

Received June 18, 2020, accepted August 19, 2020, date of publication August 26, 2020, date of current version September 9, 2020. Digital Object Identifier 10.1109/ACCESS.2020.3019517

Watermarking of HDR Images in the Spatial Domain With HVS-Imperceptibility

KARINA RUBY PEREZ-DANIEL^{®1}, (Member, IEEE), FRANCISCO GARCIA-UGALDE^{®2}, AND VICTOR SANCHEZ^{®3}, (Member, IEEE)

¹Engineering Faculty, Universidad Panamericana (UP), Mexico 03920, Mexico

²Engineering Faculty, National Autonomous University of Mexico (UNAM), Mexico 04510, Mexico ³Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.

Corresponding author: Karina Ruby Perez-Daniel (kperezd@up.edu.mx)

This work was supported in part by the National Autonomous University of Mexico (UNAM) through the Office for Academic Staff Affairs (DGAPA) Postdoctoral Scholarship Program, in part by the Research Project under Grant PAPIIT-IT101119, in part by the European Union Horizon 2020 Project Identity under Project 690907, and in part by the Universidad Panamericana.

ABSTRACT This paper presents a watermarking method in the spatial domain with HVS-imperceptibility for High Dynamic Range (HDR) images. The proposed method combines the content readability afforded by invisible watermarking with the visual ownership identification afforded by visible watermarking. The HVS-imperceptibility is guaranteed thanks to a Luma Variation Tolerance (LVT) curve, which is associated with the transfer function (TF) used for HDR encoding and provides the information needed to embed an imperceptible watermark in the spatial domain. The LVT curve is based on the inaccuracies between the non-linear digital representation of the linear luminance acquired by an HDR sensor and the brightness perceived by the Human Visual System (HVS) from the linear luminance displayed on an HDR screen. The embedded watermarks remain imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Extensive qualitative and quantitative evaluations on several HDR images encoded by two widely-used TFs confirm the strong HVS-imperceptibility capabilities of the method, as well as the robustness of the embedded watermarks to tone mapping, lossy compression, and common signal processing operations.

INDEX TERMS HDR, invisible watermarking, visible watermarking, LVT curve, HVS-imperceptibility.

I. INTRODUCTION

HDR images are characterized by a wide range of visible luminance values that can accurately represent the radiance of the scene, ranging from direct sunlight to faint starlight. Thanks to its floating-point representation, this type of imaging data can depict more colors and cover a wider range of intensity values than its Standard Dynamic Range (SDR) counterpart. Acquiring, storing, and displaying HDR images is possible thanks to the use of Transfer Functions (TFs), which perform the mapping from the linear light components of the scene, to a non-linear digital signal, and eventually to a linear luminance signal to be radiated by an HDR screen. TFs can then emulate the Human Visual System (HVS) by using non-linear operations to quantize the values representing the visible luminance with minimal subjective distortions.

The associate editor coordinating the review of this manuscript and approving it for publication was Claudio Cusano¹⁰.

As HDR images become widespread, their vulnerability to piracy, unauthorized distribution, modifications, and illegal copying is expected to increase. HDR imaging piracy may result in significant losses to the economy, harming content production firms and distribution companies. In the U.S. alone, a recent study estimates that global online piracy costs the economy at least \$29.2 billion in lost revenue each year [1].

Watermarking is an effective tool not only for media ownership identification but also for auxiliary information delivery. The watermark, or auxiliary information, is usually embedded in the cover media as barcodes, Quick Response (QR) codes, logos, or copyright patterns. This embedded information may be visible or invisible depending on the watermarking process. It is well-known that invisible watermarking does not seriously degrade the visual quality of the cover media by performing the embedding process after a transformation, e.g., in the frequency domain. However, this type of watermarking usually requires the exchange of private keys or extra information about the embedding process to retrieve the watermark. Conversely, visible watermarking allows to visually assert the media's ownership without the need for such keys or extra information. This is usually achieved by performing the embedding process in the spatial domain; e.g., by altering pixel values. Visible watermarking is desirable when the copyrighted material is disseminated over channels where piracy control is not possible, e.g., the Internet, as the visible watermark can make the final user immediately aware of the media's ownership. However, this type of watermarking inevitably degrades the visual quality of the cover media.

To leverage the advantages of visible and invisible watermarking for HDR imaging, we propose a watermarking method in the spatial domain with HVS-imperceptibility capabilities. Our method, hereinafter called High Dynamic Range - Imperceptible Watermarking, (HDR-IW) provides an easy way to recognize the media's ownership without the need for exchanging keys or any extra information about the embedding process, while minimizing the visual distortion that can be perceived by the HVS. The proposed method is based on the Unseen Visible Watermarking (UVW) technique [2], [3] and extends our work in [4]. Differently from the UVW technique, which embeds copyright information in the spatial domain of SDR regions with low visibility, the HDR-IW method embeds imperceptible watermarks in the spatial domain by exploiting the inaccuracies among the non-linear digital representation of the linear luminance acquired by an HDR sensor, the linear luminance radiated by an HDR screen by means of a TF, and the brightness perceived by the HVS from the displayed luminance. The latter is achieved by using the information provided by a Luma Variation Tolerance (LVT) curve [4]. This paper extends and complements [4] as follows:

- The technical details and computation of the LVT curve are explained in detail for the two TFs widely-used to encode HDR images. The LVT is a core component to determine the maximum variations in luma codes that a pixel can suffer before the changes can be perceived by the HVS according to the TF used for encoding.
- An embedding region (ER) selection process is introduced to find the region with the highest tolerance to luma code variations according to the corresponding LVT curve.
- 3) A novel embedding payload metric is introduced to measure the embedding payload of the HDR-IW method by accounting for the characteristics of the HDR image and the corresponding LVT curve and TF.

The watermarks embedded by the HDR-IW method in the spatial domain are imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Hence, these watermarks can be easily identified without the need for private keys or any additional information about the embedding process.

We evaluate the proposed HDR-IW method for the embedding of binary watermarks in terms of embedding payload, imperceptibility (qualitatively and quantitatively), robustness to tone-mapping operations (TMOs), which are widely used to display HDR images on SDR screens, lossy compression [5]–[7] and other common signal processing operations. To the best of our knowledge, there are no other watermarking methods for HDR images that also embed information in the spatial domain in an imperceptible manner. However, we compare the imperceptibility capabilities and robustness of the HDR-IW method with those of two invisible watermarking methods that operate in the frequency domain, [8], [9].

The rest of the paper is organized as follows, Section II reviews comparable watermarking methods for HDR images that embed invisible watermarks after transforming the cover media. Section III briefly describes the HDR acquisition and encoding process. Section IV explains in detail the HDR-IW method. Section V presents and discusses the performance evaluation results. Finally, Section VI concludes this work.

II. RELATED WORK

Although SDR watermarking is a mature area that has been extensively explored both in the spatial and frequency domains, HDR watermarking is still in the early stages. In the last few years, however, important watermarking methods for HDR imaging that embed invisible watermarks after transforming the cover media have been proposed. These methods can be classified into two main groups. The first group includes methods that embed the watermark after applying a frequency transformation. For example, Bakhsh and Moghaddam [8] employ an artificial bee colony algorithm to find the best region to embed a binary watermark in the first-level approximation sub-band of the Discrete Wavelet Transform (DWT). Maiorana and Campisi [9] present a blinddetectable multi-bit watermarking method that uses the DWT of the Just Noticeable Difference (JND)-scaled representation of the HDR image for embedding purposes, as well as a contrast sensitivity function to modulate the watermark intensity in each DWT sub-band according to its scale and orientation. Guerrini et al. [10] present a blind-detectable one-bit watermarking method that uses the approximation sub-band of the DWT of the LogLUV color space. Autrusseau and Goudia [11] propose a non-linear hybrid method that combines additive and multiplicative watermarking. The embedding process is done in the DWT domain of the RGB radiances of an RGBe-encoded HDR image. The work in [12] exploits the properties of the Radon-Discrete Cosine Transform (R-DCT) to derive an image representation whose coefficients can be watermarked with an insignificant effect on the visual quality. In [13], the authors propose a watermarking method robust to TMOs by successively performing a non-subsampled contourlet transform and singular value decomposition to extract the structural information that is invariant to tone-mapping.

The second group of HDR watermarking methods includes those that embed the watermark after applying a color decomposition or filtering process. The work in [14] proposes a method based on feature map extraction by means of the Tucker decomposition. This method divides an HDR RGB color image into the three color channels so that three feature maps are extracted. The method then embeds a watermark in the feature map that contains most of the image's energy. In [15], the authors decompose an HDR image into multiple SDR images by means of a bracketing process. Each SDR image is watermarked with a random key before being merged to produce the final watermarked HDR image. In [16], the authors propose a blind-detectable watermarking method that uses bilateral filtering to extract the small scale and texture parts of the HDR image, also known as the blue component of the detail layer. The watermark is embedded in this blue component to minimize quality degradations.

In summary, the previous watermarking methods have been shown to achieve strong performance. However, they may require the deployment of specific watermark detection and extraction modules. For example, the methods in [8], [16], and [10] require an explicit exchange of private keys to detect and extract the watermark. Although embedding watermarks in the spatial domain eliminates the trouble of deploying an extraction module, such an embedding technique is seldom explored because the embedded watermarks are visible and hence defeat the goal of providing a highquality and realistic visual experience through HDR imaging. To the best of our knowledge, no watermarking method in the spatial domain with HVS-imperceptibility for HDR imaging has been previously proposed. Such methods have only been proposed for SDR images. For example, [17] and [18] propose to exploit the cover media's color histogram to embed the watermark in the spatial domain with HVSimperceptibility. The method in [19], on the other hand, uses a JND criterion for embedding in the spatial domain, the DCT to share extraction parameters, and a binarization function for extraction. Although these watermarking methods have HVSimperceptibility capabilities, they are not suitable for HDR images because of the color and visibility ranges of SDR images differ from those of HDR images, which comes as a consequence of using distinct TFs to encode the luminance and color information [9].

III. HDR IMAGING

The abbreviations and acronyms used in this work are defined in Table 1.

Acquiring luminance from a scene in the form of an HDR image requires to first map the scene's linear luminance to

 TABLE 1. List of Abbreviations and Acronyms.

Abbreviation	Description	Abbreviation	Description
HDR	High Dynamic Range	LVT	Luma Variation Tolerance
TF	Transfer Function	HVS	Human Visual System
SDR	Standard Dynamic Range	QR	Quick Response
HDR-IW	High Dynamic Range - Imperceptible Watermarking	UVW	Unseen Visible Watermarking
TMO	Tone Mapping Operation	CS	Contrast Sensitivity
OETF	Opto-Electronic Transfer Function	EOTF	Electro-Optical Transfer Function
PQ	Perceptual Quantization	HLG	Hybrid Log-Gamma
HDR-VDP-2	HDR Visual Difference Predictor	MOS	Mean Opinion Score
mPSNR	multi-exposure Peak Signal to Noise Ratio	MSE	Mean Square Error
OP	Quantization Parameter	BER	Bit Error Rate

FIGURE 1. Mapping of luma codes to display luminance by different EOTFs.

a non-linear digital signal in the form of code values. This mapping is done through an opto-electronic transfer function (OETF). To display HDR images, the code values are mapped back to a linear luminance signal to be radiated by an HDR screen by means of an electro-optical transfer function (EOTF).

Two TFs are currently used for HDR images: the Perceptual Quantization (PQ) EOTF and the Hybrid Log-Gamma (HLG) OETF. The PQ EOTF, also known as the SMPTE ST.2084 standard [20], maps 10-bit luma codes, $luma_{code} \in [0, 2^{10} - 1]$, to display luminance $\mathcal{L}_d \in [10^{-4}, 10^4] cd/m^2$. This EOTF is an absolute, display-referred TF, as the maximum possible \mathcal{L}_d value depends on the screen's display capabilities. However, this TF maps each luma code to the same absolute luminance value in every screen. HDR images encoded by the PQ EOTF are not directly backward compatible with SDR screens. Conversely, the HLG OETF preserves backward compatibility. This TF is a relative, scene-referred TF [21], since digital signals produced by this TF represent the intensity of the light relative to the peak output of the HDR sensor.

Ideally, a TF should be a reversible function. Unfortunately, TFs are not reversible and the mapping between linear light components and non-linear codes is lossy. Fig. 1 plots the mapping of 10-bit luma codes, $luma_{code} \in [64, 940]$, to display luminance by the two EOTFs previously discussed. For the case of the HLG TF, Fig. 1 plots the inverse of the OETF, i.e., OETF⁻¹, as the EOTF. Note that each EOTF maps the same luma code to a slightly different display luminance value. This can be best appreciated in Fig. 2.

Contrast threshold curves are commonly used to study the HVS' ability to make contrast distinctions [22], [23]. Fig. 3 shows the contrast threshold curve proposed by Hecht *et al.* [22], where the luminance, \mathcal{L} , is plotted from very dark to very bright conditions against the JND perceived by the HVS ($\Delta \mathcal{L}/\mathcal{L}$). The JND model in Fig. 3 shows the three regions used to describe the HVS' behaviour when detecting contrast. The *scotopic* region, $\mathcal{L} \in [10^{-6}, 10^{-3}] \ cd/m^2$, which follows the De Vries-Rose law. The *photopic* region, $\mathcal{L} \in [10, 10^8] \ cd/m^2$, which follows a relatively constant trend, i.e., the Weber-Fechner Law. And

FIGURE 2. Mapping of $luma_{code} \in [64, 192]$ to display luminance by different EOTFs.

FIGURE 3. Hecht's curve modeling the HVS' relationship between contrast thresholds, $JND = \Delta \mathcal{L}/\mathcal{L}$, and luminance, \mathcal{L} .

the *mesopic* region, $\mathcal{L} \in (10^{-3}, 10) \ cd/m^2$, which combines the characteristics of the scotopic and photopic regions. JND models like the one in Fig. 3 are used to design TFs with smooth visual transitions between consecutive luma code values. This is achieved by establishing coding steps below the threshold of visibility [24].

IV. PROPOSED HDR-IW METHOD

The HDR-IW method embeds binary watermarks in the spatial domain of the Y-channel with HVS-imperceptibility. It comprises 4 main stages, as depicted in Fig. 4 and described next.

A. LUMA VARIATION THRESHOLD CALCULATION

When an initial low luminance stimulus is given to the HVS, very large variations in such a stimulus are required for the HVS to perceive any changes, as shown in Fig. 3. Designing a TF that accurately models the HVS' response to any luminance stimulus is a challenging task. Current TFs represent a trade-off between computational complexity and accuracy of the code assignment process. This trade-off usually results in representing low luminance values with a wide range of luma codes in order to minimize visible contouring artifacts at such low luminance levels. For example, for 10-bit signals, the PQ EOTF employs 100 luma codes to represent display luminance values $\mathcal{L}_d \in [0.0001, 0.75) cd/m^2$, 64 luma codes

for $\mathcal{L}_d \in [0.75, 2) \ cd/m^2$, and only 22 luma codes for $\mathcal{L}_d \in$ [2, 3) cd/m^2 . Among the 100 luma codes used by this TF for $\mathcal{L}_d \in [0.0001, 0.75) \ cd/m^2$, there is some redundancy that results in a significant amount of bits being wasted to encode small contrast changes that the HVS may not be capable of perceiving at such low luminance levels. A similar situation occurs with the HLG $OETF^{-1}$. In other words, there is a mismatch between the HVS's capacity to perceive differences in display luminance and the modeling used by an EOTF to represent display luminance as luma codes. Consequently, luma codes used to represent low display luminance values can be appropriately modified to embed a watermark in the spatial domain so it is imperceptible to the HVS. The challenge here is to determine the regions that are most tolerant to luma code variations and the maximum variation that they can tolerate before these changes can be perceived by the HVS, i.e., their luma variation threshold, denoted by ξ . For a given EOTF, we propose to compute ξ for a luma code, *luma_{code}*, based on the difference, or error, between the contrast sensitivity (CS) of the HVS and the CS modeling of an EOTF. To this end, we first determine how the luma code assignment of an EOTF changes as the display luminance, \mathcal{L}_d , increases linearly, and how the HVS' CS increases as \mathcal{L}_d increases linearly.

1) INCREASE IN $luma_{code}$ AS \mathcal{L}_d INCREASES LINEARLY

Let us recall that the end-to-end mapping of the linear light components of a real-life scene to the linear luminance values displayed by an HDR screen involves a non-linear quantization in the form of a digital signal. This means that if the luminance values displayed by an HDR screen increase in a linear trend, the corresponding luma codes do not increase linearly. To illustrate this, let us first define the increase in luma codes, $\Delta luma_{code}$, when the display luminance, \mathcal{L}_d , increases linearly by 1 cd/m^2 , as follows:

$$\Delta luma_{code}(\mathcal{L}_d) = luma_{code}[\mathcal{L}_d + 1] - luma_{code}[\mathcal{L}_d], (1)$$

where $luma_{code}[\mathcal{L}_d]$ is the luma code assigned to the display luminance value, \mathcal{L}_d .

Fig. 5 plots Eq. (1) for the two HDR EOTFs for $\mathcal{L}_d \in [0.5, 1000] \ cd/m^2$. It is evident that when the display luminance values increase linearly by $1 \ cd/m^2$, the luma codes do not increase linearly. Note that for the two EOTFs, Eq. (1) follows a trend similar to that shown in Fig. 3, especially for low display luminance values. In other words, there is a wide range of luma codes available to represent low \mathcal{L}_d values compared to the narrow range available for large \mathcal{L}_d values.

