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Abstract

We enunciate the need for watermarking database
relations to deter their piracy, identify the unique
characteristics of relational data which pose new
challenges for watermarking, and provide desir-
able properties of a watermarking system for re-
lational data. A watermark can be applied to any
database relation having attributes which are such
that changes in a few of their values do not affect
the applications.

We then present an effective watermarking tech-
nique geared for relational data. This technique
ensures that some bit positions of some of the at-
tributes of some of the tuples contain specific val-
ues. The tuples, attributes within a tuple, bit posi-
tions in an attribute, and specific bit values are all
algorithmically determined under the control of a
private key known only to the owner of the data.
This bit pattern constitutes the watermark. Only
if one has access to the private key can the water-
mark be detected with high probability. Detecting
the watermark neither requires access to the origi-
nal data nor the watermark. The watermark can be
detected even in a small subset of a watermarked
relation as long as the sample contains some of the
marks.

Our extensive analysis shows that the proposed
technique is robust against various forms of mali-
cious attacks and updates to the data. Using an im-
plementation running on DB2, we also show that
the performance of the algorithms allows for their
use in real world applications.
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1 Introduction

The piracy of digital assets such as software, images, video,
audio and text has long been a concern for owners of these
assets. Protection of these assets is usually based upon
the insertion of digital watermarks into the data [6] [11]
[13]. The watermarking software introduces small errors
into the object being watermarked. These intentional er-
rors are called marks and all the marks together constitute
the watermark. The marks must not have a significant im-
pact on the usefulness of the data and they should be placed
in such a way that a malicious user cannot destroy them
without making the data less useful. Thus, watermarking
does not prevent copying, but it deters illegal copying by
providing a means for establishing the original ownership
of a redistributed copy.

The increasing use of databases in applications beyond
“behind-the-firewalls data processing” is creating a similar
need for watermarking databases. For instance, in the semi-
conductor industry, parametric data on semiconductor parts
is provided primarily by three companies: Aspect, IHS, and
IC Master. They all employ a large number of people to
manually extract part specifications from datasheets. They
then license these databases at high prices to design engi-
neers. Companies like Acxiom have compiled large collec-
tions of consumer and business data. In the life sciences in-
dustry, the primary assets of companies such as Celera are
the databases of biological information. The Internet is ex-
erting tremendous pressure on these data providers to cre-
ate services (often referred to as e-utilities or web services)
that allow users to search and access databases remotely.
While this trend is a boon to end users, it is exposing the
data providers to the threat of data theft. They are there-
fore demanding capabilities for identifying pirated copies
of their data.

We suggest that rights management of relational data
through watermarking should become an important topic
for database research. Database relations that can be wa-
termarked have attributes which are such that changes in
a few values do not affect the applications. But are there
real-world datasets that can tolerate a small amount of er-
ror without degrading their usability?

Consider the ACARS meteorological data used in build-
ing weather prediction models [3]. The wind vector and
temperature accuracies in this data are estimated to be



within 1.8 m/s and
��� ���

C respectively [3]. The errors
introduced by watermarking can easily be constrained to
lie within the measurement tolerance in this data. As an-
other example, consider experimentally obtained gene ex-
pression datasets that are being analyzed using various data
mining techniques [15]. The nature of some of the data sets
and the analysis techniques is such that changes in a few
data values will not affect the results. Similarly, the cus-
tomer segmentation results of a consumer goods company
will not be affected if the external provider of the supple-
mentary data adds or subtracts some amount from a few
transactions. Later in the paper, we report experimental re-
sults using a forest cover dataset. It contains measurements
for variables such as elevation, aspect, slope, distance to
hydrology and roadways, soil type, etc. Small changes in
some of the measurements do not affect the usability of this
data. Finally, consider the parametric data on semiconduc-
tor parts alluded to earlier. For many parameters, errors
introduced by watermarking can be made to lie within the
measurement tolerance. It is noteworthy that the publishers
of books of mathematical tables (e.g. logarithm tables and
astronomical ephemerides) have been introducing small er-
rors in their tables for centuries to identify pirated copies
[13].

1.1 Do We Need New Watermarking Techniques for
Relational Data?

There is a rich body of literature on watermarking multime-
dia data [6] [11] [13]. Most of these techniques were ini-
tially developed for still images [12] and later extended to
video [10] and audio sources [4] [8]. While there is much
to learn from this literature, there are also new technical
challenges due to the differences in the characteristics of
relational and multimedia data. These differences include:� A multimedia object consists of a large number of bits,

with considerable redundancy. Thus, the watermark
has a large cover in which to hide. A database relation
consists of tuples, each of which represents a separate
object. The watermark needs to be spread over these
separate objects.� The relative spatial/temporal positioning of various
pieces of a multimedia object typically does not
change. Tuples of a relation on the other hand con-
stitute a set and there is no implied ordering between
them.� Portions of a multimedia object cannot be dropped
or replaced arbitrarily without causing perceptual
changes in the object. However, the pirate of a re-
lation can simply drop some tuples or substitute them
with tuples from other relations.

