
WATERMARKING OF SETS OF POLYGONAL LINES USING FUSION TECHNIQUES

A. Giannoula, N. Nikolaidis, I. Pitas

Department of Informatics, Aristotle University of Thessaloniki,
Box 451, Thessaloniki 540 06, GREECE

e-mail:{gianoula,nikolaid,pitas}@zeus.csd.auth.gr

ABSTRACT

A blind watermarking method for the copyright protection of sets
of polygonal lines in vector graphics images and GIS data (eleva-
tion contour maps) is presented in this paper. The paper focuses
mainly on the use of simple fusion rules for combining the de-
tector outputs from each polygonal line in order to come up with
a global detection result. Experimental comparison of the various
fusion methods using both synthetic and real data (elevation maps)
is provided.

1. INTRODUCTION

Copyright protection by watermarking has recently emerged as
a challenging research area and a promising tool against digital
piracy [1, 2]. Watermarking research focuses mainly on bitmap
images. Other digital media, such as vector images (images where
the various objects are represented by means of a set of geomet-
ric primitives, e.g., polygonal lines) and Geographical Informa-
tion Systems (GIS) data (3-D meshes, depth/elevation values on
grids, elevation contour maps), received limited attention so far.
Both these data categories are of high commercial value, since
their generation is usually labor and resource intensive. Further-
more, GIS data used in military applications are usually classified
and thus tracing a possible leakage is of utmost importance. A
blind method for the watermarking of individual polygonal lines,
by modifying the magnitude of the Fourier descriptors, has been
proposed recently [3]. Due to the properties of Fourier descriptors,
the technique is invariant to several geometric distortions (scal-
ing, translation, rotation, change of starting point, reflection). The
present paper attempts to generalize the proposed algorithm, in or-
der to handle sets of polygonal lines, e.g., a set of contour lines
in an elevation map. Obviously, a strategy for combining the wa-
termark detection results obtained from each polygonal line, i.e., a
data fusion strategy, needs to be devised in order to deal with such
sets.

The data fusion methods that will be examined belong to the
centralized fusion category [4, 5], where local sensors send the
unprocessed observations to the fusion center which proceeds with
the global decision-making procedure. Centralized fusion methods
have usually better performance than decentralized ones, since de-
centralized (local) decision-making results in loss of information
that might have been useful if sent for further processing to the fu-
sion center. In the context of watermarking of multiple data sets,
centralized fusion means that no binary decision on whether each
individual line is watermarked or not is taken, but the soft detec-
tor outputs (detection statistics) are combined to obtain a global
decision. Decentralized fusion for combining multiple detectors

has been treated in [6]. A number of simple fusion rules are pro-
posed and their relative performance is experimentally evaluated.
It should be noted that the results on the performance of the various
fusion rules obtained in this paper can be applied in other circum-
stances that involve multiple watermark detectors, e.g., for fusing
detector outputs from multichannel audio, multiple video objects
in an MPEG4 video sequence, or from different audio or video
segments belonging to the same sequence.

The outline of this paper is as follows: section 2 reviews the
polygonal line watermarking algorithm. The fusion rules that have
been used are presented in section 3. Detailed experimental results
are included in section 4. Conclusions are drawn in section 5.

2. POLYGONAL LINE WATERMARK EMBEDDING AND
DETECTION

Consider a set ofM closed polygonal linesLi, i = 0, . . . , M−1,
so thatLi consists ofNi vertices, each represented as a coor-
dinate pair(xi(n), yi(n)). By combining these coordinates, a
complex signalzi(n) = xi(n) + j · yi(n) is constructed. Let
Zi(k), k = 0, . . . , Ni − 1, be the Fourier descriptors ofLi, i.e.,
the discrete Fourier transform coefficients corresponding tozi(n)
[7]. The algorithm proposed in [3] embeds a watermarkWi(k) at
each polygonal line, by modifying the magnitude|Zi(k)| of the
corresponding Fourier descriptors, using an embedding function
of the form:

|Z′i(k)| = |Zi(k)| ⊕ p ·Wi(k) (1)

where⊕ denotes an additive or multiplicative superposition rule
and constantp is usually called embedding power and controls the
watermark strength. The watermark signalWi(k) for each polygo-
nal line affects certain mid-frequency terms and is generated using
the following formula:

Wi(k) =

{
W 0(k), if aNi < k < bNi or

(1− b)Ni < k < (1− a)Ni

0, otherwise
(2)

where0 < a < b ≤ 0.5 control the frequency terms that will
be affected andW 0 is a binary watermark (±1) generated by a
pseudorandom number generator using a suitable keyK.