2) INCREASE IN THE HVS' CS as \mathcal{L}_d INCREASES LINEARLY

Part of the HVS' ability to discern information is attributed to its capacity to perceive differences in luminance within a field of vision [25]. Changes in luminance create a pattern of contrast that conveys the majority of visual information to the viewer. The HVS' sensitivity to detect contrast is given by the reciprocal of the JND value. The CS derived from this reciprocal, i.e., CS = 1/JND, is indeed the minimum perceived brightness by the HVS associated with a contrast threshold,

IEEEAccess

FIGURE 4. The four steps comprising the proposed HDR-IW method.

FIGURE 5. $\Delta luma_{code}(\mathcal{L}_d)$ of different EOTFs.

 $\Delta \mathcal{L}/\mathcal{L}$ [26]. To appropriately compare the HVS' CS with the display luminance encoded as luma codes, we apply the same *N*-bit quantization used by an EOTF to the HVS' CS [27]. This *N*-bit quantization is given by:

$$CS_{N_{bit}} = \left[\left(219 \cdot \frac{1}{JND} + 16 \right) \cdot 2^{N-8} \right], \tag{2}$$

where [x] denotes the rounding operation on x.

The increase in the HVS' CS after *N*-bit quantization can then be measured as the increase in $CS_{N_{bit}}$ values when the display luminance increases linearly by $1 cd/m^2$, as follows:

$$\Delta CS_{N_{bit}}(\mathcal{L}_d) = CS_{N_{bit}}[\mathcal{L}_d + 1] - CS_{N_{bit}}[\mathcal{L}_d], \qquad (3)$$

where $CS_{N_{bit}}[\mathcal{L}_d]$ is the *N*-bit representation of the HVS's CS associated with the display luminance value, \mathcal{L}_d . Fig. 6 plots Eq. (3) for the case of 10-bit signals, i.e., $\Delta CS_{N_{bit}=10}(\mathcal{L}_d)$. Note that for the two EOTFs, Eq. (3) follows a trend similar to that shown in Fig. 5. However, there are differences between the values given by $\Delta CS_{10}(\mathcal{L}_d)$ and those given by $\Delta luma_{code}(\mathcal{L}_d)$ for the same EOTF. These differences are exploited to modify luma codes in the spatial domain in an imperceptible manner, as explained next.

3) LUMA VARIATION THRESHOLD AND THE LVT CURVE

Once the $\Delta luma_{code}$ and $\Delta CS_{N_{bit}}$ values are computed for a display luminance value, \mathcal{L}_d , we can define the luma variation threshold, ξ , for \mathcal{L}_d as the absolute difference, or absolute error, between these two values:

$$\xi(\mathcal{L}_d) = \left| \Delta CS_{N_{bit}}(\mathcal{L}_d) - \Delta luma_{code}(\mathcal{L}_d) \right|.$$
(4)

FIGURE 6. $\Delta CS_{N_{10}}(\mathcal{L}_d)$ of different EOTFs.

FIGURE 7. LVT curves of different EOTFs.

Fig. 7 plots $\xi(\mathcal{L}_d)$ for 10-bit signals. These curves are the LVT curves, one for each EOTF. Note that according to these LVT curves, low \mathcal{L}_d values can tolerate large variations before the HVS is capable of perceiving them. This tolerance is relatively constant for all other \mathcal{L}_d values. This is better appreciated in Fig. 8, which shows the LVT curves for the lowest \mathcal{L}_d values plotted in Fig. 7. In this figure, one can note that for \mathcal{L}_d values within the boundaries of the scotopic and mesopic regions, there exists an important discrepancy between the CS modeling used by a TF and the brightness perceived by the HVS, i.e., the HVS's CS. The greatest differences are found for $\mathcal{L}_d < 2.5 \ cd/m^2$, for both EOTFs.

It is important to note that the LVT curves in Fig. 7 can also be defined in terms of luma codes. Fig. 9 shows the LVT curves plotted as a function of *luma_{code}*, i.e., $\xi(luma_{code})$, for

FIGURE 8. LVT curves of different EOTFs for low \mathcal{L}_d values.

FIGURE 9. LVT curves of different EOTFs for 10-bit luma codes associated with low \mathcal{L}_d values.

10-bit signals. For a PQ compatible system, one can see that a $luma_{code} = 100$ can be modified to any value $\in [75, 125]$ without being perceived by the HVS, since $\xi(100) = 50$. In the case of an HLG compatible system, a $luma_{code} = 100$ can be modified to any value $\in [96, 104]$, since $\xi(100) = 8$ without being perceived by the HVS. For a given EOTF, there is then a target range of luma code values that are best suited to embed a watermark in the spatial domain without being perceived by the HVS. We denote this target range by $luma_{target}$.

B. EMBEDDING REGION SELECTION

To guarantee that the embedded watermark in the spatial domain is imperceptible to the HVS, the ER must be uniform with luma codes $\in luma_{target}$. Our approach to finding an ER that fulfils these criteria on the Y-channel is embodied in Algorithm 1.

In line 2 of Algorithm 1, function superpixelSeg is used to perform SLIC superpixel segmentation [28] on the Y-channel, which results in set SP with η superpixels (SPs). Superpixel segmentation divides the Y-channel into η homogeneous regions in terms of texture, color and visual semantics, which is a desirable property for watermarking [29]. In lines 4-5, the average luma code ($luma_{SP_k}$) and area ($area_{SP_k}$) of the $k^{th} SP \in SP$ are computed, where $luma_{code}[p]$ is the p^{th} luma code and P is the total number of pixels in the $k^{th} SP$. In line 8, $luma_{SP_k}$ is normalized to [0,1], where 0 denotes the largest value in set SP and 1 the

Algorithm 1 ER Selection
Input: Y-channel
Output: ER
1: $SP = \emptyset; SP_{GS} = \emptyset$
2: $SP = \{SP_1, SP_2, \cdots, SP_\eta\} \leftarrow \text{superpixelSeg}(Y)$
3: for each $SP \in SP$ do
4: $luma_{SP_k} = \frac{1}{P} \sum_{p=1}^{P} luma_{code}[p]$
5: $area_{SP_k} = P$
6: end
7: for each $SP \in SP$ do
8: $luma_{SP_k} \leftarrow normalize(luma_{SP_k})$
9: $\widehat{area}_{SP_k} \leftarrow \operatorname{normalize}(area_{SP_k})$
10: $GS_{SP_k} = w_l \cdot luma_{SP_k} + w_a \cdot \widehat{area}_{SP_k}$
11: $S\mathcal{P}_{GS} \leftarrow S\mathcal{P}_{GS} \cup GS_{SP_k}$
12: end
13: $SP_{GS} \leftarrow rank(SP_{GS})$
14: $ER \leftarrow inscribe(SP_{GS_1})$

smallest value in the set. In line 9, $area_{SP_k}$ is normalized to [0,1], where 0 denotes the smallest value in set SP and 1 the largest value in the set. In line 10, a global score, GS_{SP_k} , is computed for the k^{th} SP as a weighted average of $\widehat{luma_{SP_k}}$ and \widehat{area}_{SP_k} , with weights w_l and w_a , where $w_l > w_a$ and $w_l + w_a = 1$. In other words, GS_{SP_k} assigns higher importance to $luma_{SP_k}$, i.e., SPs with small luma code values are preferred over those with large areas (and possibly relatively large luma code values) to guarantee imperceptibility. In line 11, the GS_{SP_k} value is placed in set SP_{GS} . In line 13, function rank organizes the elements in SP_{GS} in descending order, where the first element, SP_{GS_1} , is the largest SP with the smallest $luma_{SP_k}$ value. Finally, in line 14, the ER is defined as the largest inscribed region within SP_{GS_1} by means of function inscribe. Fig. 10 (rows 1-3) shows sample results of Algorithm 1 on the Y-channel of various HDR images.

C. WATERMARK EMBEDDING

The HDR-IW method embeds a binary watermark, BW, of size $m \times n$ into the ER of size $m \times n$ to produce a watermarked ER denoted by \overline{ER} :

$$\overline{ER}_{i,j} = \begin{cases} ER_{i,j} + \Xi_{HDR} & \text{if } BW_{i,j} = 0\\ ER_{i,j}, & \text{otherwise,} \end{cases}$$
(5)

where $\overline{ER}_{i,j}$ and $BW_{i,j}$ are the value of the watermarked ER and the binary watermark at pixel location (i, j), respectively, and Ξ_{HDR} is the embedding factor of the cover image. It is important to mention that the human visual attention and the HVS' response to contrast variations not only depend on the target region but also on its surrounding region [23], [24]. For this reason, the HDR-IW method accounts for the \mathcal{L}_d values of the region surrounding the ER when embedding the watermark. The embedding factor of the cover image, Ξ_{HDR} , is then computed as a weighted sum of the average luma variation threshold of the ER, denoted by $\overline{\xi}_{ER}$; the average luma variation threshold of the region surrounding the ER,

FIGURE 10. (1st row) Superpixel segmentation on the Y-channel of various sample HDR images. (2nd row) Corresponding target superpixel. (3rd row) ER used to embed the watermark. (4th row) Watermarked images after adding the color channels in 4:2:0 YUV format.

denoted by $\bar{\xi}_{SR}$; and the average luma variation threshold of the cover image, denoted by $\bar{\xi}_{HDR}$:

$$\Xi_{HDR} = \lceil w_0 \cdot \bar{\xi}_{ER} + w_1 \cdot \left(\bar{\xi}_{SR} + \bar{\xi}_{HDR} \right) - k \rceil, \qquad (6)$$

where w_0 and w_1 are weights that establish the impact of the terms, with $w_0 + (2 \times w_1) = 1$, and k is a strength factor. The average luma variation thresholds in Eq. (6) are computed by averaging the luma variation thresholds of all the pixel locations in the corresponding region. For example, for the $m \times n \text{ ER}$, ξ_{ER} is computed as follows:

$$\bar{\xi}_{ER} = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_{i,j}(luma_{code}), \tag{7}$$

where $\xi_{i,j}(luma_{code})$ is the luma variation threshold of pixel location (i, j) as given by the corresponding LVT curve (see Fig. 9). The region used to compute $\bar{\xi}_{SR}$ comprises the 8 blocks of size $m \times n$ surrounding the ER. To compute $\bar{\xi}_{HDR}$, all pixels locations of the cover image are used except for those in the ER and its surrounding region, as shown in Fig. 11.

Fig. 10 (4th row) shows sample watermarked images in the 4:2:0 YUV color format after embedding the binary watermark in Fig. 12 in the Y-channel. Fig. 13 graphically illustrates the complete embedding process.

D. DETECTION

A watermark embedded as explained in Section IV-C remains imperceptible to the HVS as long as the TF is not altered or

FIGURE 11. Regions used to compute the luma variation thresholds. ER is the $m \times n$ embedding region. SR comprises the eight $m \times n$ blocks surrounding ER. HDR comprises all pixels locations except for those in ER and SR.

FIGURE 12. Binary watermark used in this work.

the normal calibration and colorimetry conditions of the HDR screen remain unchanged. To make the watermark perceptible to the HVS, i.e., to visually detect it, one of the following procedures must be applied:

FIGURE 13. Block diagram of the embedding process. Blocks in green, red and blue denote inputs, outputs and processes, respectively.

- Manual color calibration of the HDR screen. The EOTF, peak RGB gamut, luminance, black/white points, and greyscale settings of the HDR screen affect the screen's colorimetry. Therefore, manually modifying the HDR screen's colorimetry to display a brighter version of the watermarked HDR imaging highlights mid and bright tones, which enhances the current contrast. This contrast enhancement contributes to exaggerating the watermarked luma codes, thus making the watermark perceptible to the HVS. This is illustrated in Fig. 14 for the watermarked HDR images in Fig. 10 (4th row).
- 2) Applying a gamma TF to the tone-mapped version of the watermarked HDR image. This process consists in varying the gamma factor of the traditional gamma TF, which is typically set to $\gamma = 2.2$. Applying a lower γ factor produces a brighter version of the tone-mapped image, thus making the watermark visible to the HVS.
- 3) Printing out the watermarked HDR image. The EOTF used by most printers is the dot gain compensation curve (DGCC), which is a variant of the traditional gamma function used by SDR screens [30]. The DGCC corresponds to luminance being reproduced as a power function of a code, where the exponent value is set to 1.75, instead of the traditional 2.2 value used for displaying purposes. Printing the watermarked HDR image involves applying a TMO, which is similar to the second procedure.
- 4) Using special software to handle color grading. Color grading aims to enhance the color of visual content by applying color correction and artistic color effects. Specialized color grading software performs a TMO and color correction with the traditional gamma TF, where γ can be modified to make the watermark perceptible to the HVS. This procedure is analogous to procedures 2 and 3.

V. EVALUATION RESULTS

Five sets of experiments are conducted to evaluate the proposed watermarking method to embed imperceptible binary watermarks in the spatial domain. These experiments evaluate the method's embedding payload, imperceptibility, and robustness. A total of 51 HDR images are used for evaluation. These HDR images are frames from a large collection of real-life HDR video sequences captured in a wide variety of scenarios and lighting conditions, including indoor and outdoor scenes, natural scenes, sports scenes, urban scenes, daytime scenes, night scenes, and textured scenes. Each HDR image has a resolution of 1920 × 1080 and is coded using Rec.2020 + PQ EOTF⁻¹ or Rec.2020 + HLG OETF, as tabulated in the first four columns of Table 2 and illustrated in Fig. 15. The binary watermark in Fig. 12 is embedded in each test HDR image in all experiments.

In all evaluations, the weights to compute GS_{SP_k} in Algorithm 1 are set to $w_l = 0.6$ and $w_a = 0.4$. The weights to compute Ξ_{HDR} in Eq. (6) are set to $w_0 =$ 0.6, $w_1 = 0.2$. Based on our evaluations, these values provide the strongest HVS-imperceptibility capabilities. This is confirmed in Figs. 16 and 17, which show the relationship between w_1 and w_0 , respectively, and the imperceptibility of a watermark embedded in image Show-Girl2TeaserClip4000_25_12_P3ct2020_444i_300 [31], as tabulated in Table 2. We quantitatively measure the imperceptibility of the embedded watermark in terms of the HDR Visual Difference Predictor (HDR-VDP-2) [37]. This metric measures the visibility and quality of a pair of HDR images. The visibility describes the probability that an observer can distinguish differences between the two images and the quality measures the degradation that the original image suffers after watermarking. Both parameters are given in terms of an $u \times v$ probability map, $p(u, v) \in [0, 1]$, which is reduced to a single term by means of the Minkowsky distance:

HDR-VDP-2 =
$$\left(\sum_{u}\sum_{v}p(u,v)^{\beta}\right)^{1/\beta}$$
, (8)

where $\beta = 2.4$ is an adjusting factor, and *u* and *v* are coordinates for the current pixel location. To compare HDR-VDP-2 values with conventional metrics, Eq. (8) is converted to a dB scale [37]:

$$HDR-VDP-2_{dB} = 20 \cdot \log_{10} \left(\frac{HDR-VDP-2_{max}}{HDR-VDP-2} \right).$$
(9)

From Fig. 16, we can see that the imperceptibility is strongly affected for $w_l < 0.6$. Hence, to guarantee that an ER with the smallest luma code values is selected over others with large areas (and possibly relatively large luma code values), we use $w_l = 0.6$ and $w_a = 0.4$. From Fig. 17, we can see that values $w_0 < 0.6$ also decrease the imperceptibility. Therefore, we set $w_0 = 0.6$ and $w_1 = 0.2$.

A. FIRST SET OF EXPERIMENTS: EMBEDDING CAPACITY

Table 2 tabulates the size of the ER, in percentage w.r.t. the size of the cover image, the average luma code value of the ER, $luma_{ER}$, and the embedding factor of the cover image, Ξ_{HDR} . From this table, one can note that $luma_{ER}$ and Ξ_{HDR}

IEEE Access

FIGURE 14. Watermarks (see Fig. 10) made visible after manual color calibration of the HDR screen.

FIGURE 15. Sample test HDR images encoded using Rec.2020 + PQ EOTF⁻¹ (rows 1-2) and Rec.2020 + HGL OETF (rows 3-4).

values depend on both, the image's content and the TF used. Namely, PQ-encoded images have positive Ξ_{HDR} values and lower *luma_{ER}* values than HLG-encoded images, which have negative Ξ_{HDR} values. As shown in Fig. 1, the HLG TF uses a narrower range of codes than that used by the PQ TF to encode low luminance values. Therefore, low luminance regions of HGL-encoded images are then expected to have a larger average luma code value than that of PQ-encoded

TABLE 2. Performance evaluation of the HDR-IW method and two invisible HDR watermarking methods.