Because of these differences, techniques developed for
multimedia data cannot be directly used for watermarking
relations. To elaborate this point further, let us map a re-
lation to an image by treating every attribute value as a
pixel. Unfortunately, the “image” thus defined will lack

many properties of a real image. For instance, pixels in a
neighborhood in a real image are usually highly correlated
and this assumption forms the basis of many techniques
such as predictive coding for deciding watermark locations
[9]. Several techniques first apply a transform (e.g. dis-
crete Fourier, discrete cosine, Mellin-Fourier, Wavelet) to
the image, insert the watermark in the transformed space,
and then invert the transform [9]. The noise introduced by
the watermarking signal is thus spread over the whole im-
age. A direct application of these techniques to a relation
will introduce errors in all of the attribute values, which
might not be acceptable. Furthermore, such a watermark
might not survive even minor updates to the relation.

Watermarking techniques for text exploit the special
properties of formatted text. Watermarks are often intro-
duced by altering the spacing between words and lines of
text [17]. Some techniques rely on rephrasing some sen-
tences in the text [1]. While these techniques might be
useful to watermark relations containing CLOBs (character
large binary objects), their applicability to relations consist-
ing of simple data types is suspect.

Techniques for watermarking software have had limited
success [5]. The problem is that the instructions in a com-
puter program can often be rearranged without altering the
semantics of the program. This resequencing can however
destroy a watermark. Techniques have also been proposed
to prevent copying of software. They however require in-
stallation of tamper resistant modules in users’ machines,
limiting their successful adoption in practice.

1.2 Our Contributions

We believe that the watermarking of relational data has sig-
nificant technical challenges and practical applications to
deserve serious attention from the database research com-
munity. A desiderata for a system for watermarking needs
to be specified, followed by development of specific tech-
niques. These techniques will most certainly use existing
watermarking principles. However, they will also require
enhancements to the current techniques as well as new in-
novations.

We have attempted to provide such a desiderata in this
paper. To demonstrate the feasibility of watermarking rela-
tional data, we also present an effective technique that sat-
isfies this desiderata. This technique marks only numeric
attributes and assumes that the marked attributes can tol-
erate changes in some of the values. The basic idea is to
ensure that some bit positions for some of the attributes
of some of the tuples contain specific values. The tuples,
attributes within a tuple, bit positions in an attribute, and
specific bit values are all algorithmically determined under
the control of a private key known only to the owner of the
relation. This bit pattern constitutes the watermark. Only if
one has access to the private key, can the watermark be de-
tected with high probability. Our detailed analysis shows
that the watermark can withstand a wide variety of mali-
cious attacks.



1.3 Organization

The rest of the paper is organized as follows. Section 2
specifies our watermarking model and the desirable prop-
erties of a system for watermarking relational databases.
Section 3 gives our algorithms for inserting and detecting
watermarks. We also discuss its novelty with respect to
existing work. Section 4 analyzes the properties of the pro-
posed technique. Section 5 provides implementation de-
tails and an experimental evaluation. We conclude with a
summary and directions for future work in Section 6.

2 Model

Say Alice is the owner of the relation � that contains � tu-
ples, out of which she has marked 	 tuples. The following
properties are desirable.

Detectability Alice should be able to detect her water-
mark by examining 	 tuples from a suspicious database.
Clearly, if her bit pattern (watermark) is present in all of	 tuples, she has good reason to suspect piracy. However,
it is reasonable for Alice to get suspicious if her pattern is
present in at least 
 tuples ( 
��
	 ), where 
 depends on 	
and a preselected value � , called the significance level of
the test. The value of 
 is so determined that the probabil-
ity that Alice will find by sheer chance her bit pattern in at
least 
 tuples out of 	 tuples is less than � .

Robustness Watermarks should be robust against attacks
to erase them. Say the attacker, Mallory1, changes � tuples
of Alice’s relation � . We say that the watermark is safe
from erasure if the attack is not able to destroy the marks
of at least 
 tuples, where 
 depends as above on 	 and � .
We further discuss robustness in Section 2.1.

Incremental Updatability Having watermarked � , Al-
ice should be able to update � in the future without de-
stroying the watermark. As Alice adds/deletes tuples or
modifies the values of attributes of � , the watermark should
be incrementally updatable. That is, the watermark values
should only be recomputed for the added or modified tu-
ples.

