction can be accomplished by blurring [49] . 

• Sharpening: Process of enhancing the detail of the image to 
clarify the image. 

• Histogram equalization: Histogram equalization is a method in 
image processing of contrast adjustment by using the image’s 
histogram [49,50] . 

Fig. 6. (a) Original image (b) Watermarked image (c) Histogram of original image 

(d) histogram of watermarked image (e) original watermark logo (f-h) extracted wa- 

termark with incorrect keys and (g) correct keys (Left to right to each mode). 

Geometric attacks include below items: 

• Rotation: Rotation of an input image about an arbitrary pivot 
point and can be accomplished by translating the origin of the 
image to the pivot point, performing the rotation, and then 
translating back by the first translation offset [49] . 

• Gaussian noise: Gaussian noise is a statistical noise that has a 
probability density function of normal distribution [50] . 

• Salt & pepper noise: Salt and pepper noise is a form of noise 
that represents itself as randomly occurring white and black 
pixels [49] . 

• Cropping: This attack is the process to cut part of an image on 
different size and shape [51,52] . 

In Fig. 6 we present some example of introduced attacks. The 
corresponding extracted watermark have been shown in Fig. 7 . 
Also, the test obtained results are presented in Tables 2 and 3 . 

6. Security analysis 

When a new image watermarking algorithm is proposed, it 
should always be accompanied by some security analyses. A good 
watermarking procedure should be robust against all kinds of at- 
tacks. In the following, some security analyses have been per- 
formed on the proposed algorithm, which indicated a high security 
level of the new scheme Fig. 8 . 

6.1. Key space 

The key space size is the total number of different keys that can 
be used in the encryption. It might be defined in term of positive 
entropy. Actually, key space can be generated by the initial condi- 
tions and control parameters of q -deformed chaotic maps. A posi- 
tive way to describe the key space [53] might be in terms of pos- 



S. Behnia et al. / Chaos, Solitons and Fractals 104 (2017) 6–17 13 

Table 2 

Experimental Bit Error Rate (BER) results for Stirmark attacks (%). 