The procedure described above results in the generation of a
set of watermarked linesL

′
i. Watermark detection on each line is

performed by evaluating the correlation between the watermark se-
quenceWi(k) and the magnitude of the Fourier descriptors|Z′i(k)|:

ci =

Ni−1∑
k=0

Wi(k)|Z′i(k)|, i = 0, . . . , M − 1 (3)



ci are then normalized so as to be confined in the[0...1] interval.
Thus, at the end of this stage, we come up with a set ofM normal-
ized correlator outputsc

′
i, one for each polygonal line.

3. DATA FUSION RULES

The aim of the data fusion module is to combine the individual
correlator outputs obtained in the previous stage in order to reach a
global binary decision on whether the set of polygonal lines under
investigation is watermarked or not. In other words, we seek a
suitable functionf in order to derive a single valuec out of theM
valuesc′0, . . . , c′M−1:

c = f(c′0, . . . , c
′
M−1) (4)

c is consequently compared to a properly selected thresholdT
in order to decide on the watermark existence. In the following
subsections, a number of empirical fusion rules and the Neyman-
Pearson test for a set of observations are described.

3.1. Likelihood Ratio Test

The Neyman-Pearson hypothesis test (the test that minimizes false
rejection probability for a fixed false alarm probability) for a set
of observationsci (in our case, the individual non-normalized cor-
relator outputs) is equivalent to the Likelihood Ratio (LR) test for
these observations:

c = LR =
P (c0, .., cM−1|H1)

P (c0, .., cM−1|H0)
(5)

whereP (c0, .., cM−1|H1), P (c0, .., cM−1|H0) are the conditional
joint probability density functions ofci under the two hypotheses
(H1: the set of lines bears the watermark under investigation,H0:
the set of lines hosts a different watermark than the one under in-
vestigation). In order to proceed with the evaluation we have as-
sumed thatci are independent, normally distributed random vari-
ables. Under these assumptions the Likelihood Ratio can be ex-
pressed as follows:

c =
P (c0|H1)..P (cM−1|H1)

P (c0|H0)..P (cM−1|H0)
(6)

where:

P (ci|Hj) = N(µci|Hj
, σci|Hj

), i = 0, . . . , M − 1, j = 0, 1
(7)

The conditional mean and variance of the correlator output for the
multiplicative embedding scheme have been evaluated to be [8]:

µci|H1 = 2 (b− a) N p

σ2
ci|H1 = 2 (b− a) (µ2

|Zi| + σ2
|Zi|) (8)

µci|H0 = 2 (b− a) N p µ|Zi(k)|

σ2
ci|H0 = 2 (b− a) (µ2

|Zi| + σ2
|Zi|)(1 + p2)

Since the Fourier descriptorsZi of the original (non watermaked)
polygonal line are not available during detection, the conditional
mean and variance values were evaluated using the watermarked
sequenceZ′i, i.e. we assume thatZi ≈ Z′i which is a reasonable
assumption, given the fact that the alterations introduced by the
watermark are very small.

3.2. Empirical Fusion Rules

Besides the Likelihood Ratio test, the following ad hoc empirical
fusion rules were tested as well:

1. Mean value ofc
′
i, i = 0, . . . , M − 1.

2. Median value ofc
′
i.

3. Minimum value ofc
′
i.

4. Maximum value ofc
′
i.

5. Trimmed mean value ofc
′
i [9]. This fusion rule ordersc

′
i,

rejects a percentagea of the smaller and bigger observa-
tions and evaluates the mean of the remaining ones.

c =
1

M(1− 2a)

M−aM−1∑
i=aM

c
′
(i) (9)

wherec
′
(0) ≤ c

′
(1) ≤ . . . ≤ c

′
(M−1).