Imperceptibility The modifications caused by marks
should not reduce the usefulness of the database. In addi-
tion, the commonly used statistical measures such as mean
and variance of the numerical attributes should not be sig-
nificantly affected.

Blind System Watermark detection should neither re-
quire the knowledge of the original database nor the water-
mark. This property is critical as it allows the watermark to
be detected in a copy of the database relation, irrespective
of later updates to the original relation.

Key-Based System Following Kerckhoffs [14], the wa-
termarking system should assume that the method used for
inserting a watermark is public. Defense must lie only in

1The cryptography literature has conventionally given a male persona
to Mallory, the malicious active attacker [18].

the choice of the private key. The folly of “security-by-
obscurity” has been shown repeatedly since the first enun-
ciation of Kerckhoffs’ principle in 1883 [13].

2.1 Benign Updates and Malicious Attacks

Since database relations are updatable, the marks contained
in a relation can be removed by benign updates as well as
malicious attacks.

Benign Updates Suppose Mallory has stolen Alice’s data
without realizing that it has been watermarked. Subse-
quently, Mallory may update the stolen data as he uses it.
Watermarking should be such that Alice does not lose her
watermark in the stolen data in spite of Mallory’s updates.

Malicious Attacks Mallory may know that the data he
has stolen contains a watermark, but he may try to erase
the watermark or try other means for claiming false owner-
ship. The watermarking system should protect Alice from
various forms of Mallory’s malicious attacks:

Bit Attacks The simplest malicious attack attempts to de-
stroy the watermark by updating some bits. Clearly, if Mal-
lory can change all the bits, he can easily destroy the wa-
termark. However, he has also made his data completely
useless. The effectiveness of an attack should therefore
consider the relationship between the number of bits that
Mallory and Alice change, since each change can be con-
sidered an error. Having more errors clearly makes the data
less useful.

A randomization attack assigns random values to some
number of bit positions. A zero out attack sets values of
some number of bit positions to zero. A bit flipping attack
inverts the values of some number of bit positions. Note
that benign updates can also be modeled as a randomization
attack.

Rounding Attack Mallory may try to lose the marks con-
tained in a numeric attribute by rounding all the values of
the attribute. This attack is not any better than the bit at-
tacks discussed above. Mallory has to correctly guess how
many bit positions are involved in the watermarking. If he
underestimates it, his attack may not succeed. If he overes-
timates it, he has degraded the quality of his data more than
necessary. Even if his guess is correct, his data will not be
competitive against Alice’s data because his data values are
less precise.

A related attack will be one in which the numeric val-
ues are uniformly translated. For example, Mallory may
translate using units of measurement (e.g., imperial units
to metric units). Alice simply needs to convert the values
back to the original system in order to recover the marks. In
general, Mallory can apply arbitrary translations to numeric
values. In this case, Mallory would also need to inform po-
tential users of the conversion used which could also be ap-
plied by Alice before detecting her watermark. The unnec-
essary conversion would also raise suspicion among users.

Subset Attack Mallory may take a subset of the tuples
or attributes of a watermarked relation and hope that the



� Number of tuples in the relation� Number of attributes in the relation
available for marking�
Number of least significant bits
available for marking in an attribute�����
Fraction of tuples marked� Number of tuples marked� Significance level of the test
for detecting a watermark� Minimum number of correctly marked
tuples needed for detection

Figure 1: Notation

watermark is lost.

Mix and Match Attack Mallory may create his relation
by taking disjoint tuples from multiple relations containing
similar information.

Additive Attack Mallory may simply add his watermark
to Alice’s watermarked relation and claim ownership.

Invertibility Attack Mallory may launch an invertibilityat-
tack [7] to claim ownership if he can successfully discover
a fictitious watermark. Mallory’s claimed watermark is in
fact a random occurrence.

3 Algorithms

We now present a technique for watermarking database re-
lations and show that it satisfies the desiderata outlined
above. This technique marks only numeric attributes and
assumes that the marked attributes are such that small
changes in some of their values are acceptable and non-
obvious. All of the numeric attributes of a relation need
not be marked. The data owner is responsible for deciding
which attributes are suitable for marking.

We are watermarking a database relation � whose
scheme is �����! #"%$& �'�'�'( #"*),+.-0/ , where � is the primary
key attribute. (Section 3.5 gives extensions for watermark-
ing a relation that does not have a primary key attribute.)
For simplicity, assume that all � attributes " $  �'�'�'1 #" ),+.-
are candidates for marking. They are all numeric attributes
and their values are such that changes in

�
least significant

bits for all of them are imperceptible.2

Gap
�

is a control parameter that determines the number
of tuples marked, �324� ��� . One can often trade-off

�
against

�
that determines the extent of error introduced in

an attribute’s values. If less tuples are marked, it might
be possible to introduce greater changes in the values of
marked attributes.