Construct Description 51 12 Description 51 32	Source	Image name	ID	TE	$\mathbf{FR} \cdot (\%)$	Income a	Europ	ECupp	Proposed metho	od: HDR-IW	Method is	ı [8]	Method i	n [9]
BerefescheserChipe002.51.2 PSC000241.0 BerefescheserChip002.51.2 PSC002441.00 BF_00 PC 2.20 66.489 5 0.0113 64.350 5 0.0113 64.350 5 0.0113 64.350 5 0.0113 64.350 5 0.0113 64.310 5 0.0113 64.310 5 0.0113 64.310 5 0.0113 64.310 5 0.0113 64.310 5 0.0133 64.310 5 0.0133 64.310 5 0.0133 64.310 5 0.0356 44.438 51.660 44.312 54.3177 0.35.01 33.587 33.587 33.640 44.344 34.203 33.587 33.587 34.561 44.316 34.3293 33.6423 33.	Bource	inage name	ш		ERsize (10)	uma_{ER}	$\Box HDR$	LOHDR	HDR-VDP-2	mPSNR	HDR-VDP-2	mPSNR	HDR-VDP-2	mPSNR
BeerFerGaseClipHonQ 25, 12 PSc202444, 100 BE,000 PQ 0.57 64.395 5 0.011 55.361 84.055 84.1455 33.8215 </td <td></td> <td>BeerFestTeaserClip4000_25_12_P3ct2020_444i_000</td> <td>BF_000</td> <td>PQ</td> <td>7.26</td> <td>65.0617</td> <td>5</td> <td>0.0549</td> <td>47.5145</td> <td>44.0568</td> <td>43.0318</td> <td>35.4686</td> <td>37.2813</td> <td>34.9757</td>		BeerFestTeaserClip4000_25_12_P3ct2020_444i_000	BF_000	PQ	7.26	65.0617	5	0.0549	47.5145	44.0568	43.0318	35.4686	37.2813	34.9757
BeerFerGrameCTigen002.51.2 Pic2002.444.100 BP100 PQ 0.44 64.305 5 0.011 55.201 88.230 44.739 55.118 35.6443 35.5443 35.564 BeerFerGrameCTige002.51.2 Pic200.444.100 BP2.00 PQ 0.439 55.331 4.0078 4.1092 55.331 4.2038 35.374 35.643 35.794 35.643 35.794 35.643 35.794 35.643 35.794 35.643 35.794 35.795 85.633 44.0163 35.296 35.794 35.676 35.795 35.676 44.0163 35.794 35.678 35.795 35.676 36.787 35.676 36.787 35.678 44.0163 35.698 35.797 35.676 36.787 35.678 36.878 36.878 37.875 36.676 37.875 36.676 37.875 36.676 37.875 36.676 37.875 36.676 37.875 36.676 37.877 36.918 36.916 37.875 38.6761 37.377 38.6761 37.875 38.6761 37.875		BeerFestTeaserClip4000_25_12_P3ct2020_444i_080	BF_080	PQ	0.57	64.4399	5	0.0415	45.8169	56.9533	44.0156	34.1435	35.8215	33.5727
BeerfestReaceClipH002_51_2Pet200_444_00 PC_00 PQ 0.80 6.8057 4.1557 88.665 4.2008 8.51.87 35.8567 35.8676 35.86		BeerFestTeaserClip4000_25_12_P3ct2020_444i_160	BF_160	PQ	0.44	64.2936	5	0.0413	53.5611	58.5206	44.7339	35.1188	35.6443	34.5371
BeerfesticaseCTipHo02_51_2Px2002_441_200 PF_320 PC 0.87 95.27 15 0.0826 41.4588 51.9600 45.776 45.776 45.771		BeerFestTeaserClip4000_25_12_P3ct2020_444i_240	BF_240	PQ	0.44	64.8045	4	0.0372	41.5577	58.6405	42.0038	35.1347	35.8567	34.5676
FierplaceTeaseCT: FierplaceTeaseCT: ProcessCT:		BeerFestTeaserClip4000_25_12_P3ct2020_444i_320	BF_320	PQ	0.89	86.2572	15	0.0826	41.4588	51.9660	45.9726	34.1767	40.5611	33.5904
FirejacTeaseCT:pH000_24_12_Psc200_441_00 P1_000 P0_0 P0_0<		FireplaceTeaserClip4000 24 12 P3ct2020 444i 000	FP_000	PÕ	0.79	95.4833	6	0.0460	44.9442	56.6304	41.4614	34.2924	32,7942	33.6542
[31] FireplaceTeaseCTpi000_24_12_Psc200_444_170 PP_170 PQ 5.71 87.7632 7 0.0999 49.649 47.2802 40.1855 4.10890 88.061 33.423 FireplaceTeaseCTpi000_51_12_Psc20_444_000 80.000 PQ 6.64 6.5731 5 0.0837 60.317 6.5011 44.254 41.511 43.244 33.632 31.725 33.048 ShowGin2TeaseCTpi000_51_12_Psc20_444_124 SG_240 PQ 8.88 64.782 5 0.0831 44.058 47.741 40.1115 33.048 33.745 33.048 33.2426 ShowGin2TeaseCTpi000_51_12_Psc20_444_1240 SG_230 PQ 5.19 85.6985 9 0.0438 45.5536 55.875 40.9823 33.76 73.088 32.2456 ShowGin2TeaseCTpi000_51_12_Psc20_444_134 bC_344 PQ 0.31 60.059 13 0.0318 45.358 63.434 39.601 33.055 42.377 73.22377 73.22377 73.22377 73.22421 33.918 73.977 73.2238 73.977 73.22437 33.44 41.73 33.460 33.976 73.977 <t< td=""><td></td><td>FireplaceTeaserClip4000_24_12_P3ct2020_444i_090</td><td>FP_090</td><td>PÒ</td><td>0.52</td><td>93,9832</td><td>14</td><td>0.0778</td><td>41.9927</td><td>54,9763</td><td>39.8397</td><td>34.3107</td><td>33,3617</td><td>33.6748</td></t<>		FireplaceTeaserClip4000_24_12_P3ct2020_444i_090	FP_090	PÒ	0.52	93,9832	14	0.0778	41.9927	54,9763	39.8397	34.3107	33,3617	33.6748
Bit FrequerTeaseCT_pleX02_24_12_DC202_441_20 PP 20 PP 20 S19 S13795 S5 00050 49.8233 48.6361 43.4615 33.8003 36.4023 31.725 33.0043 ShowGin2TeaseCT_pleX02_51_2 P24202.441_145 SG_114 PQ 8.88 64.7842 5 0.0832 48.2324 45.1176 42.4254 33.0049 31.4254 33.0049 ShowGin2TeaseCT_pleX02_1441_240 SG_214 PQ 8.83 64.7842 5 0.0851 44.9058 57.471 40.1115 21.3193 38.1632 33.009 33.0291 33.0293 33.0291 33.0293 33.029 33.029 33.029 33.029 33.0293 33.0291 33.0293 33.0291 33.0293 33	[31]	FireplaceTeaserClip4000_24_12_P3ct2020_444i_170	FP 170	PO	5.71	87.7632	7	0.0599	49 6649	47,2802	40.1855	34 0890	38 6916	33 4235
ShowGurl2TesserCip4000_25_12_Per2020_444_104 SG_154 PQ 8.88 64.704 55 0.0337 50.3415 45.019 41.9311 33.6824 11.7275 33.0948 51.957 51.957.019 51.2Psr2020_4441_124 SG_154 PQ 8.88 64.7048 55 0.0352 44.224 45.1176 42.2243 33.696 31.6320 33.797 53.506.01727esscr21p400_25_12_Per2020_444_124 SG_154 PQ 8.88 64.7048 55 0.0052 44.2048 73.411113 32.8195 31.6320 33.797 53.506.01727esscr21p400_25_12_Per2020_444_20 SG_240 PQ 8.88 64.7048 50 0.0052 44.2048 73.41113 32.8195 31.6320 33.797 53.506.01727esscr21p400_25_12_Per2020_444_20 SG_240 PQ 8.88 64.7048 50 0.0052 44.2048 75.997 40.9393 31.297 57.0838 32.0597 53.507 40.9392 31.2976 57.941 40.938 31.2057 53.508 40.901 51.976 50.514 51.2057 51	(0.1)	FireplaceTeaserClip4000_24_12_P3ct2020_444i_230	FP 230	PÕ	5.19	87 3795	5	0.0508	49.8233	48 6361	43 4615	33 8603	36.0432	33 1753
Show Cirit Tesser Cipe 000, 25, 12, Perico20, 444, 124 Show Cirit Tesser Cipe 000, 25, 12, Perico20, 4441, 24 Show Cirit Tesser Cipe 000, 25, 12, Perico20, 4441, 24 SG, 240 Show Cirit Tesser Cipe 000, 25, 12, Perico20, 4441, 240 SG, 200 PQ 8, 83 SHOW B, 21, PS, 200, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 83 SHOW B, 21, PS, 200, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 83 SHOW B, 21, PS, 200, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 83 SHOW B, 21, PS, 200, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 83 SHOW B, 21, PS, 200, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 10 SHOW B, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 10 SHOW B, 21, PE, 200, 2444, 240 SG, 200 PQ 8, 10 SHOW B, 20, 25, PE, 200, 2444, 240 SG, 200 PQ 8, 10 SHOW B, 20, 25, PE, 200, 244, 25, 25, 25, 25, 24, 248 SHOW B, 21, PE, 200, 244, 25, 25, 25, 24, 248 SHOW B, 21, PE, 200, 244, 24, 25, 24, 268 SHOW B, 21, PE, 200, 244, 24, 25, 24, 268 SHOW B, 21, PE, 200, 244, 24, 25, 24, 248 SHOW B, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24		ShowGirl2TeaserClip4000_25_12_P3ct2020_444i_000	SG_000	PO	6.64	66 5731	5	0.0537	50 3415	46 5019	41 9311	33 6824	31 7275	33.0048
Show Citri ZinsacrClip400(2-5): L2 2)s2020, 441, 20 SC, 154 PQ 8.83 64.7084 5 0.0582 48.9187 43.1384 40.1463 34.3560 31.7597 Show Citri ZinsacrClip400(2-5): L2 2)s2020, 441, 20 SG, 300 PQ 2.17 87.0180 5 0.0447 45.553 55.7334 41.0723 33.159 33.797 Show Citri ZinsacrClip400(2.5): L2 Pis2020, 441, 20 SG, 300 PQ 2.17 87.0180 5 0.0487 45.5536 55.7334 41.0723 33.159 33.797 33.1251 beerfex: Lightshow, 102644 hC 2844 PQ 0.31 66.0559 15 0.0788 53.3829 61.351 44.0040 33.805 33.207 33.2185 beerfex: Lightshow, 102600 th'.2668 PQ 0.32 69.0718 16.0818 43.922 55.5414 33.4161 33.0181 33.2175 33.2185 33.0181 43.2207 33.0184 33.0181 43.2016 33.0181 43.2016 33.846 33.846 33.846 33.846 33.940 33.2185		ShowGirl2TeaserClip4000_25_12_P3ct2020_444i_134	SG 134	PO	8.88	64 7842	5	0.0582	48 2245	45 1176	42 4254	33 6269	32 4126	32 9472
Show clinit2TusserClip4000_25_12_P3c202_441_200 SG_240 PQ 8.83 88.183 90 0.0581 44.0628 75.9471 40.1115 32.8169 93.7048 32.0957 Show clinit2TusserClip4000_25_12_P3c202_441_30 SG_338 PQ 5.19 85.6985 9 0.0508 55.8079 44.0024 33.2957 33.2805 33.0957 33.0857 33.0957 33.0857 33.0957 33.0857 33.0957 33.0857 33.0957 33.0857 33.0957 33.2376 73.2387 14.0014 33.055 33.0957 33.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.2387 73.7777 5 0.0857 44.483 33.816 33.1583 31.1533 31.1533 31.1533 31.1533 31.1533 31.1533 31.1533 31.1733 34.5694 73.238787 23.2875 23.2875 23.2875 23.2875 23.2875 23.2875		ShowGirl2TeaserClip4000_25_12_P3ct2020_444i_154	SG 154	PO	8.88	64 7048	5	0.0582	48.0187	43 1384	40.1463	34 3596	31.6520	33 7307
Silow Cill Drived: 2, 1, 2, 59, 200, 1+41, 30 SG, 200 PQ 6, 519 85, 6985 9 0.00, 17 15, 33, 32 32, 350 33, 3206 37, 338 32, 350 Silow Cill Transer(Liptoby, 10244 52, 12, 26, 2020, 44i, 338 50, 300 PQ 0, 31 60, 058 53, 3329 61, 3511 44, 0004 33, 805 33, 807 33, 807 33, 805 33, 807 77, 77 32, 2215 bestra: (pishbow, 102640 bf, 3600 PQ 0, 20 66, 0659 15 0,0788 63, 3389 61, 3511 44,0004 33,805		ShowGirl2TeaserClip4000_25_12_P3ct2020_444i_154	SC 240	rQ DO	0.00	04.7040	5	0.0582	40.9107	43.1304	40.1405	22.8150	28 7048	33.7397
Since Unit Present up and 2, 12, per 2, 202, 02, 444, 308 FC 5, 19 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		ShowGirl2TeaserClip4000_25_12_P3ct2020_444i_240	SG_240	rQ po	0.03	00.1032	9	0.0381	44.0028	57.6471	40.1115	32.0139	26 5900	32.0397
SnowLiniz Lessent, Upbold, 21, 242, 024, 144, 158 Value Status 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 41.952.5 53.80/9 43.9821 53.80/9 43.4812 53.80/9 33.80 33.233 33.83 53.81/9 44.483 53.81.6 44.448 33.81.6 44.448.3 33.80 33.83 53.83/9 53.83/9 33.83 53.83/9 33.83 53.83/9 33.83/2 23.237.85 53.83/9 54.85/9 55.80/9 44.863 33.83 33.83/2 33.83/2 33.83/2 33.83/2 33.83/2 33.83/2 33.83/2 33.83/2 33.83/2 33.83		ShowGirl2TeaserClip4000_25_12_P3ct2020_4441_300	SG_300	PQ	2.17	87.0180	3	0.0447	45.5550	55.7554	41.7723	33.1234	30.3800	32.4200
beerfest_gigitsbow_10/2844 (b) 2344 (c) 0.31 (c) 0.031 (c) 0.038 (c) 3.5.889 (c) 0.354 (c) 0.054 (c) 0.055		ShowGirl2TeaserClip4000_25_12_P3ct2020_4441_338	SG_338	PQ	5.19	85.6985	9	0.0508	50.8921	55.8079	40.9829	33.2976	37.0838	32.6051
beerfest_lightshow_10/3020 b) 6_3020 PQ 0.89 66.4205 15 0.0881 4_3588 6_4.494 39.0001 33.0051 4_2.5977 4_32.2887 bistro_090958 b) 0.988 PQ 1_2.3 70.0706 14 0.0865 4_4.4522 51.6464 38.1566 3.44452 37.1327 33.2887 bistro_090958 b) 0.9170 b) 1710 b) 1717 PQ 2.59 120.868 10 0.0941 4_4.5038 4_4.7984 5.551 33.213 2_3.5069 37.2925 32.6893 bistro_09170 b) bistro_09170 b) 1710 PQ 3.03 697.418 14 0.0958 4_4.7984 5.551 33.213 2_3.5095 33.4880 37.2925 32.6893 bistro_091780 0x5_90184 b) 1710 PQ 3.03 697.418 14 0.0958 4_4.7984 5.551 33.5154 33.4880 37.3922 32.6893 bistro_091780 0x5_90184 b) 1710 PQ 3.03 697.411 5 0.0066 5 0.0185 4_4.752 4.3085 43.31807 43.3180 33.4857 33.4180 37.3922 32.4579 carouseLinework_090184 b) 170 PQ 9.00 70.0666 5 0.01359 4.47367 43.4386 44.1722 33.907 43.1310 33.7857 carouseLinework_09040 c1 6.670 PQ 9.07 75 64.2982 5 0.0955 4.42614 4.69478 43.8492 33.0776 43.2459 carouseLinework_097400 c1 6.700 PQ 5.75 64.2982 5 0.0955 4.42614 4.69478 43.8492 33.0736 33.9975 32.42893 b) carouseLinework_09740 c1 7.400 PQ 5.75 64.2982 5 0.0959 53.6466 6.6422 45.04668 34.0613 32.9740 33.24693 b) carouseLinework_097400 c5.730 PQ 0.41 74.0759 15 0.0901 53.6666 5.6462 44.50468 34.0613 32.9740 33.3800 pokertraveling_slowmotion_03122 pp.3122 PQ 0.131 9 44.287 16 0.0072 49.0392 50.2825 47.9129 33.8515 39.2887 33.749 showgirt_01_23566 sg_556 PQ 0.699 4.4287 15 0.0668 57.0186 51.01975 38.219 33.0357 33.4748 32.2670 showgirt_01_235965 sg_556 PQ 0.909 1.34 64.287 15 0.0668 57.0186 51.01975 38.219 33.0357 33.4748 32.2670 showgirt_01_235965 sg_556 PQ 0.913 74.4178 515 0.0674 74.788 49.5097 41.9896 33.3428 33.797 32.2247 showgirt_01_235965 sg_556 PQ 0.913 74.4185 15 0.0675 47.5099 4.0806 4.48737 33.2484 4.4540 33.32970 4.32466 4.34371 b) curchAhditeics014HD100p,HDREX_04272 EBU_4272 PQ 0.73 64.124 15 0.0851 75.7599 4.0806 35.3337 44.2540 33.2486 33.3192 33.846 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.8486 33.3192 33.848		beerfest_lightshow_102844	bf_2844	PQ	0.31	69.0381	15	0.0758	53.3829	61.3531	44.0004	33.805	33.9029	33.2215
berfsel.gipthow_103660 bb_3288 b_0988 b_0288 pQ 1.23 70.0706 14 0.0886 41.4252 51.54648 33.81366 34.4452 37.1282 33.2887 bistro_091470 b_1710 b_1710 pQ 2.59 120.88 10 0.0941 45.4038 55.6251 33.5132 32.3098 37.2952 32.6893 bistro_091710 b_1710 pQ 3.05 697.418 14 0.0958 44.4803 55.6251 33.5132 32.3098 37.2952 32.6893 bistro_091710 b_1700 pQ 3.05 697.418 14 0.09587 44.4863 53.8816 44.1473 33.4560 39.346 37.8305 32.7253 carouse_freworks_096144 cf_6184 pQ 3.09 79.0611 4 0.0957 44.4863 53.8816 44.1472 34.3907 40.3130 33.7857 carouse_freworks_096270 cf_6270 PQ 9.00 70.0666 5 0.1384 47.3657 43.3856 44.1722 34.3907 40.3130 33.7857 carouse_freworks_09640 cf_6400 PQ 5.75 64.2929 5 0.0955 44.2614 46.0478 43.886 34.1724 32.4504 40.2805 34.0350 carouse_freworks_097400 cf_3400 PQ 5.75 64.2929 5 0.0955 44.2614 46.0478 43.8862 33.0756 35.9975 32.4252 carouse_freworks_09740 cf_340 PQ 0.44 92.9170 15 0.0061 52.9046 65.5446 46.4327 33.1749 32.863 32.4483 pokerture-ling_stomation_033122 p_3577 PQ 0.41 74.0759 15 0.0069 52.0406 66.5421 44.9146 34.1051 32.0971 33.2407 33.840 32.9770 32.4259 molecular stomation_033122 p_3577 PQ 0.41 74.0759 15 0.0067 47.0186 51.9658 44.3648 34.3151 32.9770 33.34718 32.2707 37.418 32.2707 37.418 51.755 44.0608 34.9851 32.9770 32.719 33.8418 32.2707 33.9877 32.219 33.8418 32.2707 33.9987 32.2219 12.2356 35.9975 32.4252 35.00658 44.0513 32.9771 32.2199 33.8451 32.9770 33.3408 37.418 32.2707 33.999 53.3456 35.3456 34.3426 34.3451 32.9770 33.3408 37.34718 32.2707 37.418 32.2707 33.9998 53.44656 53.0153 44.4512 33.3579 44.451 33.2707 33.9997 33.3418 32.2707 33.9998 33.9998 33.9998 33.9998 33.9998 33.9998 33.9998 33.9998 33.9347 33.9478 32.2707 33.9418 33.2707 30.9410 33.9418 33.3779 34.4455 33.5799 33.9418 33.3797 34.4455 33.5799 33.9418 33.3797 34.4455 33.5799 33.9418 33.3797 34.4455 33.5799 33.9418 33.3199 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.5799 34.4455 33.3999		beerfest_lightshow_103020	bf_3020	PQ	0.20	69.0659	13	0.0820	45.3588	63.4394	39.6001	33.0551	42.5977	32.5231