Attacks name Madineh Lena Baboon Attacks name Madineh Lena Baboon 

AFFINE-2 32.12 38.08 35.15 PSNR (30%) 0.00 0.00 0.00 

AFFINE-4 50.78 46.28 48.04 PSNR (50%) 0.00 0.00 0.00 

AFFINE-6 54.00 47.25 44.23 PSNR (70%) 0.00 0.00 0.00 

AFFINE-8 50.39 46.09 40.91 PSNR (90%) 0.00 0.00 0.00 

CONV-1 46.77 29.56 26.36 PSNR (100%) 0.00 0.00 0.00 

CONV-2 0.19 0.68 1.85 RESC 50 0.00 0.00 0.00 

JPEG (15%) 0.97 12.89 4.39 RESC 75 0.00 0.09 0.00 

JPEG (20%) 0.09 3.90 1.26 RESC 90 0.00 0.29 1.56 

JPEG (40%) 0.00 0.00 0.00 RML 10 0.09 0.58 0.87 

JPEG (60%) 0.00 0.00 0.00 RML 30 0.19 0.68 1.36 

JPEG (80%) 0.00 0.00 0.00 RML 50 0.00 0.58 1.75 

JPEG (100%) 0.00 0.00 0.00 RML 70 0.09 0.68 2.63 

LATEST. 0.95 47.46 54.00 50.29 RML 80 0.00 2.14 3.61 

LATEST. 1.1 49.70 53.71 49.41 RML 90 0.00 0.68 1.46 

LATEST. 1.05 48.53 51.75 51.66 RML 100 0.00 0.39 1.17 

LATEST. 1 49.12 53.12 51.66 RNDDIST 0.95 49.60 52.53 49.21 

MEDIAN [3 ×3] 0.19 1.26 5.07 RNDDIST 1.1 49.12 52.92 52.63 

MEDIAN [5 ×5] 25.68 37.59 38.67 RNDDIST 1.05 47.94 52.83 52.44 

MEDIAN [7 ×7] 49.51 50.09 49.41 RNDDIST 1 47.46 52.44 49.90 

MEDIAN [9 ×9] 40.77 50.78 49.90 ROT (0.5 °) 0.09 0.19 0.68 

NOISE (0%) 0.00 0.00 0.00 ROT (1 °) 0.09 0.19 0.68 

NOISE (20%) 35.74 39.25 40.72 ROT (2 °) 0.19 0.39 0.67 

NOISE (40%) 42.67 44.04 42.96 ROT (5 °) 0.19 0.49 0.39 

NOISE (80%) 46.48 49.41 45.99 ROT (15 °) 0.58 1.07 1.07 

PSNR (0%) 0.00 0.00 0.00 ROT (45 °) 1.07 2.66 1.49 

PSNR (10%) 0.00 0.00 0.00 ROT (90 °) 0.00 0.00 0.00 

Blurring 0.48 1.66 1.75 Gamma Cor. 3.90 3.80 0.97 

Hist. Equalization 0.00 0.00 0.09 Complement 100 100 100 

Low Pass Filter 0.00 0.00 0.00 Sharpening 0.19 0.78 1.75 

Salt and Paper (5%) 0.78 1.56 1.46 

Table 3 

Experimental PSNR results for Stirmark attacks (dB). 

Attacks name Madineh Lena Baboon Attacks name Madineh Lena Baboon 

AFFINE-2 14.97 16.48 14.81 PSNR (30%) 29.59 29.66 29.68 

AFFINE-4 14.82 15.17 15.25 PSNR (50%) 25.67 25.69 25.70 

AFFINE-6 17.71 19.29 17.44 PSNR (70%) 22.94 22.94 22.94 

AFFINE-8 18.29 20.15 17.66 PSNR (90%) 20.86 20.84 20.85 

CONV-1 9.85 8.73 8.30 PSNR (100%) 20.15 20.13 20.13 

CONV-2 4.46 6.81 6.70 RESC 50 25.67 25.60 25.55 

JPEG (15%) 35.11 34.59 32.38 RESC 75 25.67 25.66 25.65 

JPEG (20%) 36.23 35.53 33.71 RESC 90 25.53 25.58 25.07 

JPEG (40%) 38.56 37.00 36.24 RML 10 25.49 25.55 25.28 

JPEG (60%) 38.48 37.81 37.46 RML 30 25.44 25.55 25.19 

JPEG (80%) 38.58 38.94 38.66 RML 50 25.43 25.52 25.19 

JPEG (100%) 39.05 40.03 40.17 RML 70 25.36 25.48 25.13 

LATEST. 0.95 16.58 6.40 10.88 RML 80 25.28 25.46 24.13 

LATEST. 1.1 16.11 6.28 10.27 RML 90 25.46 25.57 25.24 

LATEST. 1.05 16.25 6.32 10.41 RML 100 25.46 25.55 25.24 

LATEST. 1 16.41 6.35 10.54 RNDDIST 0.95 24.42 28.28 28.08 

MEDIAN [3 ×3] 25.08 25.00 24.27 RNDDIST 1.1 24.19 27.87 27.74 

MEDIAN [5 ×5] 24.89 25.22 24.21 RNDDIST 1.05 24.26 28.00 27.85 

MEDIAN [7 ×7] 24.51 25.18 23.35 RNDDIST 1 24.62 28.13 27.96 

MEDIAN [9 ×9] 23.95 25.00 22.30 ROT (0.5 °) 23.09 24.88 19.14 

NOISE (0%) 39.05 40.89 38.45 ROT (1 °) 20.32 21.14 17.37 

NOISE (20%) 6.72 8.43 8.25 ROT (2 °) 18.06 18.06 16.57 

NOISE (40%) 5.31 6.89 6.80 ROT (5 °) 14.64 14.46 14.49 

NOISE (80%) 4.75 6.17 6.15 ROT (15 °) 12.07 11.57 12.32 

PSNR (0%) 39.39 40.10 40.24 ROT (45 °) 10.05 10.45 10.69 

PSNR (10%) 35.96 36.28 36.34 ROT (90 °) 16.61 11.17 13.26 

Blurring 27.79 30.61 23.10 Gamma Cor. 12.37 14.92 14.62 

Hist. Equalization 11.15 19.01 17.08 Complement 7.92 8.49 9.97 

Low Pass Filter 40.14 40.90 40.74 Sharpening 28.72 29.78 27.53 

Salt and Paper (5%) 25.23 25.35 25.40 

Table 4 

The key space analysis of q-deformed map . 

q-deformed parameters best range precision (float) precision (binary bit) 

X [0,1] 10 −14 47 

α [0.5,2] 10 −14 47 

ε [0,1] 10 −14 47 

key space 47 + 47 + 47 = 141 bit 
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Fig. 7. The corresponding best Extracted watermarks for denoted attacks. (a) Jpeg Compression (70%) , (b) Motion blur (45 °) , (c) Cropping (25%), (d)Histogram Equalization, 