We denote by 5,' "!6 the value of attribute "!6 in tuple5879� . Figure 1 summarizes the important parameters used
in our algorithms. These algorithms make use of message
authenticated codes that we briefly review next.

2It is not necessary to use consecutive : least significant bits for mark-
ing. For instance, we may not use those bit positions in which the distri-
bution of bit values is skewed [16]. We omit this detail.

// The private key ; is known only to the owner of the database.
// The parameters < , = , and : are also private to the owner.

1) foreach tuple >@?BA do
2) if ( CEDF>HG IKJ mod < equals 0) then // mark this tuple
3) attribute index L = CEDM>HG INJ mod = // mark attribute O.P
4) bit index Q = C*DM>HG INJ mod : // mark Q0RTS bit
5) >HG O.P = mark( >HG IVUW>HG O.P#UWQ )
6) mark(primary key XZY , number [ , bit index Q ) return number

7) first hash = \ ( ;^]�X&Y )

8) if (first hash is even) then
9) set the Q RTS least significant bit of [ to 0
10) else
11) set the Q0RTS least significant bit of [ to 1

12) return [
Figure 2: Watermark Insertion Algorithm

3.1 Message Authenticated Code

A one-way hash function _ operates on an input message`
of arbitrary length and returns a fixed length hash valuea

, i.e.,
a4b _c� ` / . It has the additional characteristics

that i) given
`

, it is easy to compute
a

, ii) given
a

, it is
hard to compute

`
such that _c� ` / bda , and iii) given

`
,

it is hard to find another message
`fe

such that _c� ` / b_c� `ge / . Several one-way functions have been described in
[18]. MD5 and SHA are two good choices for _ .

A message authenticated code (MAC) is a one-way hash
function that depends on a key. Let h be a MAC that ran-
domizes the values of the primary key attribute 5,'i� of tuple5 and returns an integer value in a wide range. h is seeded
with a private key j known only to the owner. We use the
following MAC, considered to be secure [18]:hk�l5,'i�8/ = _c�ljnmo_c�lj4m@5,'i�8/#/
where m represents concatenation.

3.2 Watermark Insertion

Figure 2 gives the watermark insertion algorithm3. Line 2
determines if the tuple under consideration will be marked.
Because of the use of MAC, only the owner who has the
knowledge of the private key j can easily determine which
tuples have been marked. For a selected tuple, line 3 de-
termines the attribute that will be marked amongst the �
candidate attributes. For a selected attribute, line 4 deter-
mines the bit position amongst

�
least significant bits that

will be marked. Again, the results of the tests in lines 3
and 4 depend on the private key of the owner. For erasing
a watermark, therefore, the attacker will have to guess not
only the tuples, but also the marked attribute within a tuple
as well as the bit position.

The mark subroutine sets the selected bit to 0 or 1
depending on the hash value obtained in line 7. Thus,

3The algorithm is written in a form that simplifies exposition, rather
than in the most computationally efficient form.



// p , q , r , and s have the same values used for watermark insertion.
// t is the test significance level that the detector preselects.

1) totalcount = matchcount = 0

2) foreach tuple uwv%x do
3) if (y*z{u}| ~K� mod q equals 0) then // this tuple was marked
4) attribute index � = yEzTu1| ~N� mod r // attribute �.� was marked
5) bit index � = yEzTu1| ~N� mod s // �0�T� bit was marked
6) totalcount = totalcount + 1
7) matchcount = matchcount + match( u1| ~ , u1| �.� , � )
8) � = threshold(totalcount, t ) // see Section 4.2
9) if (matchcount �8� ) then suspect piracy

10) match(primary key �&� , number � , bit index � ) return int

11) first hash = � ( p^���&� )

12) if (first hash is even) then
13) return 1 if the � �T� least significant bit of � is 0 else return 0
14) else
15) return 1 if the �0�T� least significant bit of � is 1 else return 0

Figure 3: Watermark Detection Algorithm

the result of line 9 (line 11) either leaves the attribute
value unchanged or decrements (increments) it. Conse-
quently, marking decrements some of the values of an at-
tribute while it increments some others and leaves some
unchanged.

Databases usually allow attributes to assume null val-
ues. If a null attribute value is encountered while marking
a tuple, we do not apply the mark to the null value, leaving
it unchanged.