bistro_00958 b_0958 b_0170 PQ 1.23 70.076 14 0.0865 41,422 S1.648 38.1366 34.4452 37.152 33.7897 bistro_00170 b_170 PQ 2.05 67.7718 14 0.0958 41.7098 55.6251 33.512 23.2695 32.2765 carouse_fireworks_006184 cf_6184 PQ 1.30 77.2717 61 0.0957 42.2710 50.485 33.5957 33.4386 37.8302 32.2755 carouse_fireworks_006184 cf_6144 PQ 1.30 77.0716 4 0.0957 42.2710 50.4855 33.153 <		beerfest_lightshow_103660	bf_3660	PQ	0.89	68.4265	15	0.0818	43.9821	56.5541	32.4812	33.0182	37.3207	32.3887
bistro_091710 b_1710 PQ 2.59 12.0868 10 0.0941 454038 55.6251 33.5132 32.698 37.2952 32.695 bistro_091780 b_1710 PQ 3.05 69.7418 14 0.0958 41.7908 50.5472 39.5097 33.4386 37.2952 32.695 bistro_091780 b_1710 PQ 1.23 72.707 5 0.0857 44.4863 53.8816 40.1473 33.4500 39.561 32.2253 carousel_firevorks_096184 c_6184 PQ 3.09 79.6111 4 0.0967 42.2710 50.4985 44.1722 34.3907 40.3130 33.7857 carousel_firevorks_09640 c_6.640 PQ 8.90 64.0895 5 0.1384 47.3657 43.4386 44.1722 34.3907 40.3130 33.7857 carousel_firevorks_09640 c_7.6400 PQ 5.75 64.1892 5 0.0955 44.2614 46.9478 43.8492 33.0756 35.9975 32.4252 hdr_testimage_273.35 hdr_3.35 PQ 0.20 151108 10 0.0669 52.0405 65.4662 44.9416 43.41050 36.0693 33.715 poke_fulshot_043787 PQ 0.41 74.0759 15 0.0807 25.9466 55.4662 44.9416 43.41050 36.0693 33.715 poke_fulshot_043787 PQ 0.41 74.0759 15 0.0807 42.9170 135.0566 54.6622 45.0648 44.0513 33.2963 33.2480 abovgart_0_2.35966 s_42.052 47.9129 33.0556 54.6622 45.0648 44.0513 33.2074 43.3800 poketraveling_slowmotion_033122 pp.3122 PQ 3.19 64.2887 16 0.0872 49.092 50.2823 47.9129 33.8551 33.2483 33.718 32.2670 showgart_0_2.35966 sg_2.536 PQ 0.69 42.2887 15 0.0667 57.0146 51.9077 48.259 33.0552 33.1578 33.2784 33.178 poke_fulshot_043787 72 PQ 0.53 74.6423 15 0.00679 42.4778 49.5079 43.8459 33.0552 33.0552 33.178 32.25670 showgart_0_2.35966 sg_2.536 PQ 0.513 74.1423 15 0.0079 42.4778 49.5079 43.8459 33.2587 33.1748 32.2570 matrix_shokhetcs2014HD100p_HDREXR_04727 EBU 4727 PQ 0.53 746.4519 41.9806 34.4523 34.0453 33.0552 34.3405 matrix_shok_0412 33.9806 bbc_0.36 HLG 0.37 16.5923 -10 0.01501 44.3787 45.5088 44.3837 35.2584 34.3458 33.3718 32.2570 matrix_shoketcs2014HD100p_HDREXR_04727 EBU 4727 140 59.8582 -10 0.1471 51.453 67.924 43.1413 33.952 33.3552		bistro_090958	b_0958	PQ	1.23	70.0706	14	0.0865	41.4252	51.4648	38.1366	34.4452	37.1528	33.7897
bistro_091710 b_1710 PQ 3.05 69.748 14 40.0058 41.47008 50.5472 39.5097 33.456 37.8302 32.7253 carousel_fireworks_096184 cf_6184 PQ 3.09 79.011 4 0.00967 44.22710 50.4985 38.5956 33.1583 31.1773 32.4597 carousel_fireworks_096270 cf_670 PQ 9.00 70.0666 5 0.1359 44.67792 43.4384 43.3690 30.076 32.4597 33.12753 43.0764 0.22975 32.4252 carousel_fireworks_097400 cf_7400 PQ 5.75 0.0801 52.9946 55.0106 46.5217 33.1294 32.8563 32.4453 poker_fulbshot_045787 pl_5787 PQ 0.41 74.075 15 0.0066 57.0186 51.9018 30.076 33.22974 33.2493 33.3479 33.2474 33.4103 poker_fulbshot_045787 pf.5787 PQ 0.41 74.4785 15 0.0066 57.0186 51.9097 <		bistro_091470	b_1470	PQ	2.59	120.868	10	0.0941	45.4038	55.6251	33.5132	32.3698	37.2952	32.6893
bisro_091780 bitro_096184 cf. 6184 PQ 3.09 79.611 4 0.0857 44.4863 53.8816 40.1473 33.4500 39.261 32.2539 carouse] fneworks_096270 cf. 6240 PQ 8.90 70.00666 5 0.1384 47.3657 43.4386 44.1722 33.3907 40.1310 33.7857 carouse] fneworks_09640 cf. 7400 PQ 8.96 64.0895 5 0.1384 47.3657 43.4386 44.1722 33.3907 40.1310 33.7857 (arouse] fneworks_097400 cf. 7400 PQ 5.75 64.2982 5 0.0955 44.2614 46.9478 43.8492 33.076 35.24803 bitr_testimage_273335 bitr_3335 PQ 0.20 1510.18 10 0.0699 52.6005 66.5421 44.9146 34.1050 36.0963 33.24803 bitr_testimage_273335 bitr_3335 PQ 0.20 1510.18 10 0.0699 52.6005 66.5421 44.9146 34.1050 36.0963 33.24803 bitr_testimage_273335 bitr_5332 PQ 0.20 1510.18 10 0.0699 52.6005 66.5421 44.9146 34.1050 36.0963 33.24803 bitr_testimage_273335 bitr_5332 PQ 0.20 1510.18 10 0.0699 52.6005 66.5421 44.9146 34.1050 36.0963 33.24803 bitr_testimage_27335 bitr_5332 PQ 0.219 15 50.6068 57.0186 51.9075 38.2519 33.0357 33.2487 33.2490 bitr_01.235065 space 5.90 0.90 64.2887 15 0.00677 42.4738 49.507 34.8218 32.9704 33.3800 bitr_0.23506 space 5.90 0.90 64.2887 15 0.00677 42.4738 49.507 34.9218 33.425 35.0707 32.2610 space 5.90 0.91 0.35 64.541 51 0.00774 57.570 54.5508 44.260 38.2433 42.2600 space 5.90 0.91 0.35 64.541 54 1.55 0.0617 42.4738 54.9008 43.9387 33.4748 34.2466 43.9371 bitr_01.235965 space 5.90 0.91 0.35 64.5461 15 0.0615 44.3670 53.3337 44.2540 38.2483 42.7304 44.3470 53.3337 bitr_01.23596 34.9483 42.7304 44.3473 33.9400 33.3425 33.9402 33.3415 bitr_01.23596 bitr_0.2306 bi		bistro_091710	b_1710	PQ	3.05	69.7418	14	0.0958	41.7908	50.5472	39.5097	33.4386	37.8302	32.7635
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		bistro_091780	b_1780	PQ	1.23	72.7077	5	0.0857	44.4863	53.8816	40.1473	33.4500	39.361	32.7253
[32] carouse_Interworks_09620 cf_6200 PQ 9.00 70.0666 5 0.1384 47.3657 43.4386 44.1722 33.007 40.3130 33.7857 carouseI_Inteworks_097400 cf_7400 PQ 5.75 64.2982 5 0.0389 44.2614 46.9478 43.8492 33.0736 33.9975 32.4252 carouseI_Inteworks_097400 cf_5.2140 PQ 0.744 92.9170 15 0.0801 52.9005 66.5421 44.9146 34.090 40.3133 32.6973 33.2475 poker_tublisto_U152340 pf_5787 PQ 0.20 151.018 10 0.0691 52.6005 66.5421 44.9146 34.1050 33.6973 33.2473 33.2493 34.2673 33.1749 33.8041 33.2687 33.1749 33.8041 33.2887 33.1749 33.8441 33.2887 33.1749 33.8441 33.2887 33.1749 33.2887 33.1749 33.2887 33.1749 33.2887 33.1749 33.2887 33.1749 32.2744 44.9507<		carousel fireworks 096184	cf 6184	PO	3.09	79.6111	4	0.0967	42.2710	50.4985	38.5956	33.1583	31.1773	32.4579
[32] carouse_fireworks_096640 cf_640 PQ 8.96 64.0895 5 0.1359 46.7792 43.0877 35.1474 34.5604 40.2895 34.0380 car_fulbhot_132340 cf_7400 PQ 5.75 64.2982 5 0.0955 44.2614 46.0478 43.8422 33.1078 35.9795 32.24803 hdr_testimage_273355 hdr_335 PQ 0.20 151.018 10 0.0699 52.6005 66.5421 44.9146 34.1050 36.6963 33.3174 poker_fulbabc_045787 PQ 0.41 74.0759 15 0.0921 53.6565 54.6822 45.0648 34.0513 32.9774 33.8109 poker_fulbabc_04576 sg_5.565 PQ 0.99 64.2887 15 0.0668 51.075 33.2519 33.0537 33.3471 32.2670 shorgif_01_235965 sg_5.565 PQ 1.93 74.4185 15 0.0668 51.025 34.0380 33.425 33.0537 33.3425 35.0197 32.243 34.0109 smith_hammering_252764 Pd 5.12 10.2376 <td< td=""><td></td><td>carousel fireworks 096270</td><td>cf 6270</td><td>PÒ</td><td>9.00</td><td>70.0666</td><td>5</td><td>0.1384</td><td>47.3657</td><td>43,4386</td><td>44,1722</td><td>34,3907</td><td>40.3130</td><td>33,7857</td></td<>		carousel fireworks 096270	cf 6270	PÒ	9.00	70.0666	5	0.1384	47.3657	43,4386	44,1722	34,3907	40.3130	33,7857
carouse_fireworks_097400 cr_7400 PQ 5.75 64.2982 5 0.0955 44.2614 46.3978 43.8492 33.0736 33.9975 32.4252 cars_fullshot_132340 cfs_2300 cfs_2300 pQ 0.44 92.9170 15 0.0801 52.9946 55.0406 46.3227 33.1294 32.5863 32.4912 poker_fullshot_045787 pf_5787 PQ 0.41 74.0759 15 0.0921 53.6566 54.0822 45.0648 34.0513 32.9704 33.815 39.2878 33.1709 showgirl_0_235965 sg_5056 PQ 0.99 64.2887 15 0.0668 57.0186 51.9075 38.2519 33.0537 33.4278 33.0509 smith_hammering_525764 sg_5056 PQ 5.10 0.133 47.6781 55.1725 41.6906 34.948 32.7324 34.40651 313 EBU_zorhoAhthetes2014HD100p_HDREXR_04272 EBU_4998 PQ 0.13 64.1212 15 0.01851 47.6887 55.0088 41.6431	[32]	carousel fireworks 096640	cf_6640	PO	8.96	64 0895	5	0.1359	46 7792	43 0837	35 1474	34 5604	40 2895	34 0380
car_fulshou_123240 cf_2,2400 PQ 0.44 92,9170 15 0.0801 52,9946 55,0406 46,3237 33,1294 33,2663 32,4833 33,4715 pdc=r_fulshou_045787 pf_5787 PQ 0.20 151,018 10 0.0921 53,6565 54,6822 45,048 34,0513 32,9704 33,3810 poker_fullshou_045787 pg_53122 PQ 3,19 64,2887 6 0.0872 49,0922 50,2825 47,9129 33,8513 39,2881 33,4718 33,2400 showgirl_01_235965 sg_5965 PQ 1,93 74,4185 15 0.0667 42,4738 49,5097 41,9989 33,424 35,0797 32,2734 34,6057 31 EBU_ZaricAxhtheires2014HD100p_HDREXR_04972 PQ 0.73 64,1212 15 0.0815 44,3670 53,3337 44,2540 32,3483 32,4763 33,3704 31 EBU_ZaricAxhtheires2014HD100p_HDREXR_04998 EBU_AricAxie 74,0815 45,6932 -10 0.1511 47,6857		carousel_fireworks_097400	cf_7400	PÔ	5.75	64 2982	5	0.0955	44 2614	46 9478	43 8492	33.0736	35 9975	32 4252
Larg_unstance_122=7335 Lig_unstance_122 Lig_Unstance_122 <thlig_unstance< td=""><td></td><td>care fullshot 132340</td><td>cfs 2340</td><td>PO</td><td>0.44</td><td>02.0170</td><td>15</td><td>0.0955</td><td>52 0046</td><td>55.0406</td><td>46 3237</td><td>33 1294</td><td>32 5863</td><td>32 4803</td></thlig_unstance<>		care fullshot 132340	cfs 2340	PO	0.44	02.0170	15	0.0955	52 0046	55.0406	46 3237	33 1294	32 5863	32 4803
Ind_lstr_fullsbc_10353 Ind_lstr_503 Ind_lstr_503 <thind_lstr_503< th=""> Ind_lstr_503 Ind_</thind_lstr_503<>		hdr tastimaga 272225	bdr 2225		0.74	151.018	10	0.0600	52,6005	66 5421	44.0146	34 1050	36 6063	32.4005
plote plote <th< td=""><td></td><td>nut_testimage_275555</td><td>nui_5555</td><td></td><td>0.20</td><td>74.0750</td><td>15</td><td>0.0099</td><td>52.0005</td><td>54 6922</td><td>45.0649</td><td>34.1050</td><td>30.0903</td><td>22 2800</td></th<>		nut_testimage_275555	nui_5555		0.20	74.0750	15	0.0099	52.0005	54 6922	45.0649	34.1050	30.0903	22 2800
pokettravening_slowmin_01_23562 ps_112 PQ 3.19 64.2887 6 0.0872 49.092 50.285 47.9129 33.3537 33.2570 showgirl_01_235965 sg_5965 PQ 1.93 74.4185 15 0.0668 57.0186 51.9075 33.2570 33.0537 33.0537 33.2670 smith_hammering_52764 sh_2764 pQ 5.12 102.222 15 0.01339 47.6781 55.1725 41.6906 34.948 33.2347 34.4605 [33] EBU_ZarichAthletics2014HD100p_HDREXR_04927 EBU_4272 PQ 0.73 64.1212 15 0.0815 44.3670 53.337 44.2540 38.2483 42.4166 34.9571 EBU_ZarichAthletics2014HD100p_HDREXR_06998 EBU_4998 PQ 0.13 64.5464 15 0.0754 47.6857 55.2008 41.6431 34.0652 36.4082 33.194 BC_1_bot_HLG_s030 bbcl_012 HLG 0.37 155.2959 10 0.1471 51.4153 67.9249 43.1472 33.9444		poker_tulishot_045787	pi_5/8/	PQ	0.41	74.0759	15	0.0921	33.0300	54.0822	45.0648	34.0515	32.9704	33.3800
showgril_0l_235636 sg_2565 PQ 0.09 64.2887 15 0.00678 51.9073 38.219 33.3425 33.425		pokertravelling_slowmotion_033122	ps_3122	PQ	3.19	64.2887	0	0.0872	49.0392	50.2825	47.9129	33.8515	39.2887	33.1749
showgr1_01_253965 sg_5965 PQ 1.93 74.4185 15 0.067/ 42.47.38 49.3097 41.9896 33.4245 33.7324 34.4605 31 EBU_zurichAthletics2014HD100p_HDREXR_04927 EBU_472 PQ 0.73 64.1212 15 0.0815 44.3670 53.3337 44.2540 38.2483 42.4160 34.948 33.7324 34.4605 31 EBU_zurichAthletics2014HD100p_HDREXR_04927 EBU_472 PQ 0.73 64.1212 15 0.0815 44.3670 53.3337 44.2540 38.2483 42.4160 34.951 33.372 EBU_zurichAthletics2014HD100p_HDREXR_00998 EBU_6998 PQ 0.13 64.5464 15 0.0751 47.6857 55.2008 41.6431 34.0652 36.4082 33.118 BBC_1_bbc_HLG_s012 bbc1_012 HLG 0.37 165.2959 10 0.1471 51.4153 67.9249 43.1472 33.1944 39.9151 33.1909 BBC_1_bbc_HLG_s320 bbc1_306 HLG 0.37 165.2959		showgirl_01_235636	sg_5636	PQ	0.69	64.2887	15	0.0668	57.0186	51.9075	38.2519	33.0537	33.4718	32.2670
smith_hammering_252764 sh_2764 PQ 5.12 102.222 15 0.1339 47.6781 55.1725 41.6906 34.948 32.7324 34.4605 [33] EBU_ZurichAthletics2014HD100p_HDREXR_04272 EBU_4972 FBU_6998 PQ 0.73 64.1212 15 0.0815 44.3670 55.3337 44.2540 38.2483 42.4166 34.9471 BUZ_urichAthletics2014HD100p_HDREXR_06998 EBU_6998 PQ 0.13 64.5464 15 0.0754 57.5099 60.8063 45.8793 37.2843 41.5918 34.3073 Werage over PQ-encoded images (PQ AV) 74.0591 8.66 0.0751 47.6887 55.2008 41.6431 34.062 36.4082 33.8041 BBC_1_bbc,HLG_s036 bbc1_012 HLG 0.37 165.2959 -10 0.1471 51.4153 67.9249 43.1472 33.9444 39.9151 33.7569 BBC_1_bbc,HLG_s306 bbc1_306 HLG 0.09 8.8327 -10 0.1478 53.8029 57.9253 44.4877 37.5390		showgirl_01_235965	sg_5965	PQ	1.93	74.4185	15	0.0677	42.4738	49.5097	41.9896	33.3425	35.0797	32.6219
BBU_ZurichAthletics2014HD100p_HDREXR_04927 EBU_4272 PQ 0.73 64.1212 15 0.0815 44.3670 53.337 44.2540 38.2483 42.4166 34.9571 Average over PQ-encoded images (PQ AV) 74.0591 8.66 0.0751 47.6857 55.2008 41.6431 34.0652 36.4082 33.318 BBC_1_bbc_HLG_s012 bbc1_012 HLG 0.36 105.9323 -10 0.1501 48.7965 56.1623 44.3152 33.1943 39.8490 33.1943		smith_hammering_252764	sh_2764	PQ	5.12	102.222	15	0.1339	47.6781	55.1725	41.6906	34.948	32.7324	34.4605