(e) Gaussian noise (0, 0.01) , (f) Sharpening, (g) Complement , (h) Salt & Pepper noise 10% , (i) Median filter [3 ×3], (j) Jpeg Compression (60%) , (k) Jpeg Compression (50%) 

, (l) Jpeg Compression (40%) (m) Rotation (5 °) (n) Rotation (45 °) (o)Low-pass filter [5 ×5], (p) RESC 50, (q) RESC 75, (r) RML 10 (s) Gamma Correction (t)AFFINE 1 (Left to 

right to each mode). 

Fig. 8. The corresponding best Extracted Logo for denoted attacks. (a) Jpeg Compression (70%) , (b) Motion blur (45 °) , (c) Cropping (25%), (d)Histogram Equalization, (e) 

Gaussian noise (0, 0.01) , (f) Sharpening, (g) Complement , (h) Salt & Pepper noise 10% , (i) Median filter [3 ×3], (j) Jpeg Compression (60%) , (k) Jpeg Compression (50%) , (l) 

Jpeg Compression (40%) (m) Rotation (5 °) (n) Rotation (45 °) (o)Low-pass filter [5 ×5], (p) RESC 50, (q) RESC 75, (r) RML 10 (s) Gamma Correction (t)AFFINE 1 (Left to right 

to each mode). 

itive Lyapunov exponents. By considering the suitable control pa- 
rameters domain (in positive Lyapunov exponents) this space gen- 
erated (See Fig. 6 ). High level security domain begin with 2 128 [14] . 
Here, the key space is large enough to resist all kinds of brute- 
force attacks [53,54] . In our proposed method, by considering the 
control parameters, initial condition and q -parameter is computed 

as below: 

T (x 0 , α, ε) = θ (X 0 × α × ε) (17) 

Where ǫ ∈ [0, 1] , x 0 ∈ [0, 1]( x 0 ∈ [0, ∞ )), and for control parameter 
α, in selected example ( Eq. (2) ) is varying in α ∈ [ 1 2 , 2) . It is listed 
in Table. 1 . 
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Table 5 

The 800-22 test result of. 

Statistical Test p -value Result 

Frequency Test 0.6227 Success 

Block Frequency Test (m = 128) 0.7051 Success 

Cumulative-Forward 0.2530 Success 

Cumulative-Reverse 0.5966 Success 

Run Test 0.5607 Success 

Long Runs of Ones 0.5632 Success 

Rank 0.9635 Success 

Spectral DFT 0.5421 Success 

Non-Overlapping Temp.(m = 9,B = 0 0 0 0 0 0 0 01) 0.0626 Success 

Overlapping Temp. (m = 9) 0.9906 Success 

Universal 0.7690 Success 

Approximation Entropy (m = 10) 0.0 0 0 0 Success 

Random Excursions (X = −4) 0.0266 Success 

Random Excursions (X = −2) 0.9621 Success 

Random Excursions (X = −1) 0.9699 Success 

Random Excursions (X = 1) 0.9958 Success 

Random Excursions (X = 2) 0.9426 Success 

Random Excursions (X = 4) 0.9665 Success 

Random Excursions Variant (X = −8) 0.7084 Success 

Random Excursions Variant (X = −6) 0.8146 Success 

Random Excursions Variant (X = −4) 0.5498 Success 

Random Excursions Variant (X = −2) 0.6422 Success 

Random Excursions Variant (X = −1) 0.5198 Success 

Random Excursions Variant (X = 1) 0.4210 Success 

Random Excursions Variant (X = 2) 0.6759 Success 

Random Excursions Variant (X = 4) 0.9757 Success 

Random Excursions Variant (X = 6) 0.7463 Success 

Random Excursions Variant (X = 8) 0.7553 Success 

Serial (m = 16, ∇ψ 2 m ) 0.2010 Success 

Linear Complexity (M = 500) 0.5563 Success 

6.2. Random number test 

Encryption process requiring the generation of random num- 
bers. Random number generators are based on specific mathemat- 
ical algorithms. In this study by considering the hierarchy of q - 
deformed maps an effective way to generate random numbers uni- 
formly distributed on the interval [0, 1] is introduced. This family 
could provide the series with good distribution, long period and 
portability, which is common properties of good random number 
generators. We have used National Institute of Standard and Tech- 
nology statistical test (NIST) [55] to examine the quality of our 
proposed algorithm based on q -deformed chaotic maps ( Eq. (2) ). 
Where it could produced the random sequences by determinis- 
tic processes. As it was shown in Table 5 , they could pass all of 
the statistical tests, such as frequency, block frequency, cumulative 
sums, runs, longest run, rank, and fast Fourier transform (FFT). In 
NIST 800-22 tests, if p -value > 0.01, then the PRNG passes this test, 
naturally the larger p -value is present the larger randomness. 