3.3 Watermark Detection

Assume Alice suspects that the relation � published by
Mallory has been pirated from her relation � . The set of
tuples and attributes in � can be a subset of � . We as-
sume that Mallory does not drop the primary key attribute
or change the value of primary keys since the primary key
contains valuable information and changing it will render
the database less useful from the user’s point of view4.

The watermark detection algorithm, shown in Figure 3,
is probabilistic in nature. Line 3 determines if the tuple� under consideration must have been marked at the time
of inserting the watermark. Lines 4 and 5 determine the
attribute and the bit position that must have been marked.
The subroutine match then compares the current bit value
with the value that must have been set for that bit by the
watermarking algorithm.

We thus know at Line 8 how many tuples were tested
(totalcount) and how many of them contain the expected
bit value (matchcount). In a probabilistic framework, only

4If this assumption does not hold, use the technique in Section 3.5.
If Mallory tries to make benign changes to the primary key values by
transforming them into semantically equivalent values (e.g., uniformally
change part numbers such as CY7C225A into CY-7C-225A), Alice can
detect her watermark by first inverting the transformed primary key val-
ues.

a certain minimum number of tuples have to contain match-
ing marked bits. The matchcount is compared with the
minimum count returned by the threshold function for the
test to succeed at the chosen level of significance � . The
threshold function is described in Section 4.2.

Figure 3 assumes for simplicity that all the candidate
attributes �%���������0�(�E����� were present in � . If Alice finds
a tuple � in which she must have marked the attribute �*�
(line 4) but Mallory has omitted � � , she simply ignores
the tuple. Similarly, if a tuple is found whose attribute �B�
should have been marked, but �E� has a null value, the tuple
is ignored. I.e., The values of matchcount and totalcount
are unaffected.

3.4 Remarks

Data Formats We rely on Java to handle issues related
to data formats for numeric types. Java prescribes specific
sizes for numeric types, which are machine independent.
JVM also hides the complexities arising out of different
byte orderings used on different machines for storing nu-
meric data. Note that we mark the mantissa of a floating
point number and decimal numbers are marked as integers
ignoring scale.

Incremental Updatability Whether a tuple is marked or
not depends on its primary key attribute. Thus a tuple can
be inserted without examining the markings of any other
tuple. Similarly, a tuple can be simply deleted. When
updating the primary key attribute of a tuple, we recom-
pute its marking before storing the tuple in the database.
When updating a non-primary key attribute, nothing needs
to be done if the algorithm has not selected this attribute
for marking. On the other hand, if the attribute is a candi-
date for marking, the mark is applied to the attribute’s value
before storing it in the database.

Blind Watermarking The detection algorithm is blind. It
simply extracts � bits of information from the data, without
requiring access to the original data or watermark to arrive
at its decision. Blind watermarking is critical for database
relations since relations are frequently updated. Each ver-
sion of the relation would need to be kept if the original is
required for detecting a watermark.

3.5 Relations Without Primary Keys

The watermarking technique described above is predicated
on the existence of a primary key in the relation being wa-
termarked. Primary keys arise naturally in real-life situa-
tions and we expect the majority of relations that someone
would be interested in watermarking will have a primary
key. We discuss next how to extend our technique if this
assumption does not hold.

Assume first that the relation � consists of a single nu-
meric attribute � . Partition the bits of the attribute � into
two groups. � bits of the value �,� � are used as the “primary
key substitute” of the tuple � and the remaining � bits are
used for marking. We can now use the scheme described



earlier. This construction will work only if  ,¡ ¢ does not
have many duplicates. Too many duplicates in £ bits of ,¡ ¢ values will result in many identical marks which an
attacker can exploit.

If the relation has more than one attribute, one of them
can be used as the substitute and the remainder for marking.
Choose the attribute that has minimum duplicates to serve
as the substitute. The substitute can also be spread across
more than one attribute to reduce duplicates. The drawback
is that if one of these attributes is omitted by Mallory, Alice
will not be able to detect the watermark.

3.6 Related Work

Dugley and Roche [9] classify the various techniques for
watermarking images along the following dimensions: i)
the method for selecting pixels where the watermark mes-
sage will be hidden; ii) the choice of workspace to per-
form the hiding operation; iii) the strategy for formatting
the message; iv) the method for merging the message and
cover; and v) the operation needed for extracting the mes-
sage. According to this framework, our technique uses a
private key and the primary key to select the bit positions.
We do the hiding in the original space. We do not have a
fixed message; the bit pattern that constitutes the message
is dynamically and algorithmically computed (and incre-
mentally updated). The merging operation is a bit opera-
tion, driven by a truth table defined by the mark subroutine
of the insertion algorithm. The extraction operation is the
dual of the merge operation.