[59] EBU_ZurichAthletics2014HD100p_HDREXR_06998 EBU_699 PQ 0.13 64.5464 15 0.0754 57.5099 60.8063 45.8793 37.2843 41.5918 33.318 Average over PQ-encoded images (PQ AV) 74.0591 8.66 0.0751 47.6857 55.2008 41.6431 34.0652 36.4082 33.8041 BBC_1_bbc_HLG_s012 bbcl_012 HLG 3.36 105.9323 -10 0.1501 48.7965 55.1623 41.4312 33.9072 39.8490 33.8041 BBC_1_bbc_HLG_s036 bbcl_036 HLG 2.09 117.8460 -111 0.1390 52.8173 55.9453 44.4887 33.7569 [34] BBC_1_bbc_HLG_s435 bbcl_320 HLG 1.10 76.8822 -10 0.1478 53.8029 57.9233 47.5049 37.3789 45.309 32.2366 BBC_1_bbc_HLG_s435 bbcl_601 HLG 0.36 42.168 1.5 0.0982 64.2180 65.2878 49.8506 31.871 33.1892 BBC_1_	[33]	EBU_ZurichAthletics2014HD100p_HDREXR_04272	EBU_4272	PQ	0.73	64.1212	15	0.0815	44.3670	53.3337	44.2540	38.2483	42.4166	34.9571
Average over PQ-encoded images (PQ AV) 74.0851 8.66 0.0751 47.6857 55.208 41.6431 34.0652 36.4082 33.8041 BBC_1_bbc_HLG_s012 bbc1_012 HLG 0.3.36 105.9323 -10 0.1501 48.7965 56.1023 44.3152 33.8072 39.8490 33.8041 BBC_1_bbc_HLG_s036 bbc1_036 HLG 0.3.7 165.2959 -10 0.1471 51.4153 67.9249 44.31472 33.944 39.9151 33.1909 BBC_1_bbc_HLG_s320 bbc1_306 HLG 0.37 165.2959 -10 0.1471 51.4153 67.9249 44.31472 33.1944 39.9151 33.1909 BBC_1_bbc_HLG_s320 bbc1_306 HLG 0.075 7.8460 -11 0.1478 55.3028 57.9253 44.487 37.5390 45.7309 32.5366 BBC_1_bbc_HLG_s401 bbc1_601 HLG 0.59 85.827 -10 0.1478 53.029 57.8055 44.8187 37.1877 45.403 33.1842 33.1842	[33]	EBU_ZurichAthletics2014HD100p_HDREXR_06998	EBU_6998	PQ	0.13	64.5464	15	0.0754	57.5099	60.8063	45.8793	37.2843	41.5918	34.3373
BBC_1_bbc_HLG_s012 bbcl_012 HLG 3.3.6 105.9323 -10 0.1501 48.7965 56.1623 44.3152 33.8072 39.8490 33.8041 BBC_1_bbc,HLG_s036 bbcl_036 HLG 0.37 165.2959 -10 0.1471 51.4153 67.9249 43.1472 33.19072 39.8490 33.8041 BBC_1_bbc,HLG_s306 bbcl_306 HLG 2.09 117.8460 -11 0.1390 52.8173 55.9453 44.487 33.7584 34.4815 33.7569 BBC_1_bbc,HLG_s435 bbcl_320 HLG 0.59 85.8327 -10 0.1473 57.3028 61.0855 47.8049 37.5390 45.7309 32.5126 BBC_1_bbc,HLG_s435 bbcl_601 HLG 0.36 142.1681 -15 0.0982 64.2180 65.2878 49.8506 37.1877 45.4032 32.1842 BBC_1_bbc,HLG_s014 bbcl_601 HLG 0.60 93.2377 -20 0.0495 67.2617 53.3055 44.4728 38.4868 43.31189 <		Ave	rage over PQ-e	ncoded ir	nages (PQ AV)	74.0591	8.66	0.0751	47.6857	55.2008	41.6431	34.0652	36.4082	33.3118
BBCbbc_HLG_s036 bbc_136 HLG 0.37 165.2959 -10 0.1471 51.4153 67.9249 43.1472 33.1944 39.9151 33.1909 BBCbbc_HLG_s036 bbc_306 HLG 2.09 117.8460 -11 0.1390 52.8173 55.9453 44.487 33.7589 44.4817 33.7589 44.4817 33.7589 44.4817 33.7589 44.4817 33.7589 44.4817 33.7589 44.4817 33.7589 44.4817 33.7589 44.4817 33.7589 35.2566 32.5366 BBCbbc_HLG_s435 bbc_16.598 HLG 0.059 85.827 -10 0.1478 53.029 57.9253 47.8086 38.2134 47.1820 33.2112 BBC_bbc_HLG_s601 bbc1_601 HLG 0.60 93.2377 -20 0.0495 67.2617 53.3055 44.4728 38.4868 43.3119 33.4890 BBC_c1_bbcc_HLG_s004 bbcc_014 HLG 2.89 93.7985 -20 0.0518 51.519 47.2546 48.5442 3		BBC 1 bbc HLG s012	bbc1_012	HLG	3.36	105.9323	-10	0.1501	48,7965	56.1623	44.3152	33.8072	39.8490	33.8041
BBC_1_bbc_HLG_s306 bbcl_306 HLG 2.09 117.8460 -11 0.1390 52.8173 55.9453 44.487 33.7585 44.4815 33.7560 [34] BBC_1_bbc_HLG_s320 bbcl_320 HLG 1.10 76.8822 -10 0.1473 55.9453 44.487 33.7585 44.4815 33.7560 BBC_1_bbc_HLG_s435 bbcl_320 HLG 0.10 76.8822 -10 0.1473 57.9233 47.5049 37.3590 45.7309 32.2112 BBC_1_bbc_HLG_s435 bbcl_998 HLG 0.056 142.1681 -15 0.0982 64.2180 65.2878 49.8506 37.1877 45.032 32.142 BBC_1_bbc_HLG_s601 bbcl_998 HLG 0.06 93.2377 -20 0.0495 67.2617 53.055 44.4783 33.1920 33.1895 BBC_1_bbc_HLG_s005 bbccl_905 bbccl_914 HLG 1.28 95.6598 -18 0.0697 50.6502 52.3055 44.4815 33.1895 BBC_C1_bbcc_HLG_s046 <t< td=""><td></td><td>BBC 1 bbc HLG s036</td><td>bbc1_036</td><td>HLG</td><td>0.37</td><td>165 2959</td><td>-10</td><td>0.1471</td><td>51 4153</td><td>67 9249</td><td>43 1472</td><td>33 1944</td><td>39 9151</td><td>33 1909</td></t<>		BBC 1 bbc HLG s036	bbc1_036	HLG	0.37	165 2959	-10	0.1471	51 4153	67 9249	43 1472	33 1944	39 9151	33 1909
134 BBC_1_bbc_HLG_s320 bbcl_320 HLG 1.00 76.8822 -10 0.1478 53.8029 57.9253 47.5049 37.5390 45.7309 32.5366 BBC_1_bbc_HLG_s435 bbcl_335 HLG 0.59 85.827 -10 0.1478 53.8029 57.9253 47.5049 37.5390 45.7309 32.5366 BBC_1_bbc_HLG_s435 bbcl_361 HLG 0.59 85.827 -10 0.1478 53.8029 57.9253 47.5049 32.2366 33.211 BBC_1_bbc_HLG_s598 bbcl_601 HLG 0.59 85.8327 -20 0.0495 67.2617 53.3055 44.471.82 38.4868 43.3119 33.1895 BBC_C1_bbcc_HLG_s014 bbcl_005 bbccl_004 HLG 2.89 83.7985 -20 0.0518 51.5319 47.2546 48.542 34.4151 44.453 34.125 BBC_C1_bbcc_HLG_s014 bbcc_064 bbcc_046 HLG 0.59 9.6077 -18 0.0691 54.5520 5.9652 51.338 51.6727		BBC 1 bbc HLG \$306	bbc1_306	HLG	2.09	117 8460	-11	0.1390	52 8173	55 9453	44 4887	33 7585	44 4815	33 7569
IDC_lbc_lbc_lbc_lbc_lbc_lbc_lbc_lbc_lbc_lbc	[24]	BBC_1_bbc_HLG_s300	bbc1_320	ULC	1.10	76 8822	10	0.1370	53 8020	57 0253	47.5049	37 5300	45 7300	32 5366
BBC_lbbc_HLG_s03 D0cl_133 HLG 0.33 83.027 10 0.147.3 0.108.33 47.0803 33.127 47.162 03.211 03.211 01 01.047.3 07.0833 47.0803 33.127 47.0803 33.127 47.0803 33.1874 47.162.03 33.1874 47.0803 33.1874 47.0803 33.1874 47.0803 33.1874 47.0803 33.1875 BBC_lbbc_HLG_s001 bbcl_601 HLG 0.60 93.2377 -20 0.0495 67.2617 53.3055 44.4728 38.4868 43.3192 43.2180 33.1895 BBC_C_Lbbcc_HLG_s014 bbcc_1005 bbcc_1014 HLG 2.89 83.7985 -20 0.0518 51.5319 47.2546 48.8916 33.1895 34.1285 BBC_C_Lbbcc_HLG_s048 bbcc1.064 HLG 0.97 -18 0.0691 54.5520 52.9652 51.4338 35.1299 38.3687 34.1285 BBC_C_Lbbcc_HLG_s046 bbcc2.064 HLG 0.97 108.8868 -20 0.0499	[.54]	PPC 1 bbs HI C s425	bbc1_320	ULC	0.50	95 9327	-10	0.1473	57 2029	61.0255	47.3049	28 2124	47.1820	32.3300
IBBC_1_bbc_HLG_536 Dbc_1_93 HLG 0.50 H2_1081 -13 0.0922 64.2160 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 04.2180 01.218 <td></td> <td>BBC_1_00C_HEG_8455</td> <td>bbc1_455</td> <td>ILC</td> <td>0.39</td> <td>142 1691</td> <td>-10</td> <td>0.1473</td> <td>64 2120</td> <td>65 2070</td> <td>40.8506</td> <td>27 1077</td> <td>47.1620</td> <td>33.2112</td>		BBC_1_00C_HEG_8455	bbc1_455	ILC	0.39	142 1691	-10	0.1473	64 2120	65 2070	40.8506	27 1077	47.1620	33.2112
BBC		BBC_1_00C_RLO_\$396	0001_398	HLG	0.50	142.1081	-15	0.0982	04.2160	52,2055	49.8500	37.1877	43.4032	32.1642
BBC_C_1_bbcc_1H.G_9005 bbcc_1905 HLG 1.25 95.6598 -18 0.0697 50.6502 52.305 48.3916 33.192 40.3850 33.1895 [35] BBC_C_1_bbcc_1H.G_9014 bbcc_1014 HLG 2.89 98.37985 -20 0.0518 51.5319 47.2546 48.3842 34.4151 34.4153 BBC_C_1_bbcc_1H.G_9048 bbcc_1044 HLG 0.59 99.6077 -18 0.0691 54.5520 52.9652 51.4333 35.1299 38.3687 34.1253 BBC_C_1_bbcc_1H.G_9046 bbcc_1066 HLG 0.97 108.3368 -20 0.0499 51.4165 55.3831 50.627 38.4945 34.9068 34.9453 BBC_C_2_bbcc_2.HLG_018 bbcc_2.031 HLG 3.16 87.8270 -20 0.0521 47.8915 47.3141 47.8720 34.9953 46.8846 34.9976 BBC_C_2_bbcc_2.HLG_045 bbcc_2.045 HLG 1.62 91.4447 -18 0.0701 53.696 55.7790 34.7593 46.8846 3		BBC_1_bbc_HLG_s601	bbc1_601	HLG	0.60	93.2377	-20	0.0495	67.2617	53.3055	44.4728	38.4868	43.3119	33.4840
BBC_C_1_bbcc_1H.G_9014 bbcc_1014 HLG 2.89 83.7985 -20 0.0518 51.5319 47.2546 48.8842 34.4153 BBC_C_1_bbcc_1H.G_9048 bbcc_1048 HLG 0.59 99.6077 -18 0.0691 54.5520 52.9652 51.4338 35.1299 38.3687 34.1285 BBC_C_2_bbcc_1H.G_9066 bbcc1_066 HLG 0.97 108.8368 -20 0.0499 51.4165 55.3831 50.6727 38.4945 40.0680 33.4914 BBC_C_2_bbcc_2_HLG_9018 bbcc_2_018 HLG 3.33 99.1747 -20 0.0521 57.8916 47.8356 55.3290 39.6010 48.3933 34.6056 BBC_C_2_bbcc_2_HLG_9031 bbcc_2_031 HLG 3.16 91.4447 -18 0.0701 53.6596 51.7501 49.2053 46.5846 34.9976 BBC_C_2_bbcc_2_HLG_9092 bbcc2_092 HLG 0.37 102.2924 -18 0.0688 56.6664 56.7111 45.4685 37.5548 43.1919 35.5511 <		BBC_C1_bbcc1_HLG_s005	bbcc1_s005	HLG	1.25	95.6598	-18	0.0697	50.6502	52.3055	48.4916	33.1920	40.3850	33.1895
BBC_C1_bbcc1_HLG_9048 bbcc_1048 HLG 0.59 99.6077 -1.8 0.0691 54.552 52.9652 51.338 35.129 38.3687 34.1285 BBC_C1_bbcc1_HLG_9066 bbcc1_066 HLG 0.97 108.8368 -20 0.0499 51.4165 55.3831 50.6727 38.4945 40.0680 33.4914 BBC_C2_bbcc2_HLG_018 bbcc2_018 HLG 3.33 99.1747 -20 0.0521 47.8356 55.3290 39.6010 48.8933 34.6945 BBC_C2_bbcc2_HLG_031 bbcc2_018 HLG 3.16 87.8270 -20 0.0521 47.8915 47.73141 47.8720 34.9953 46.8846 34.9976 BBC_C2_bbcc2_HLG_901 bbcc2_045 HLG 1.62 91.4447 -18 0.0701 53.6596 51.7501 49.2053 46.8846 34.9976 BBC_C2_bbcc2_HLG_902 bbcc2_045 HLG 1.62 91.4447 -18 0.0701 53.6596 51.7501 49.2053 46.8846 34.9976 BBC_C2_bbcc2_H	[35]	BBC_C1_bbcc1_HLG_s014	bbcc1_014	HLG	2.89	83.7985	-20	0.0518	51.5319	47.2546	48.5842	34.4151	48.4451	34.4153
BBC_C2_bbcc2_HLG_066 bbcc1_066 HLG 0.97 108.8368 -20 0.0499 51.4165 55.3831 50.6727 38.4945 40.0680 33.4914 BBC_C2_bbcc2_HLG_018 bbcc2_018 HLG 3.33 99.1747 -20 0.0522 55.8084 47.8356 55.3290 39.6010 48.3933 34.6056 BBC_C2_bbcc2_HLG_031 bbcc2_031 HLG 3.16 87.8270 -20 0.0521 47.815 47.3141 47.8720 34.9953 46.6846 34.9976 BBC_C2_bbcc2_HLG_045 bbcc2_031 HLG 3.16 87.8270 -20 0.0521 47.815 47.3141 47.8720 34.9953 46.5846 34.9976 BBC_C2_bbcc2_HLG_045 bbcc2_045 HLG 0.16 91.4447 -18 0.0701 53.6596 51.7501 49.2053 46.5763 45.2401 34.7593 BBC_C2_bbcc2_HLG_095 bbcc2_095 HLG 0.37 102.4470 -18 0.0688 56.6664 55.7111 45.4685 37.5548 43.1919 <td>[20]</td> <td>BBC_C1_bbcc1_HLG_s048</td> <td>bbcc1_048</td> <td>HLG</td> <td>0.59</td> <td>99.6077</td> <td>-18</td> <td>0.0691</td> <td>54.5520</td> <td>52.9652</td> <td>51.4338</td> <td>35.1299</td> <td>38.3687</td> <td>34.1285</td>	[20]	BBC_C1_bbcc1_HLG_s048	bbcc1_048	HLG	0.59	99.6077	-18	0.0691	54.5520	52.9652	51.4338	35.1299	38.3687	34.1285
BBC_C2_bbcc2_HLG_018 bbcc2_s018 HLG 3.33 99.1747 -20 0.0522 55.8084 47.8356 55.3290 39.6010 48.3933 34.6056 BBC_C2_bbcc2_HLG_s011 bbcc2_031 HLG 3.16 87.8270 -20 0.0521 47.8915 47.8356 55.3290 39.6010 48.3933 34.6056 [36] BBC_C2_bbcc2_HLG_s045 bbcc2_045 HLG 1.62 91.4447 -18 0.0701 53.6596 51.7501 49.2053 46.7563 45.2401 34.7593 BBC_C2_bbcc2_HLG_s092 bbcc2_095 bbcc2_092 HLG 0.37 102.2924 -18 0.0688 56.6664 55.7312 45.0468 37.7574 34.7696 BBC_C2_bbcc2_HLG_s095 bbcc2_095 HLG 0.74 104.4708 -15 0.0986 52.7796 56.7392 47.0326 36.8810 33.7699 Average over HGL-encoded images (HLG AV) 103.6442 -15.81 0.0913 54.4107 55.3788 47.326 36.8810 33.7599		BBC_C1_bbcc1_HLG_s066	bbcc1_066	HLG	0.97	108.8368	-20	0.0499	51.4165	55.3831	50.6727	38.4945	40.0680	33.4914
BBC_C2_bbcc2_HLG_s031 bbcc2_031 HLG 3.16 87.8270 -20 0.0521 47.815 47.3141 47.8720 34.9953 46.8840 34.9976 BBC_C2_bbcc2_HLG_s045 bbcc2_045 HLG 1.62 91.4447 -18 0.0701 53.6596 51.7501 49.2053 46.7563 45.2401 34.9976 BBC_C2_bbcc2_HLG_s092 bbcc2_092 bbcc2_092 116.6 0.37 102.2924 -18 0.0688 56.6664 55.5711 49.2053 46.7563 45.2401 34.5919 35.551 BBC_C2_bbcc2_HLG_s095 bbcc2_095 HLG 0.74 104.4708 -15 0.0986 52.7796 56.7392 45.0768 37.7707 42.9350 34.7696 Average over HGL-encoded images (HLG AV) 103.6442 -15.81 0.0913 54.4107 55.3708 47.326 36.8810 43.7366 33.7549 Average over HGL-encoded images (HLG AV) 103.6442 -15.81 0.0913 54.4107 55.3788 47.326 36.8810 33.7549 <		BBC_C2_bbcc2_HLG_018	bbcc2_s018	HLG	3.33	99.1747	-20	0.0522	55.8084	47.8356	55.3290	39.6010	48.3933	34.6056
[36] BBC_C2_bbcc2_HLG_s045 bbcc2_045 HLG 1.62 91,4447 -18 0.0701 53,6596 51,7501 49,2033 46,7563 45,2043 34,7593 BBC_C2_bbcc2_HLG_s092 bbcc2_092 HLG 0.37 102,2924 -18 0.0688 56,6664 56,5711 45,4685 37,5548 43,1919 33,5531 BBC_C2_bbcc2_HLG_s095 bbcc2_095 HLG 0.74 104,4708 -15 0.0986 52,7796 56,7392 45,0768 37,707 42,9350 34,7696 Average over HGL-encoded images (HLG AV) 103,6442 -1581 0.0936 52,4796 55,3788 47,326 36,8810 43,7366 33,7594 33,7591 32,5231		BBC_C2_bbcc2_HLG_s031	bbcc2_031	HLG	3.16	87.8270	-20	0.0521	47.8915	47.3141	47.8720	34.9953	46.8846	34.9976
BBC_C2_bbcc2_HLG_s092 bbcc2_092 HLG 0.37 102.2924 -18 0.0688 56.6664 56.5711 45.4685 37.5548 43.1919 33.5531 BBC_C2_bbcc2_HLG_s095 bbcc2_095 HLG 0.74 104.4708 -15 0.0986 52.7796 56.7392 45.0768 37.7707 42.9350 34.7696 Average over HGL-encoded images (HLG AV) 103.6442 -15.81 0.0913 54.4107 55.3708 47.7326 36.8810 43.7366 33.7548 33.7549 33.7548 33.7549 33.7548 33.7549 33.7549 33.7549 33.7549 33.7549 33.7549	[36]	BBC_C2_bbcc2_HLG_s045	bbcc2_045	HLG	1.62	91.4447	-18	0.0701	53.6596	51.7501	49.2053	46.7563	45.2401	34.7593
BBC_C2_bbcc2_HLG_s095 bbcc2_095 HLG 0.74 104.4708 -15 0.0986 52.7796 56.7392 45.0768 37.770 42.9350 34.7696 Average over HGL-encoded images (HLG AV) 103.6442 -15.81 0.0913 54.4107 55.3708 47.7326 36.8810 43.7366 33.7547 42.9350 33.7547		BBC C2 bbcc2 HLG s092	bbcc2 092	HLG	0.37	102.2924	-18	0.0688	56.6664	56.5711	45,4685	37.5548	43,1919	33,5531
Average over HGL-encoded images (HLG AV) 103.6442 -15.81 0.0913 54.4107 55.3708 47.7326 36.8810 43.7366 33.7549		BBC C2 bbcc2 HLG s095	bbcc2 095	HLG	0.74	104.4708	-15	0.0986	52,7796	56.7392	45.0768	37,7707	42,9350	34,7696
Antinge of inductional images (inductive) 1000 110 2010 2010 2010 11/1200 200001 40/1200 2010 201700 20000000000		Auera	e over HGI -en	oded im	Tees (HLG AV)	103.6442	-15.81	0.0913	54.4107	55.3708	47.7326	36.8810	43,7366	33,7549
		AVC/48	e orer mon-end	oucu ma		100.0448	10.01	(011/)	51.0492	55.0050	44.6970	25.4521	40.0724	22,7247