7. Summary 

In this paper, a scheme for q -deformed (according to the 
scheme suggested by Jaganathan et al. [28] ) based on the hierarchy 
of chaotic maps is proposed. We particularly expand upon previ- 
ously reported results of a hierarchy of dynamical systems [56,57] , 
for construction of a new hierarchy of q -deformation maps with an 
invariant measure. These maps have advantages such as ergodicity 
and the possibility of KS entropy calculation. In these maps the 
control parameter is switched to q -deformation control parame- 
ter and parameter α. Consequently, the hierarchy of q -deformation 
maps have richer dynamical phenomena than the canonical hier- 
archy of chaotic maps and all the features of the canonical chaotic 
maps can be accessed via changing the deformation parameters ( q ) 
and without varying the values of the parameter α. 

Finally, a new watermarking scheme for blind digital image wa- 
termarking based on q -deformed chaotic maps and DWT (powerful 
mathematical transforms) was proposed. These q -deformed maps 

was implemented to increase both the number of keys and com- 
plexities involved in the algorithm. Furthermore, the q -deformation 
control parameter and the initial values of q -deformed maps are 
deemed as necessary keys for correctly restituting watermarks, 
which greatly enhanced the system security. The experimental re- 
sults have demonstrated the extracted watermark logo had very 
good quality. In addition to some features aforesaid, the most im- 
portant advantage of these q -deformation maps is the existence of 
the two parameters, α and ε. It seems that the excellent efficiency 
of the new watermarking scheme is derived from this property. 
Moreover, based on all experimental results and analysis, the con- 
clusion is that, from a watermarking viewpoint, the proposed algo- 
rithm is a best candidates for practical applications in information 
security fields. 

Acknowledgment 

The authors express their thanks to Dr. P. Ayubi for assistance 
with DWT and in that line improved the manuscript significantly. 

Appendix A. One parameter families 

Hierarchy of one-parameter families of chaotic maps with an 
invariant measure can be defined as [56] : 

�(x, α) = 
α2 F 

1 + (α2 − 1) F 
. (A.1) 

where F substitutes with Chebyshev polynomial of type one, T N ( x ) 
for �(1) 

N (x, α) and in the case of Chebyshev polynomial of type 

two, U N ( x ) for �
(2) 
N (x, α) . As an example, some of these maps are 

given below: 

�(1) 
2 = 

α2 (2 x −1) 2 

4 x (1 − x ) + α2 (2 x − 1) 2 
, �(2) 

2 = 
4 α2 x (1 − x ) 

1 + 4(α2 − 1) x (1 −x ) 
, 

�(1) 
3 = �(2) 

3 = 
α2 x (4 x − 3) 2 

α2 x (4 x − 3) 2 + (1 − x )(4 x − 1) 2 
. (A.2) 

We have derived analytically their invariant measure for arbitrary 
values of the parameter α and any integer values of N : 

μ
�(1 , 2) 

N (x,α) 
(x, β) = 

1 

π

√ 

β
√ 

x (1 − x ) ( β + ( 1 − β) x ) 
. (A.3) 

with β > 0 is the invariant measure of the maps �(1 , 2) 
N (x, α) pro- 

vided that, we choose the parameter α in the following form: 

α = 

⎧ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩ 

�
[ (N−1) 

2 ] 

k =0 
C N 
2 k +1 

β−k 

�
[ N 2 ] 

k =0 
C N 
2 k 

β−k 
for odd values of N 

β�
[ (N) 

2 ] 

k =0 
C N 
2 k 

β−k 

�
[ (N−1) 

2 ] 

k =0 
C N 
2 k +1 

β−k 
for even values of N 

(A.4) 

where the symbol [ ] means the greatest integer part. 