The closest to our technique in the Dugley-Roche space
of image watermarking techniques is the patchwork algo-
rithm [2]. This algorithm chooses random pairs of points
( ¤&¥H¦1§(¥ ) of an image in the spectral domain, and increases
the brightness at ¤,¥ by 1 unit while correspondingly de-
creasing the brightness at §1¥ . Random changes to relational
data can potentially introduce large errors. It is also not
clear how to handle incremental updates and how to protect
the watermark from various forms of attacks if one were to
apply the patchwork algorithm to relational data.

Another closely related work is the technique proposed
in [1] for watermarking a sequence of numbers. The basic
idea is to modify the numbers, interpreted as integers, to
force them to be quadratic residues or nonresidues modulo
a secret prime, according to the parity of the next bit of a
user-provided message. The watermark is repeated many
times throughout the data. The advantage of our technique
is that we do not require data to be ordered and hence our
technique is robust in the presence of updates. We also do
not have a fixed message that is encrypted and repeated in
the data.

4 Analysis

We now analyze the properties of the proposed watermark-
ing technique.

4.1 Cumulative Binomial Probability

Repeated independent trails are called Bernoulli trials if
there are only two possible outcomes for each trial and
their probabilities remain the same throughout the trials.
Let §�¨�©«ª#¬N¦®­°¯ be the probability that ¬ Bernoulli trials with
probabilities ­ for success and ±8²´³!µ¶­ for failure result
in © successes and ¬kµ·© failures. Then§�¨�©Vª(¬N¦®­°¯¸² ¹ ¬ ©gº ­�»,±½¼°¾°» (1)¹ ¬ © º ² ¬N¿©V¿F¨l¬kµÀ©Á¯H¿ÃÂÅÄ © Ä ¬ (2)

Denote the number of successes in ¬ trials by Æ ¼ . The
probability of having at least © successes in ¬ trials, the
cumulative binomial probability, can be written asÇ8È Æ ¼^É ©ÁÊË² ¼Ì¥lÍ » §Î¨lÏ1ª#¬N¦®­°¯ (3)

For brevity, defineÐ ¨�©Vª(¬N¦l­Ñ¯ÓÒ ² ¼Ì ¥lÍ » §�¨lÏ1ª(¬N¦l­Ñ¯ (4)

4.2 Probabilistic Framework

We can now specify the threshold subroutine used in Line 8
of Figure 3. Suppose totalcount = Ô when Alice runs the
detection algorithm. That is, Alice looks at Ô bits and ob-
serves the number of bits whose values match those as-
signed by the marking algorithm. The probability that at
least Õ out of Ô ramdom bits – each bit equal to 0 or 1 with
equal probability, independent of the other bits – matches
the assigned value is

Ð ¨lÕ�ªÖÔE¦�³�×,Ø�¯ . In other words, the
probability that at least Õ bits match by sheer chance is

Ð ¨®Õ�ªÙÔE¦�³�×�Ø,¯ . Therefore, the subroutine

subroutine threshold( Ô , Ú ) return count

returns minimum Õ such that

Ð ¨®Õ�ªÙÔE¦�³�×�Ø,¯oÛÜÚ .
The significance level Ú determines how amenable the

system is to false hits. That is, Ú is the probability that
Alice will discover her watermark in a database relation
not marked by her. By choosing lower values of Ú , Alice
can increase her confidence that if the detection algorithm
finds her watermark in a suspected relation, it probably is a
pirated copy.

4.3 Detectability

We see from Section 4.2 that the detectability of a water-
mark depends on the significance level Ú and the number of
marked tuples Ô . The latter in turn depends on the number
of tuples in the relation Ý and the gap parameter Þ .

Watermark Detection Figure 4 plots the proportion of
marked tuples that must have the correct watermark value
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Figure 5: Proportion of correctly marked tuples needed for
decreasing ß (alpha ã ß )

for successful detection (i.e., ä°å�æ ). We have plotted the
results for relations of different sizes, assuming ß = 0.01.
The X-axis varies the percentage of tuples marked (i.e. the
fraction ç�å�è expressed as percentage). The percentage of
tuples marked 0.01%, 0.1%, 1.0%, and 10% correspond to
the è values of 10000, 1000, 100, and 10 respectively.

The figure shows that the required proportion of cor-
rectly marked tuples decreases as the percentage of marked
tuples increases. This proportion also decreases as the
number of tuples in the relation increases. We, of course,
need more than 50% of the correctly marked tuples to dif-
ferentiate a watermark from a chance occurrence, but with
an appropriate choice of è , this percentage can be made less
than 51%. This figure also shows that for larger relations,
we can mark a smaller percentage of the total number of
tuples and yet maintain the detectability of the watermark.