FIGURE 16. Imperceptibility (HDR-VDP-2 dB) of a watermark embedded in the ER selected by Algorithm 1 for different w_i values.

images. To embed imperceptible watermarks in the spatial domain of HLG-encoded images, the Ξ_{HDR} value should be then negative, otherwise, the embedded information may be perceived by the HVS as medium tones. On the other hand, to embed imperceptible watermarks in the spatial domain of PQ-encoded images, the Ξ_{HDR} value should be positive. Based on our evaluations on the test images, such Ξ_{HDR} values are achieved by setting the strength factor, k, to {5, 25} for PQ-encoded and HLG-encoded images, respectively [see Eq. (6)]. Additionally, as shown in Table 2, absolute Ξ_{HDR} values of HLG-encoded images tend to be larger than those of PQ-encoded images. The HLG TF has a relatively low

FIGURE 17. Imperceptibility (HDR-VDP-2 dB) of a watermark embedded in the ER using an embedding factor computed by Eq. (6) for different w_0 values.

granularity of luma codes for low luminance values. Consequently, there is more room to modify these codes aggressively before the changes can be perceived by the HVS. This particular TF uses large coding steps in low luminance regions to code large luminance variations. Consequently, if a luma code is modified by a value $< \Xi_{HDR}$, the HVS may not be able to perceive the embedded watermark even after the TF is altered or the normal calibration and colorimetry conditions of the HDR screen are changed. This is because the ER's watermarked luma codes may still be within the range of values of the surrounding region. On the other hand, the PQ TF has a high granularity of luma codes for low luminance values. Therefore, modifying these codes aggressively increases the risk that the HVS can perceive the changes.

Based on the previous discussions, one can conclude that, in general, HLG-coded images allow for larger imperceptible variations to low-valued luma codes than PQ-encoded images. Such variations, however, can only be applied if the ER has luma codes $\in luma_{target}$, i.e., the range of luma codes that are best suited to embed a watermark in the spatial domain that is imperceptible to the HVS.

Let us recall that the HDR-IW method combines the content readability afforded by invisible watermarking and the visual ownership identification afforded by visible watermarking. As with any other watermarking method in the spatial domain, determining the embedding payload is challenging, as watermarks may be embedded by altering the whole cover media or a small region of it. The embedding payload of a watermarking method in the spatial domain is then dependent on the content of the cover media and the level of distortion introduced by modifying pixel values. Since the HDR-IW method indeed combines aspects of visible watermarking and invisible watermarking, we propose a new metric to quantitatively compute its embedding payload. Our metric, EC_{HDR} , accounts for the contents of the cover media and the TF. Specifically, it accounts for the size of the ER and the $\bar{\xi}$ values:

$$EC_{HDR} = w_2 \cdot ER_{size} + w_3 \cdot \frac{w_0 \cdot \bar{\xi}_{ER} + w_1 \cdot (\bar{\xi}_{SR} + \bar{\xi}_{HDR})}{\max(\xi[luma_{target}])} \in [0, 1],$$
(10)

where $ER_{size} \in [0, 1]$, $\max(\xi[luma_{target}])$ is the maximum $\xi(luma_{code})$ value for the range $luma_{target}$ (see Fig. 9), $\{w_0, w_1\}$ are weights as defined before [see Eq. (6)], and $\{w_2, w_3\}$ are weights that establish the importance of each constituent term of the EC_{HDR} metric, with $w_2 + w_3 = 1$. A value $EC_{HDR} = 1$ denotes the highest embedding payload, e.g., when the ER spans the entire cover image and the second term of Eq. (10) = 1.

Column 8 of Table 2 tabulates EC_{HDR} values for the test images with { $w_2 = 0.2, w_3 = 0.8$ }, i.e., by giving more importance to the second term as ER regions are, in general, relatively small and unlikely to span the entire cover image. Note that the EC_{HDR} metric indeed accounts for the cover's content and the TF used. For example, image BF_100 has an embedding payload $EC_{HDR} = 0.0549$, which is less than the embedding payload of image BF_320 ($EC_{HDR} = 0.0826$), despite the fact that image BF_100 has a larger ER than that of image BF_320. Image BF_100 has, however, a lower Ξ_{HDR} value, hence, the embedding payload is expected to be relatively small. As expected, HLG-coded images have the largest embedding payloads with a maximum value of $EC_{HDR} = 0.1501$ for the test images.

B. SECOND SET OF EXPERIMENTS: IMPERCEPTIBILITY

Let us recall that the HDR-IW method operates in the spatial domain by modifying pixels values in the Y-channel. It is then expected that the visual quality, both quantitative and qualitative, of the cover media is disrupted. However, since the embedded watermarks cannot be perceived by the HVS, these disruptions are expected to be non-existent or minimal. To confirm that the embedded watermarks are imperceptible to the HVS, we use two quantitative metrics that measure imperceptibility: the HDR-VDP-2 metric and the multiexposure Peak Signal to Noise Ratio (mPSNR) [38].

The mPSNR measures the error in a watermarked HDR image by first computing a series of exposure levels, which are tone-mapped by a gamma curve after exposure compensation. The tone-mapped version of an HDR image, I, is given by:

$$T(I, e) = \left[255 \cdot \left(2^{e} \cdot I\right)^{1/\gamma}\right]_{0}^{255},$$
 (11)

where *e* is the current f-stop, which represents a variation in the aperture of a camera, $\gamma = 2.2$, and $[\cdot]_0^{255}$ indicates clamping to the integer interval [0, 255]. The mPSNR is then computed by using the mean square error (MSE) over a total of *E* exposure levels:

$$mPSNR = 10 \cdot \log_{10} \left(\frac{3 \cdot 255^2}{MSE} \right), \qquad (12)$$
$$MSE = \frac{1}{E \cdot W \cdot H} \sum_{E} \sum_{x,y} \left(\Delta R_{xy}^2 + \Delta G_{xy}^2 + \Delta B_{xy}^2 \right), \qquad (13)$$

where $\{W, H\}$ are the width and height of I, respectively, and $\{\Delta R_{xy}, \Delta G_{xy}, \Delta B_{xy}\}$ are the errors in the R, G, and B components, respectively. For an f-stop, e, these errors are computed after computing $T(I, e) - T(\tilde{I}, e)$, where \tilde{I} is the watermarked image [38].

To the best of our knowledge, no watermarking method for HDR imaging in the spatial domain with HVSimperceptibility capabilities has been previously proposed. However, in this second set of experiments, we also evaluate the invisible watermarking methods in [8], [9], which are proposed for HDR images and operate in the frequency domain by applying the DWT.

HDR-VDP-2 and mPSNR values are tabulated in the last six columns of Table 2. For the HDR-IW method, images with large ERs, i.e., $ER_{size} > 2.5\%$, tend to have the lowest HDR-VDR-2 values. Note also that PQ-encoded images tend to be more robust to degradations introduced by watermarking, as HDR-VDR-2 values for these images are, on average, higher than those of HGL-encoded images. mPSNR values do not tend to significantly vary according to the TF or the ER size for the HDR-IW method. For the majority of the test HDR images, both metrics are within an acceptable range, which confirms that the HDR-IW method can indeed embed watermarks in the spatial domain that are imperceptible to the HVS.

TABLE 3. Qualitatively evaluation of the HDR-IW method in terms of the	Э
MOS: percentage of watermarked HDR images assigned to each of the	
four scores.	

Source	TF	Score 1	Score 2	Score 3	Score 4	Disturbing (%)
[31]	PQ	0	0	4.89	95.11	5.55
[32]	PQ	0	0	5.18	94.81	5.55
[33]	PQ	0	0	0	100	0
PQ	AV	0	0	3.35	96.64	3.70
[34]	HLG	0	0	3.81	96.19	6.66
[35]	HLG	0	0	1.66	98.33	2.25
[36]	HLG	0	0	0	100	0
HLG	AV	0	0	1.82	98.17	2.97
OA	V	0	0	2.59	97.40	3.33

Overall, the HDR-IW method attains a higher imperceptibility, in terms of HDR-VDP-2 and mPSNR, than that of the methods in [8], [9]. The lower HDR-VDP-2 and mPSNR values attained by the methods in [8], [9] are due to the fact these methods do not account for the EOTFs needed to display HDR images on a screen.

To qualitatively measure the imperceptibility of the embedded watermarks, we use the Mean Opinion Score (MOS) as the metric. Specifically, fifteen observers with various experience levels in HDR imaging have visually inspected each watermarked image on a laptop built-in HDR screen of 17 inches wide with Windows 10 HDR advanced color settings enabled. The observers are asked to identify the watermark in a variety of lighting conditions and are given the opportunity to analyze the watermarked images from any distance and viewing angle. Results from this evaluation are collected using four scores ranging from 1 to 4, where 1 corresponds to full perceptibility and 4 to full imperceptibility. In cases where the observer is able to perceive the watermark (scores 1 - 3), the observer is asked to determine if the watermark is visually disturbing. The percentage of watermarked HDR images assigned to each of the four scores is tabulated in Tables 3 - 5 for the HDR-IW method and the methods in [8], [9], respectively.

Results in Tables 3 - 5 further confirm that the HDR-IW method can embed watermarks in the spatial domain that are imperceptible to the HVS. In the few cases where the watermark can be barely perceived (score 3), only a very small percentage of images is found to be visually disturbing. Note that the lower MOS values assigned to the images watermarked by the methods in [8], [9] also show the importance of accounting for the EOTF in the embedding process, as this TF is needed to display the HDR image on a screen. Hence, visual distortions may be introduced if this TF is not accounted for even if the watermark is embedded in the frequency domain.

It is worth further emphasizing the importance of the LVT curve in the computation of the luma variation threshold (ξ) and the embedding factor (Ξ_{HDR}) to guarantee both imperceptibility and detection of the watermark in the HDR-IW method. For instance, in Fig. 18, the binary watermark is embedded using an arbitrary embedding factor which leads to full perceptibility, even when the watermark is embedded in the ER selected by Algorithm 1. Similarly, if the binary

TABLE 4. Qualitatively evaluation of method in [8] in terms of the MOS: percentage of watermarked HDR images assigned to each of the four scores.