Appendix B. Invariant measure 

There are various methods to find invariant measures [37] . We 
focus on the Stieltjes transform approach to calculate the SRB mea- 
sure [58] . Invariant measures remain unaffected by dynamics, so 
they are fixed points of the PF-operator, with the unit eigenvalue: 

L 
t μ(x ) = 

∫ 

M 
δ(x − �t (y )) μ(y ) = μ(x ) (B.1) 

Depending on the choice of � t ( x ), there may be no, one, or 
many solutions of the eigenfunction condition. Now, by considering 
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dμ(y ) = δ(y − �(x )) dν(x ) the density at the n th time becomes: 

y n dμ(y ) = δ(y − �(x )) y n dν(x ) . (B.2) 

By integrating Eq. (B.2) , we have: 

∫ b 

a 
y n dμ(y ) = 

∫ b 

a 
δ(y − �(x )) y n dν(x ) = 

∫ b 

a 
(�(x )) n dν(x ) . (B.3) 

that can be presented in the following form either: 

μn = 

∫ b 

a 
x n dμ = 

∫ b 

a 
(�(x )) n dμ. (B.4) 

The spectral distribution can be determined in the last step in 
terms of x l , based on the following equation (for more details see 
Ref. [37,59] ): 

μ = 

∑ 

l 

A l δ(x − x l ) . (B.5) 

According to the proposed steps in the Ref. [60] , and also in order 
to calculate the invariant measure for �2 ( x, α, ε), we calculate the 
moments: 

μn = 

( 

4 α2 
(

(ε + 2) 2 − 4 α2 (1 + ε) 
)

(1 + ε)(1 + γ (ε, α)) 

γ (ε, α) 2 − γ (ε , α) χ (ε , α) 

) n 

×
n 
∑ 

k =0 

(

γ (ε, α) + χ (ε , α) γ (ε , α) 

χ (ε, α) + χ (ε, α) γ (ε, α) 

)k 

× (−1) n −k C n k 

n −k 
∑ 
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(−1) k 
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k ′ 

(

1 

γ (ε, α) 
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×
k 
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k ′′ =0 

C k + k 
′′ −1 

k ′′ 

(
1 

χ (ε, α) 

)k ′′ 

μk ′ + k ′′ (B.6) 

where μk ′ + k ′′ = 
∫ 1 
0 x 

k ′ + k ′′ dμ(x ) and for n = 0 , 1 , 2 , . . . , k = 

0 , 1 , 2 , . . . we find 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

γ (ε, α) = 
(−ε − 2 + 2 α2 + 2 
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(ε + 2) 2 − 4 α2 (1 + ε) 

(B.7) 

It should be assumed that, μn = 0 for all odd value of n . As an 
example by considering the first five moments: 

μ0 = 1 , 

μ2 = 

(

4 α2 (1 + ε) 
(

(ε + 2) 2 − 4 α2 (1 + ε) 
))2 
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1 −α2 

(

(ε + 2) 2 − 4 α2 (1 + ε) 
)4 
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At the second step, we calculate the coefficients λn according to 
Eq. (8) in Ref. [60] : 

λ1 = 1 , 

λ2 = 

(

4 α2 (1 + ε) 
(

(ε + 2) 2 − 4 α2 (1 + ε) 
))2 

χ2 − γ 2 − α2 

1 −α2 

(

(ε + 2) 2 − 4 α2 (1 + ε) 
)4 
(

3 χ2 (1+ γ ) 2 

γ 2 + (1 + χ )(γ + 4) 

)

(B.9) 

Now, by considering the general form of P -polynomial ( Eq. (7) in 
Ref. [60] ), we have: 

P 2 (x ) = x 2 −

(

4 α2 (1 + ε) 
(
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))2 
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)

In the next step, according to the definition of the Stieltjes trans- 
form ( Eq. (9) in Ref. [60] ), we can write: 
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x 
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In the last step, with regard to the relation ( Eq. (11) in Ref. [60] ), 
the Guass quadrature constants are shaped as follows: 

A l = 
1 

2 

Now, according to the definition of the invariant measure Eq. (B.5) , 
we can write: 
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In order to avoid boring the reader with dull calculations, we only 
present that the variation of measure until second order for the se- 
lected example map. It is clear that the more you can increase the 
amount of n , the closer on get the reality. In this case, the infinite 
invariant measure on x = 0 (or x = 1 ) is corresponding to one un- 
stable fixed point. The probability of distribution around the fixed 
points influenced by the variation of ε and α. Actually, this inter- 
esting property is due to the existence of the SRB measure for the 
range of values of the parameter of these maps. 
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