In Figure 5, we have plotted the required proportion of
correctly marked tuples for various values of ß . The re-
sults are shown for a 1 million tuple relation. Clearly, we
need to proportionately find a larger number of correctly
marked tuples as the value of ß decreases. More impor-
tantly though, even for very low values of ß , it is possible
to detect the watermark. Even for è·é´ç�ê,ê,ê�ê where there
are only 100 marked tuples out of 1 million tuples, it is
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Figure 6: Probability of recovering by chance ä tuples hav-
ing the correct watermark value out of æ tuples (gap ãëè )

possible to detect the watermark if 82% of the marks have
the correct value for ß as low as ç,ìiê,í*îgç�ê . For èÜéïç�ê ,
less than 52% of the marked tuples are required to have the
correct mark for all ß values.

False Hits Figure 6 illustrates the robustness of the sys-
tem against false hits. The graph has been plotted for a
1 million tuple relation and for different values of the gap
parameter è . We have varied on the X-axis the ratio of
marked tuples ä having the correct watermark value to
the total number of marked tuples æ . The Y-axis showsðòñ ä�óÙæEô�ç�å�õ,ö , which is the probability of falsely finding at
least ä tuples having the correct watermark value out of æ
tuples.

The graph shows that there is a sharp decrease in the
probability that, by chance alone, more than 50% of the tu-
ples will have a correct mark. For è·é´ç�ê , the probability
that 51% or more of the marked tuples have a correct mark
by chance is 1.29e-10. Even for a very large èÜé÷ç�ê�ê,ê�ê ,
the probability that 80% or more of the marked tuples have
a correct mark by chance is only 5.58e-10. Thus, by choos-
ing appropriate values for è and ß , false hits can be made
highly improbable.

4.4 Robustness

We now analyze the robustness of our watermarking tech-
nique against various forms of malicious attacks. Alice has
marked æ ñ�ø â åÎèùö tuples. For detecting her watermark, she
uses the significance level of ß that determines the mini-
mum number of tuples ä out of æ that must have her mark
intact.

4.4.1 Bit-Flipping Attack

In this form of attack, Mallory tries to destroy Alice’s wa-
termark by flipping the value at the bit positions he guesses
have been marked. The analysis and results are similar for
the zero-out and randomization attacks.

Assume that Mallory magically knows the values of theà and á parameters used by Alice. The value of á is as-
sumed to be the same for all of à attributes. Since Mallory
does not know which bit positions have been marked, he
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Figure 8: Excess error in destroying a watermark (gap þÿ )

randomly chooses � tuples out of ú tuples. For every se-
lected tuple, he flips all of the bits in all of ü bit positions
in all of û attributes. To be successful, he should be able to
flip at least ��������	��

� marks.

The probability that this attack will succeed can be esti-
mated as

�� � ����
� � ��� � ú����� � ���

� ú � � (5)

Essentially, Mallory is sampling without replacement � tu-
ples out of ú potentially marked tuples, hoping that at least�� tuples out of � marked tuples will show up in his sample.

Probability of Success Figure 7 shows the probability
of success of the above attack on a 1 million tuple rela-
tion with ý set to 0.01. We have assumed that Alice has
marked only the least significant bit of one attribute and
this information is somehow known to Mallory. We have
varied on the X-axis the percentage of tuples changed. Forÿ ��������� �!� , if Mallory changes 40% of the tuples, he has
64% chance of destroying the watermark. For ÿ �"�#�!�!� ,
he has to change 46% of the tuples to get 44% chance of
success. His chance of success is only 11% if he changes
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Figure 9: Probability of a successful attack when (lsb þëü )
is underestimated by 1

48% of the tuples when ÿ �$�#�!� . Anything less than close
to 50% does not destroy the watermark for ÿ �%�#� . Note
that it is not in Mallory’s interest to flip more than 50% of
the marked bits. For in that case, Alice can detect the wa-
termark by reflipping the appropriate bits and applying the
detection algorithm on the transformed data.

Figure 8 shows the excess error introduced by Mallory
in destroying a watermark, expressed as the ratio of the to-
tal number of tuples attacked to the number of marked tu-
ples. When ÿ �&���!� �!� , Mallory has to change nearly 5000
times the number of tuples that were marked to destroy the
watermark. Thus, Mallory’s data will contain more than 3
orders of magnitude of error than Alice’s version. This ratio
becomes roughly 500, 50, and 5 respectively for ÿ = 1000,
100, and 10. Thus, Alice can choose a value of ÿ depending
upon how tolerant the data is to errors and force Mallory to
commit much larger errors (and hence make Mallory’s data
less desirable).