Source	TF	Score 1	Score 2	Score 3	Score 4	Disturbing (%)
[31]	PQ	0	0	5.33	94.67	3.11
[32]	PQ	0	0	27.41	72.60	13.33
[33]	PQ	0	0	90	10	36.66
PQ.	ĀV	0	0	40.91	59.09	17.70
[34]	HLG	0	0	23.81	76.190	7.61
[35]	HLG	0	0	11.66	88.34	5.00
[36]	HLG	0	0	5.33	94.67	2.66
HLG	AV	0	0	13.6	86.40	5.09
OA	V	0	0	27.25	72.74	11.39

TABLE 5. Qualitatively evaluation of the method in [9] in terms of the MOS: percentage of watermarked HDR images assigned to each of the four scores.

Source	TF	Score 1	Score 2	Score 3	Score 4	Disturbing (%)
[31]	PQ	0	33.78	41.78	24.44	12.89
[32]	PQ	0	42.96	28.15	28.89	33.70
[33]	PQ	0	0	36.67	63.33	46.66
PQ .	AV	0	25.58	35.53	38.88	31.08
[34]	HLG	0	0	14.28	85.71	4.76
[35]	HLG	0	0	28.33	71.66	3.33
[36]	HLG	0	0	2.66	97.33	2.66
HLG	AV	0	0	15.09	84.9	3.58
OA	V	0	12.79	25.31	61.89	17.33

FIGURE 18. Watermarked HDR imaging using an arbitrary embedding factor, Ξ_{HDR} .

FIGURE 19. Wartermarked HDR imaging using an arbitrary ER.

watermark is embedded in a region different from the ER selected by Algorithm 1, but using the Ξ_{HDR} for the appropriate ER, the watermark is also fully perceptible, as shown in Fig. 19.

TABLE 6. Percentage of watermarked HDR images assigned a Score = 4 (MOS) after applying a TMO using several watermarking methods.

		TMC	a on the n	non-ood II	DD IW m	athod		TMOs		ad in [9]		TMOs on the method in [0]					
Source	TE		s on the p	roposed n	DR-IW III	ethod		TMOSC	on the met	iou m [8]			TMOS 0	n me meu	iou in [9]		
Source		C-TM	G-TM	H-TM	M-TM	R-TM	C-TM	G-TM	H-TM	M-TM	R-TM	C-TM	G-TM	H-TM	M-TM	R-TM	
[31]	PQ	93.33	85	90	91.66	90	54.22	87.11	82.66	80	76.00	45.33	46.66	51.55	51.11	52.44	
[32]	PQ	94.44	98.61	94.44	98.61	97.22	58.51	70.90	59.39	69.09	61.818	29.62	25.92	29.25	36.66	41.85	
[33]	PQ	100	100	100	100	100	0	0	0	0	0	6.66	10	3.33	6.66	6.66	
PQ AV		95.92	94.53	94.81	96.75	95.74	37.58	52.67	47.35	49.69	45.93	27.20	27.53	28.04	31.48	33.65	
[34]	HLG	96.42	96.42	100	96.42	92.85	39.04	50.47	50.47	52.38	40.95	50.47	84.76	72.38	71.42	67.61	
[35]	HIG	03 75	100	100	100	100	86.66	02.33	88.33	58 33	86.66	01.66	05	03 33	88.33	90	
	IILO	95.15	100	100	100	100	00.00	94.55	00.55	50.55	00.00	91.00	95	95.55	00.55	20	
[36]	HLG	100	100	100	100	95	70.66	78.66	77.33	76	81.33	96	98.66	94.66	89.33	93.33	
HLG AV		96.72	98.80	100	98.80	95.95	65.46	73.82	72.04	62.23	69.65	79.38	92.80	86.79	83.03	83.65	
OAV		96.32	96.67	97.40	97.78	95.84	51.52	63.24	59.70	55.96	957.79	53.29	60.17	57.42	57.25	58.65	

TABLE 7. BER values of the extracted binary watermarks after applying various TMOs.

Carries	ID	TE	TMO	Os on the p	roposed H	DR-IW me	thod		TMOs o	n the meth	od in [8]			TMOs o	n the meth	od in [9]	
Source	ID ID		C-TM	G-TM	H-TM	M-TM	R-TM	C-TM	G-TM	H-TM	M-TM	R-TM	C-TM	G-TM	H-TM	M-TM	R-TM
	BF_000	PQ	0.0236	0.0246	0.0150	0.2066	0.0236	0.2071	0.2072	0.2068	0.2067	0.2073	0.5034	0.5071	0.5527	0.5035	0.4978
[21]	FP_230	PQ	0.0976	0.1011	0.0487	0.0976	0.1031	0.2072	0.2073	0.2067	0.2072	0.2073	0.4426	0.4735	0.4769	0.4446	0.4484
[31]	SG_134	PQ	0.0260	0.0273	0.0126	0.0260	0.0278	0.2072	0.2073	0.2068	0.2072	0.2073	0.4769	0.5052	0.5004	0.4852	0.4834
	SG_154	PQ	0.0327	0.0335	0.0186	0.0327	0.0343	0.2071	0.2072	0.2069	0.2071	0.2072	0.5068	0.5245	0.5507	0.5123	0.5095
	bf_3660	PQ	0.0866	0.0875	0.0709	0.0866	0.0884	0.2076	0.2075	0.2072	0.2066	0.2075	0.4519	0.4955	0.4593	0.4605	0.4633
	cf_6640	PQ	0.0031	0.0031	0.0030	0.0046	0.0049	0.2070	0.2071	0.2070	0.2070	0.2070	0.5496	0.5451	0.6079	0.5518	0.5436
[32]	cf_7400	PQ	0.0034	0.0549	0.0032	0.0530	0.0034	0.2067	0.2067	0.2066	0.2067	0.2067	0.4566	0.4894	0.4831	0.4628	0.4640
	hdr_3335	PQ	0.1184	0.1060	0.1155	0.1184	0.1381	0.2070	0.2072	0.2068	0.2071	0.2073	0.4624	0.4586	0.4561	0.4572	0.4503
	sg_5636	PQ	0.0244	0.0247	0.0286	0.0244	0.0441	0.2072	0.2073	0.2069	0.2070	0.2072	0.5007	0.4660	0.4776	0.4973	0.4931
[33]	EBU_4272	PQ	0.0060	0.0060	0.0054	0.0054	0.0061	0.6122	0.6030	0.6171	0.6109	0.6099	0.4473	0.5603	0.4717	0.4828	0.4975
	PQ AV		0.0327	0.0360	0.0245	0.0359	0.0365	0.2475	0.2467	0.2478	0.2474	0.2473	0.4798	0.5025	0.5036	0.4858	0.4851
	bbc1_012	HLG	0.1569	0.1490	0.2070	0.1569	0.1330	0.2549	0.2371	0.2854	0.2245	0.2141	0.2695	0.2660	0.2713	0.2653	0.2643
[34]	bbc1_306	HLG	0.1203	0.1724	0.2417	0.1203	0.1740	0.4251	0.4559	0.5042	0.4245	0.4231	0.2831	0.2674	0.2692	0.2718	0.2716
	bbc1_435	HLG	0.0753	0.1853	0.0426	0.0753	0.1919	0.4058	0.3673	0.4460	0.3999	0.3851	0.2743	0.2593	0.2681	0.2687	0.2638
	bbcc1_005	HLG	0.0703	0.0705	0.1237	0.0703	0.0708	0.5619	0.3065	0.3327	0.4497	0.4018	0.3202	0.3175	0.3063	0.2998	0.2976
[35]	bbcc1_048	HLG	0.0756	0.0713	0.2421	0.0756	0.0682	0.3364	0.3256	0.4241	0.3328	0.3235	0.2803	0.2734	0.2928	0.2754	0.2792
	bbcc1_066	HLG	0.0903	0.0823	0.2007	0.0903	0.0804	0.2313	0.2402	0.3089	0.2314	0.2277	0.2611	0.2564	0.2560	0.2612	0.2544
	bbcc2_031	HLG	0.0634	0.0627	0.1097	0.0634	0.0625	0.4642	0.4647	0.5921	0.4637	0.4565	0.2723	0.2738	0.2811	0.2720	0.2694
[26]	bbcc2_045	HLG	0.1053	0.1013	0.1834	0.1053	0.1017	0.4707	0.4669	0.5960	0.4704	0.4622	0.2717	0.2719	0.2814	0.2717	0.2691
[30]	bbcc2_092	HLG	0.0743	0.0750	0.0650	0.0743	0.0749	0.2552	0.2533	0.3740	0.2539	0.2468	0.2789	0.2778	0.2787	0.2760	0.2722
	bbcc2_095	HLG	0.1585	0.1587	0.1324	0.1585	0.1587	0.3292	0.3182	0.4528	0.3250	0.3183	0.2663	0.2672	0.2752	0.2654	0.2647
	HLG AV		0.0989	0.1143	0.1653	0.0989	0.1130	0.3735	0.3436	0.4316	0.3576	0.3459	0.2778	0.2731	0.2780	0.2727	0.2706
	OAV		0.0658	0.0751	0.0949	0.0674	0.0747	0.3105	0.2951	0.3397	0.3025	0.2967	0.3788	0.3878	0.3908	0.3793	0.3779

TABLE 8. BER values of the extracted binary watermarks after applying HEVC lossy compression.

Source	ID	TE		Proposed HE	OR-IW method			Metho	od in [8]			Metho	od in [9]	
Source		11	QP = 0	QP = 10	QP = 20	QP = 40	QP = 0	QP = 10	QP = 20	QP = 40	QP = 0	QP = 10	QP = 20	QP = 40
	BF_000	PQ	0.0136	0.0186	0.0425	0.2043	0.2111	0.2107	0.2094	0.2114	0.3618	0.4113	0.6721	0.7244
[21]	FP_230	PQ	0.0430	0.0440	0.0564	0.1768	0.2072	0.2071	0.2077	0.2093	0.3298	0.3493	0.5092	0.7068
[31]	SG_134	PQ	0.0107	0.0132	0.0601	0.1993	0.2069	0.2041	0.2090	0.2087	0.3666	0.3877	0.5150	0.6680
	SG_154	PQ	0.0146	0.0181	0.0443	0.2051	0.2070	0.2071	0.2082	0.2090	0.3872	0.4037	0.5302	0.6817
	bf_3660	PQ	0.0653	0.0748	0.1748	0.2386	0.2111	0.2107	0.2094	0.2114	0.3593	0.3871	0.5921	0.2975
	cf_6640	PQ	0.0003	0.0082	0.0406	0.1801	0.2072	0.2074	0.2093	0.2096	0.4786	0.4891	0.5584	0.3891
[32]	cf_7400	PQ	0.0001	0.0048	0.0300	0.1750	0.2069	0.2071	0.2087	0.2109	0.3761	0.4078	0.6581	0.7208
	hdr_3335	PQ	0.1048	0.0999	0.0935	0.2443	0.2069	0.2071	0.2086	0.2094	0.3530	0.3795	0.6331	0.7246
	sg_5636	PQ	0.0222	0.0263	0.0671	0.2062	0.2076	0.2071	0.2077	0.2094	0.3842	0.4035	0.5281	0.3563
[33]	EBU_4272	PQ	0.0026	0.0129	0.0726	0.2118	0.6179	0.6221	0.6333	0.7236	0.3651	0.3899	0.3094	0.4852
	PQ AV		0.0205	0.0264	0.0682	0.2057	0.2485	0.2490	0.2506	0.2609	0.3762	0.4009	0.5506	0.5754
	bbc1_012	HLG	0.1135	0.1180	0.1026	0.2069	0.5062	0.2981	0.2579	0.2372	0.2972	0.3217	0.4282	0.4239
[34]	bbc1_306	HLG	0.0716	0.0776	0.1116	0.2057	0.5031	0.3266	0.2749	0.2475	0.3010	0.3285	0.4199	0.4653
	bbc1_435	HLG	0.0347	0.0415	0.1420	0.2065	0.3993	0.2800	0.2558	0.2411	0.2687	0.2976	0.4243	0.4193
	bbcc1_005	HLG	0.0585	0.0583	0.0807	0.1930	0.4985	0.4087	0.3026	0.2746	0.3070	0.3292	0.3948	0.4709
[35]	bbcc1_048	HLG	0.0591	0.0610	0.1162	0.2060	0.4953	0.3136	0.2685	0.2475	0.2907	0.3104	0.4125	0.4209
	bbcc1_066	HLG	0.0526	0.0564	0.0709	0.2840	0.5389	0.2840	0.2478	0.2346	0.2774	0.2952	0.3958	0.3719
	bbcc2_031	HLG	0.0513	0.0597	0.0694	0.1930	0.4637	0.3617	0.2977	0.2648	0.3147	0.3340	0.4036	0.4471
[26]	bbcc2_045	HLG	0.0885	0.0925	0.1378	0.1988	0.5047	0.3718	0.3052	0.2688	0.3081	0.3287	0.3966	0.4431
[30]	bbcc2_092	HLG	0.0533	0.0617	0.0810	0.2145	0.4788	0.3682	0.2927	0.2658	0.3088	0.3307	0.3977	0.4464
	bbcc2_095	HLG	0.1296	0.1359	0.1548	0.2049	0.5063	0.3451	0.2821	0.2591	0.3026	0.3241	0.4135	0.4483
	HLG AV		0.0660	0.0707	0.0989	0.2085	0.4895	0.3358	0.2785	0.2541	0.2976	0.3200	0.4087	0.4357
	OAV		0.0433	0.0485	0.0836	0.2071	0.3690	0.2924	0.2645	0.2575	0.3369	0.3605	0.4796	0.5056

C. THIRD SET OF EXPERIMENTS: ROBUSTNESS TO TMO

For this experiment, five TMOs are applied to the test HDR images watermarked by the HDR-IW method and the methods in [8], [9]. Namely, Clip (C-TM), Gamma (G-TM), Hable (G-TM), Mobius (M-TM) and Reinhard (R-TM) [39]. Let us recall that TMOs are designed to generate SDR images from HDR images by maintaining similar visual content. TMOs modify the contrast of an HDR image by modifying pixel values, including regions with low luma codes, which are

the regions where the HDR-IW method operates. Table 6 presents the percentage of watermarked images that are assigned a Score = 4 by the observers of Experiment 3 after applying a TMO. These results show that the HDR-IW method embeds watermarks that are more robust to TMOs than those embedded by the methods in [8], [9]. Tone mapping reduces the dynamic range of an HDR image by squishing down the entire capability of representing luminance by means of luma codes. It is then expected that the watermarked

Source	ID	тр	SPO o	n proposed	HDR-IW 1	nethod		SPO on me	thod in [8]			SPO on me	ethod in [9]	
Source	ID	11.	GN	BL	ROT	DS	GN	BL	ROT	DS	GN	BL	ROT	DS
	BF_000	PQ	0.0127	0.0057	0	0.0028	0.1013	0.0492	0.0466	0.0584	0.2094	0.2066	0.3640	0.2071
[21]	FP_230	PQ	0.0380	0.0049	0.0011	0.0055	0.0707	0.0280	0.0324	0.032	0.2105	0.2067	0.3636	0.2071
[31]	SG_134	PQ	0.0087	0.0198	0.0041	0.0167	0.1045	0.0460	0.0482	0.0589	0.2119	0.2067	0.3629	0.2072
	SG_154	PQ	0.0121	0.0041	0.0012	0.0022	0.1809	0.1192	0.0834	0.1374	0.2125	0.2067	0.3626	0.2071
	bf_3660	PQ	0.0643	0.0142	0.0030	0.0088	0.1554	0.1217	0.0713	0.1235	0.2081	0.2066	0.3643	0.2071
	cf_6640	PQ	0.0001	0.0049	0	0.0031	0.6539	0.6559	0.3009	0.6542	0.2116	0.2066	0.3628	0.2071
[32]	cf_7400	PQ	0	0.0212	0.0055	0.0298	0.186	0.1557	0.0855	0.1594	0.2086	0.2066	0.3640	0.2071
	hdr_3335	PQ	0.1037	0.0069	0	0.0044	0.0715	0.0325	0.0328	0.0361	0.2087	0.2066	0.3640	0.2072
	sg_5636	PQ	0.0211	0.0051	0.0008	0.0038	0.1445	0.1091	0.0664	0.1121	0.2092	0.2066	0.3638	0.2071
[33]	EBU_4272	PQ	0.0036	0.0238	0	0.0180	0.1980	0.2019	0.0911	0.202	0.4135	0.3431	0.1903	0.3616
PQ AV			0.0198	0.0133	0.0009	0.0107	0.1867	0.1519	0.0859	0.1574	0.2304	0.2203	0.3462	0.2226
	bbc1_012	HLG	0.1114	0.0045	0.0005	0.0045	0.066	0.0180	0.0304	0.0200	0.3767	0.3672	0.2872	0.3724
[34]	bbc1_306	HLG	0.0700	0.0144	0.0043	0.0171	0.0560	0.0047	0.0257	0.0074	0.3548	0.3344	0.2974	0.3437
	bbc1_435	HLG	0.0351	0.0092	0	0.0088	0.0641	0.0055	0.0294	0.0091	0.3243	0.3220	0.3114	0.3245
	bbcc1_005	HLG	0.0595	0.0377	0.0152	0.0457	0.0457	0.0034	0.021	0.0043	0.4096	0.3470	0.2720	0.3634
[35]	bbcc1_048	HLG	0.0575	0.0520	0.0226	0.0554	0.0700	0.0116	0.0323	0.0160	0.3134	0.2956	0.3165	0.3022
	bbcc1_066	HLG	0.0501	0.0176	0.0051	0.0196	0.0744	0.0068	0.0342	0.0127	0.4109	0.4086	0.2715	0.4108
	bbcc2_031	HLG	0.0502	0.0172	0.0064	0.0206	0.0646	0.0124	0.0297	0.0174	0.2533	0.2332	0.3442	0.2401
[26]	bbcc2_045	HLG	0.0867	0.0113	0.0030	0.0117	0.0776	0.0198	0.0357	0.0271	0.2575	0.2333	0.3423	0.2415
[30]	bbcc2_092	HLG	0.0520	0.1010	0.0439	0.1028	0.0538	0.0039	0.0247	0.0060	0.3530	0.3225	0.2981	0.3337
	bbcc2_095	HLG	0.1000	0.0701	0.0099	0.0659	0.0522	0.0039	0.0239	0.0055	0.2609	0.2435	0.3406	0.2500
	HLG AV		0.0674	0.0317	0.0106	0.0335	0.0624	0.0090	0.0287	0.0126	0.3314	0.3107	0.3081	0.3182
	OAV		0.0424	0.0225	0.0058	0.0221	0.1246	0.0805	0.0573	0.0850	0.2809	0.2655	0.3272	0.2704

TABLE 9. BER values of the extracted binary watermarks after applying several Signal Processing Operations (SPO).

images by the HDR-IW method with low $luma_{ER}$ values be assigned the full imperceptibility score (4) after applying a TMO.