By doing so, outlying correlator outputs that can lead the
global decision towards false alarms (big values) or false re-
jections (small values) are rejected. In our experiments, the
two biggest and smallest correlator outputs were rejected.

6. Modified trimmed mean ofc
′
i. According to this rule, the

correlator outputs, whose distance from the median value
exceeds a certain threshold (set to0.03 in our case) are re-
jected and the mean value of the remaining samples is eval-
uated:

c =

∑M−1

i=0
aic

′
(i)∑M−1

i=0
ai

(10)

where the coefficientsai are chosen according to the rule:

ai =

{
1 if | c′(i) −med{c′i} |≤ q
0, otherwise

(11)

The effect of this operator is similar to that of the trimmed
mean operator.

7. Weighted mean ofc
′
i:

c =

∑M−1

i=0
wic

′
i∑M−1

i=0
wi

(12)

Obviously, the performance of this fusion rule depends on
the choice of the weightswi. Since the reliability of the
correlator detector increases with the number of samples in
the correlation sum (3),wi’s were chosen accordingly. Two
different choices were tested:
a)wi = Ni, i.e., the weight corresponding to the correlator
output for the lineLi is chosen to be equal to the num-
ber of verticesNi of Li. If line vertices are assumed to
be equidistant,Ni is directly related to the length of curve
Li. This selection of weights emphasizes the contribution
of long lines in the evaluation of the total detection statistic
c and limits the impact of detector outputs from short lines,
which are not very reliable.
b) wi = N2

i , i.e. wi are chosen to be equal to the square of
the number of vertices of the corresponding lineLi. Obvi-
ously this choice of weights further increases the contribu-
tion of long lines in the final detector output.



Table 1: EERs for various line lengths and embedding powers.

Length / Emb.Power 0.4 0.5 0.6

1000 10−3.5 10−5 10−7

1500 10−4 10−7 10−10

2000 10−5.5 10−14 10−16

2500 10−8 10−12 10−18

Figure 1: Original version of the Hortiatis mountain elevation map.

8. Trimmed weighted mean ofc
′
i. This is a combination of

the trimmed and weighted mean (wi = Ni) approaches
presented above. The correlator outputsc

′
i are ordered, a

percentage of the smaller and bigger values are rejected and
the weighted mean of the remaining samples is evaluated.
Weightswi were chosen to be equal to the lengthNi of the
corresponding line. The two biggest and smallest correlator
outputs were rejected.

4. EXPERIMENTAL RESULTS

The first set of experiments aimed at investigating the influence of
the number of line vertices and the watermark strength parameter
p on the algorithm performance. Our goal was to find the mini-
mum polygonal line length and the maximum watermark embed-
ding power that allow for credible detection while guaranteeing
imperceptible embedding. Thus, the algorithm was applied with
different embedding power valuesp on individual polygonal lines
of various lengths and the ROC (Receiver Operating Character-
istics) curves (plots of the probability of false alarmPfa versus
the probability of false rejectionPfr), as well as the correspond-
ing Equal Error Rate points (the points on the ROC curve where
the probability of false alarm equals the probability of false re-
jection) were evaluated (Table 1). Visual inspection demonstrated
that distortions are almost impossible to be observed whenp is
smaller than 0.45. Furthermore, we have assumed that a single-
line EER equal or smaller than10−4 is sufficient for most applica-
tions, bearing in mind that the EER point obtained for a set of lines
is considerably better than that obtained for an individual line (see
subsequent experiments). Using the experimental data and the re-

Figure 2: Watermarked version of the Hortiatis mountain elevation
map.
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Figure 3: ROC curves for the Hortiatis map for various fusion
rules.

liability and invisibility constraint that we have imposed, we have
decided to usep = 0.45 and to watermark only polygonal lines
consisting of at least 1000 vertices.