To quantitatively evaluate the robustness to TMOs, we use the Bit Error Rate between the original binary watermark, BW, and the tone-mapped binary watermark, \widehat{BW} :

$$BER = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} \left| BW_{i,j} - \widehat{BW}_{i,j} \right| \in [0, 1] \quad (14)$$

BER values are tabulated in Table 7 for 20 of the most representative test HDR images in terms of color distribution, texture, variety of lighting conditions, and dominant contrast proportions. These results show that the HDR-IW method is more robust to TMOs than the methods in [8], [9], as BER values attained by this method are the lowest for all TMOs. It is important to recall that the HDR-IW method embeds the watermark in low luminance regions, whose values are less susceptible to aggressive tone mapping. Note that the method in [9] is particularly susceptible to TMOs for PQ-encoded images, with an average BER as high as 0.5036.

Figure 20 shows sample binary watermarks extracted after applying a TMO to the HDR images watermarked by the HDR-IW method and the methods in [8], [9]. These visual results confirm the trend observed in the BER values tabulated in Table 7. Specifically, note that although the binary watermarks for the HDR-IW method have noticeable visual artifacts, they have a higher visual quality than those for the methods in [8], [9].

D. FOURTH SET OF EXPERIMENTS: ROBUSTNESS TO LOSSY COMPRESSION

To evaluate the robustness to lossy compression, we use the HEVC compression standard reference software HM v.16.18 $\,$

[40], which supports HDR compression. We employ intraprediction coding with four different Quantization Parameters (QP), ranging from a low compression level, QP = 0, to a very high compression level, QP = 40.

Table 8 tabulates the BER values of the decoded binary watermarks w.r.t. the original binary watermark after lossy compression, using the proposed HDR-IW and the methods in [8], [9]. As expected, these results show that the robustness of all methods to lossy compression decreases as the compression is more aggressive. This is due to the fact that lossy compression mechanisms tend to compress more aggressively smooth regions, which are where watermarks are usually embedded in the pixel domain. When aggressive lossy compression is used, e.g., QP = 40, the maximum BER value for the HDR-IW method is 0.2840. Conversely, the maximum BER value for the methods in [8], [9] for QP = 40are 0.7236 and 0.7246, respectively. We acknowledge that the sensitivity to aggressive lossy compression is one aspect of the proposed HDR-IW that may limit its applicability for the distribution of HDR images in compressed format.

E. FIFTH SET OF EXPERIMENTS: ROBUSTNESS TO COMMON SIGNAL PROCESSING OPERATIONS

Watermarks embedded in the spatial domain can be easily modified by applying common signal processing operations such as noise addition (GN), blurring (BL), rotation (ROT) and downscaling (DS). To measure the robustness to these common operations, we modify the test watermarked images, as follows:

- 1) GN: Gaussian white noise is added to the Y-channel with a variance = 0.01.
- 2) BL: Blurring effects are introduced by replicating the border pixel values.

FIGURE 20. Binary watermarks extracted from BF_000 (Rec.2020 + PQ OETF) after applying various TMOs. (Left to right) TMO: C-TM, G-TM, H-TM, M-TM, R-TM. First row: proposed HDR-IW method. Second row: method in [8]. Third row: method in [9].

- 3) ROT: The image is rotated by 45° w.r.t the original position.
- 4) DS: The image is down-scaled by a factor of 0.5.

Table 9 shows the BER values of the binary watermarks w.r.t. the original binary watermark after applying the signal processing operations listed before. These results confirm that the HDR-IW method is very robust to such operations. The largest BER values are obtained after adding Gaussian white noise; however, the average BER value for this operation is below 0.05. The methods in [8], [9] tend to be, on average, also robust to these signal processing operations. However, in general, the BER values for these methods are larger than those for the proposed method.

We finish this section with some comments about the computational complexity of the proposed HDR-IW method. For the evaluated HDR images tabulated in Table 2, our method takes, on average, 12.26 seconds to watermark each image on a PC with an Intel Core i7-7500U @2.90GHz CPU and 16GB of RAM. The methods in [8], [9] take, on average, 734.54 and 84.90 seconds, respectively, to watermark each of these HDR images on the same computer. Such low average processing times make the proposed method very well-suited and applicable for real-life scenarios.

VI. CONCLUSION

In this paper, we proposed the HDR-IW method to protect HDR images by embedding binary watermarks in the spatial domain that are imperceptible to the HVS. The HDR-IW method is based on a thorough analysis of the modelling used by an OETF to represent HDR images as a non-linear digital signal, the linear luminance radiated by an HDR screen by means of an EOTF, and the brightness perceived by the HVS from the HDR screen. To this end, the method uses an LVT curve to determine not only the most appropriate ER, but also the maximum variation that luma codes within the ER can tolerate before any changes can be perceived by the HVS. The watermarks embedded by the HDR-IW method in the spatial domain remain imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Our evaluations on a wide range of real-life HDR images encoded by the PO and HLG TFs confirmed the method's capacity to embed imperceptible watermarks and its robustness to various manipulations, including tone-mapping. The HDR-IW method is then an attractive option to merge the advantages of invisible and visible watermarking methods to protect HDR imaging. Our future work focuses on increasing the robustness of the HDR-IW method to very aggressive lossy compression.

ACKNOWLEDGMENT

The authors thank the BBC Research and Development and the University of Stuttgart for providing the test HDR images.

REFERENCES

 D. Blackburn, J. A. Eisenach, and D. Harrison, JR., "Impacts of digital video piracy on the US Economy," 2019.

- [2] C.-H. Huang, S.-C. Chuang, Y.-L. Huang, and J.-L. Wu, "Unseen visible watermarking: A novel methodology for auxiliary information delivery via visual contents," *IEEE Trans. Inf. Forensics Security*, vol. 4, no. 2, pp. 193–206, Jun. 2009.
- [3] S.-C. Chuang, C.-H. Huang, and J.-L. Wu, "Unseen visible watermarking," in *Proc. IEEE Int. Conf. Image Process.*, vol. 3, Sep./Oct. 2007, p. III-261.
- [4] K. Perez-Daniel, F. Garcia-Ugalde, and V. Sanchez, "Scene-based imperceptible-visible watermarking for HDR video content," in *Proc. 7th Int. Workshop Biometrics Forensics (IWBF)*, May 2019, pp. 1–6.
- [5] K. R. Perez-Daniel and V. Sanchez, "Luma-aware multi-model ratecontrol for HDR content in HEVC," in *Proc. IEEE Int. Conf. Image Process. (ICIP)*, Sep. 2017, pp. 1022–1026.
- [6] A. O. Zaid and A. Houimli, "HDR image compression with optimized JPEG coding," in *Proc. 25th Eur. Signal Process. Conf. (EUSIPCO)*, Aug. 2017, pp. 1539–1543.
- [7] D. Kobayashi, K. Nakamura, T. Onishi, H. Iwasaki, and A. Shimizu, "A 4K/60p HEVC real-time encoding system with high quality HDR color representations," *IEEE Trans. Consum. Electron.*, vol. 64, no. 4, pp. 433–441, Nov. 2018.
- [8] F. Yazdan Bakhsh and M. E. Moghaddam, "A robust HDR images watermarking method using artificial bee colony algorithm," J. Inf. Secur. Appl., vol. 41, pp. 12–27, Aug. 2018.
- [9] E. Maiorana and P. Campisi, "Multi-bit watermarking of high dynamic range images based on perceptual models," *Secur. Commun. Netw.*, vol. 9, no. 8, pp. 705–720, May 2016.
- [10] F. Guerrini, M. Okuda, N. Adami, and R. Leonardi, "High dynamic range image watermarking robust against tone-mapping operators," *IEEE Trans. Inf. Forensics Security*, vol. 6, no. 2, pp. 283–295, Jun. 2011.
- [11] F. Autrusseau and D. Goudia, "Non linear hybrid watermarking for high dynamic range images," in *Proc. IEEE Int. Conf. Image Process.*, Sep. 2013, pp. 4527–4531.
- [12] E. Maiorana, V. Solachidis, and P. Campisi, "Robust multi-bit watermarking for HDR images in the radon-DCT domain," in *Proc. 8th Int. Symp. Image Signal Process. Anal. (ISPA)*, Sep. 2013, pp. 284–289.
- [13] Y. Bai, G. Jiang, M. Yu, Z. Peng, and F. Chen, "Towards a tone mappingrobust watermarking algorithm for high dynamic range image based on spatial activity," *Signal Process., Image Commun.*, vol. 65, pp. 187–200, Jul. 2018.
- [14] T. Luo, G. Jiang, M. Yu, H. Xu, and W. Gao, "Robust high dynamic range color image watermarking method based on feature map extraction," *Signal Process.*, vol. 155, pp. 83–95, Feb. 2019.
- [15] V. Solachidis, E. Maiorana, P. Campisi, and F. Banterle, "HDR image watermarking based on bracketing decomposition," in *Proc. 18th Int. Conf. Digit. Signal Process. (DSP)*, Jul. 2013, pp. 1–6.
- [16] C. Rattanacharuchinda and T. Amornraksa, "Image watermarking for high dynamic range images," in Proc. 9th Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., May 2012, pp. 1–4.
- [17] W.-F. Hsieh and P.-Y. Lin, "Imperceptible visible watermarking scheme using color distribution modulation," in *Proc. 9th Int. Conf. Ubiquitous Intell. Comput. 9th Int. Conf. Autonomic Trusted Comput.*, Sep. 2012, pp. 1002–1005.
- [18] P.-Y. Lin, "Imperceptible visible watermarking based on postcamera histogram operation," J. Syst. Softw., vol. 95, pp. 194–208, Sep. 2014.
- [19] O. Juarez-Sandoval, E. Fragoso-Navarro, M. Cedillo-Hernandez, A. Cedillo-Hernandez, M. Nakano, and H. Perez-Meana, "Improved imperceptible visible watermarking algorithm for auxiliary information delivery," *IET Biometrics*, vol. 7, no. 4, pp. 305–313, Jul. 2018.
- [20] High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays, SMPTE Standard 2084, Aug. 2014, pp. 1–14.
- [21] T. Borer and A. Cotton, "A 'display independent' high dynamic range television system," *SMPTE Motion Imag. J.*, vol. 125, no. 4, pp. 50–56, 2016.
- [22] S. Hecht, C. Haig, and A. M. Chase, "The influence of light adaptation on subsequent dark adaptation of the eye," *J. Gen. Physiol.*, vol. 20, no. 6, pp. 831–850, Jul. 1937.
- [23] P. Barten, "Formula for the contrast sensitivity of the human eye," *Proc. SPIE*, vol. 5294, pp. 231–238, Dec. 2003.
- [24] M. Cowan, G. Kennel, T. Maier, and B. Walker, "Contrast sensitivity experiment to determine the bit depth for digital cinema," *SMPTE Motion Imag. J.*, vol. 113, no. 9, pp. 281–292, Sep. 2004.
- [25] B. M. Hemminger, R. E. Johnston, J. P. Rolland, and K. E. Muller, "Introduction to perceptual linearization of video display systems for medical image presentation," *J. Digit. Imag.*, vol. 8, no. 1, pp. 21–34, Feb. 1995.

- [26] V. Jakhetiya, W. Lin, S. Jaiswal, K. Gu, and S. C. Guntuku, "Just noticeable difference for natural images using RMS contrast and feed-back mechanism," *Neurocomputing*, vol. 275, pp. 366–376, Jan. 2018.
- [27] Image Parameter Values for High Dynamic Range Television for Use in Production and International Programme Exchange, Recommendation document ITU-R BT.2100-2, 2018.
- [28] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC superpixels compared to State-of-the-Art superpixel methods," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 34, no. 11, pp. 2274–2282, Nov. 2012.
- [29] S. K. Mitra, M. K. Kundu, C. A. Murthy, B. B. Bbattacharya, and T. Acharya, "Digital watermarking using homogeneity in image," in *Proc. Conf. Convergent Technol. Asia–Pacific Region (TENCON)*, vol. 3, 2003, pp. 944–948.
- [30] L. L. Si, F. X. Sang, and Z. Liu, "Research on dot gain compensation curve algorithm model," *Appl. Mech. Mater.*, vol. 200, pp. 627–631, Oct. 2012.
- [31] J. Froehlich, S. Grandinetti, B. Eberhardt, S. Walter, A. Schilling, and H. Brendel, "Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays," *Proc. SPIE*, vol. 9023, pp. 279–288, Mar. 2014, doi: 10.1117/12.2040003.
- [32] Stuttgart University. High Dynamic Range Database Graded MPEG Teaser Clips. Accessed: Apr. 7, 2020. [Online]. Available: https://hdr-2014.hdm-stuttgart.de/
- [33] EBU-SVT. Public HDR Test Sequences. Accessed: Apr. 7, 2020. [Online]. Available: https://tech.ebu.ch/EBU_SVT_Public_Test_Sequences
- [34] BBC Hybrid Log Gamma High Dynamic Range Demonstration File Pack. Demonstration File, BBC R&D, Greater Manchester, U.K., 2017.
- [35] BBC Hybrid Log Gamma High Dynamic Range Demonstration File Pack. Demonstration File, Complementary File 1, BBC R&D, Greater Manchester, U.K., 2017.
- [36] BBC Hybrid Log Gamma High Dynamic Range Demonstration File Pack. Demonstration File, Complementary File 2, BBC R&D, Greater Manchester, U.K., 2017.
- [37] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, "HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions," *ACM Trans. Graph.*, vol. 30, no. 4, pp. 1–14, Jul. 2011.
- [38] J. Munkberg, P. Clarberg, J. Hasselgren, and T. Akenine-Möller, "High dynamic range texture compression for graphics hardware," *ACM Trans. Graph.*, vol. 25, no. 3, pp. 698–706, 2006.
- [39] FFMPEG Multimedia Framework. FFMPEG v4.0.2. Accessed: Apr. 7, 2020. [Online]. Available: https://www.ffmpeg.org/
- [40] High Efficiency Video Coding (HEVC) Software HM v16.18. Accessed: Apr. 7, 2020. [Online]. Available: https://hevc.hhi.fraunhofer. de/svn/svn_HEVCSoftware/

KARINA RUBY PEREZ-DANIEL (Member, IEEE) received the B.S. degree in electronics and telecommunications from the Autonomous University of the State of Hidalgo, in 2008, and the M.Sc. degree in microelectronics engineering and the Ph.D. degree in communications and electronics from the National Polytechnic Institute (IPN), Mexico, in 2010 and 2015, respectively. In 2014, she was a Research Intern with Microsoft Research. In 2016, she collaborates as a Postdoc-

toral Fellow with the University of Warwick. From 2017 to 2018, she was a Postdoctoral Fellow with the Autonomous National University of Mexico (UNAM). She is currently a Full-Time Professor with the Engineering Faculty, Universidad Panamericana. Her principal research interests include image and video processing, object detection, computer vision, video coding, watermarking, and artificial intelligence.

FRANCISCO GARCIA-UGALDE was born in Mexico. He received the bachelor's degree in electronics and electrical system engineering from the National Autonomous University of Mexico, in 1977, the Diplome d'Ingénieur degree from SUPELEC, France, in 1980, and the Ph.D. degree in information processing from the Université de Rennes I, France, in 1982. Since 1983, he has been a Full-Time Professor with the National Autonomous University of Mexico. His research

interests include video coding, image analysis, watermarking, theory and applications of error control coding, turbo coding, applications of cryptography, and parallel processing and data bases.

VICTOR SANCHEZ (Member, IEEE) received the M.Sc. degree from the University of Alberta, Canada, in 2003, and the Ph.D. degree from The University of British Columbia, Canada, in 2010. From 2011 to 2012, he was with the Video and Image Processing Laboratory, University of California at Berkeley, as a Postdoctoral Researcher. In 2012, he was a Visiting Lecturer with the Group on Interactive Coding of Images, Universitat Autonoma de Barcelona. From 2018 to 2019,

he was a Visiting Scholar with the School of Electrical and Information Engineering, The University of Sydney, Australia. He is currently an Associate Professor with the Department of Computer Science, University of Warwick, U.K. His research has been funded by the Consejo Nacional de Ciencia y Tecnologia, Mexico, the Natural Sciences and Engineering Research Council, Canada, the Canadian Institutes of Health Research, the FP7 and the H2020 Programs of the European Union, the Engineering and Physical Sciences Research Council, U.K., and the Defence and Security Accelerator, U.K. He has authored several technical articles, book chapters, and a book in these areas. His main research interests include signal and information processing with applications to multimedia analysis and image and video coding, security, and communications.