In order to judge the relative performance of the fusion rules
presented in Section 3, experiments were conducted on the eleva-
tion contour map of the Hortiatis mountain, Thessaloniki, Greece
(Figure 1). The embedding parameters were chosen to bea =
0.1, b = 0.3, p = 0.45. Lines having length smaller than 1200
vertices were not watermarked. Thus, only 18 curves were water-
marked, their number of vertices ranging between 1200 and 14500.
The watermarked elevation map can be seen in Figure 2. Ob-
viously no visible changes can be seen neither at this scale, nor
in bigger magnifications. The ROC curves for the various fusion
methods and the corresponding EER points can be seen in Figure
3 and the first column of Table 2, correspondingly. Experiments
were also conducted, on a set of 9 artificially generated lines hav-
ing length between 1000 and 2450 vertices. The corresponding
EER points can be seen in the second column of Table 2.



Table 2: EERs of the various fusion rules for the Hortiatis moun-
tain elevation map (set 1) and a set of the nine small polygonal
lines (set 2).

Fusion Rule Set 1 Set 2

Maximum 10−8 8 · 10−7

Minimum 10−10 10−7

Mod. Trimmed Mean 10−16 6 · 10−8

Median 10−18 3 · 10−8

Mean 10−16 2 · 10−8

Trimmed Mean 10−12 10−8

Likelihood Ratio 10−20 10−8

Weight.Trim.Mean 10−30 8 · 10−9

Weighted Mean(wi = Ni) 10−27 5 · 10−9

Weighted Mean(wi = N2
i ) 10−42 4 · 10−10

Table 3: EERs for various attacks and the best two fusion rules.

Attack Weight.Mean(Ni) Weight.Mean(N2
i )

Rotation 5 · 10−9 4 · 10−10

Mean 10−7 1.8 · 10−8

Median 4 · 10−8 8 · 10−9

No attack 5 · 10−9 4 · 10−10

By inspecting the experimental results, one can easily con-
clude that even for a few lines of relatively small length (set 2) the
obtained EERs are very satisfactory. Results are drastically bet-
ter in the case of the elevation map, that involves a bigger number
of larger lines. Among the various fusion rules, the best perfor-
mance was achieved by the weighted mean rule, using as weights
the square of the number of line vertices. The weighted mean rule
using weights equal to the number of line vertices and the weighted
trimmed mean rule were interchanged in the second and third per-
formance ranks. This ranking indicates that the line length is in-
deed an important factor for the algorithm performance and that
the global decision should be based mainly on results obtained by
the larger lines. The LR test, which one could expect to achieve
the best results, was ranked fourth. This was probably due to the
assumptions that were made and the fact that the estimation of the
required conditional mean and variance were only approximate.

In a final set of experiments, the robustness of the best two
fusion rules on attacks was investigated. The following distortions
were induced to the set of nine lines (set 2): line smoothing us-
ing 1-D mean and median filtering (window size 3) of the line
point coordinates on each coordinatex, y separately and rotation
by 30o. The corresponding EER points can be seen in Table 3.
The fact that the EER values for the rotated lines are identical to
those of the distortion-free lines proves that the method is invariant
to rotation. Similar results (insignificant changes to the EER val-
ues) were obtained for the other geometrical distortions to which
the method is invariant to (scaling, translation, rotation, change of
starting point, reflection) [3]. Furthermore, the results prove that
the method is robust to line smoothing.

5. CONCLUSIONS

In this paper, a blind method for the watermarking of sets of polyg-
onal lines that can be used for the copyright protection of vector
graphics images and GIS elevation contour maps is presented. Re-
search focused on finding a proper scheme to fuse the partial de-
tector outputs corresponding to each line and to obtain the optimal
global decision for the whole set. Experimental results demon-
strate the superiority of the weighted mean fusion rule using weights
that are equal to the square of the number of vertices of the corre-
sponding polygonal line. The robustness of the technique to vari-
ous distortions is also exemplified.
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