Figure 8 also says that if Mallory were restricted to mak-
ing at most as many changes to the data as Alice, he could
not have destroyed Alice’s watermark. Hence, if the data is
such that there is a limit to the number of changes it can tol-
erate without rendering it useless and Alice introduces the
maximum possible number of changes, Mallory will not be
able to remove the watermark.

Varying ü Now consider the case where Alice marks one
of ü(' � least significant bits, but only in one attribute.
First assume Mallory somehow knows the exact value ofü . However, Mallory will not know which bit position has
been marked in a specific tuple. Having decided on a tuple,
he will therefore have to flip all of ü least significant bits
of the attribute in order to destroy a mark. If we plot the
probability of a successful attack against the percentage of
tuples changed under this scenario, we get a graph identical
to Figure 7. The difference is that Mallory has ü times ex-
cess error. Mallory has to change ü bits in an attribute value
whereas Alice continues to change only one bit. A larger
value of ü also leads to larger errors in Mallory’s data.

Suppose now that Mallory does not know the exact value
of ü used by Alice. Figure 9 shows what happens when
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Figure 10: Minimum fraction of tuples from the water-
marked relation needed for detectability

Mallory underestimates the value of * by just 1 bit. We
take , = 1 million, - = 1000, )�.$/ , and + .(0�1203/ , and plot
the probability of a successful attack for different values of* and the percentage of tuples changed. Contrast Figure 9
with Figure 7 for the case whence - .$/#0!0!0 . Compared to
Figure 7, plots shift to the right showing a reduction in the
probability of a successful attack. In fact, Figure 9 contains
no values for * .54 and 6 . This is because the probability
of success has become very small (less than 0.0001).

In reality, it is hard for Mallory to guess the exact value
of * used by Alice. If he overestimates the value, he ends up
introducing large errors; if he underestimates it, his chances
of success are reduced. Thus, Alice can effectively use the* parameter to foil Mallory.

Varying ) Alice has the additional flexibility of marking
any one of the ) attributes. Mallory, unfortunately, has to
change the values of all of ) attributes in a tuple. The anal-
ysis of having ) attributes to mark is identical to having )
least significant bits to mark. Clearly, Alice should use all
the attributes she can mark without affecting the quality of
data significantly.

4.4.2 Mix-and-Match Attack

In the mix-and-match attack, Mallory takes 7 fraction of
tuples from Alice’s relation 8 and mixes them with tuples
from other sources to create his relation 9 of the same size
as 8 . We give a simple average case analysis for this attack.
For Alice to be able to detect her watermark in 9 , we need

7 ,-;: /6=< /?> 7A@ ,-CBED (6)

The second term on the left hand side of the inequality
arises because the detection algorithm, when applied to an
unmarked relation, can expect to find matching bits in half
of the tuples. The value of D depends on , , - , and + .

Figure 10 gives the minimum value of 7 for which Alice
can still detect the watermark for various values of , and -
(expressed as the percentage of tuples marked). We have
taken + to be 0.01 and )�. * .%/ and extracted D values
from Figure 4. We see that if Alice had marked 10% of the

tuples, she can detect her watermark even when Mallory
pirates less than 2.5% of tuples from her 100,000 tuples
relation. The fraction of tuples Mallory can pirate and yet
avoid detection comes down rapidly as the size of Alice’s
relation increases.

4.4.3 Additive Attack

In the additive attack, Mallory simply inserts his water-
mark in Alice’s data. The original ownership claim can
be resolved by locating the overlapping regions of the two
watermarks in which the bit values of the marks conflict
and determining which owner’s marks win. The winner
must have overwritten the loser’s bits and hence must have
inserted the watermark later. Depending upon the signifi-
cance level chosen for the test, it is possible not to reach a
decision if only a few marks collide. Clearly having more
marked tuples (i.e. smaller value of - ) increases collisions
and hence the chance of reaching a decision.

4.4.4 Invertibility Attack

Counterfeit watermarks are used to claim ownership in an
invertibility attack [7]. This attack translates into Mallory
being able to find a key that yields a satisfactory water-
mark for some value of + . The key discovered by Mallory
need not match the key used by Alice in inserting her wa-
termark. For high values of + , Mallory can stumble upon
such a key by repeatedly trying different key values. This
attack is thwarted by using low values of + (e.g., 1.0e-10),
rendering negligible the probability of accidentally finding
a good key.

4.5 Design Trade-Offs

Our watermarking technique has four important tunable pa-
rameters: i) + , the test significance level, ii) - , the gap pa-
rameter that determines the fraction of tuples marked, iii) ) ,
the number of attributes in the relation available for mark-
ing, and iv) * , the number of least significant bits avail-
able for marking. Based on the analysis presented in this
section, we have summarized in Figure 11 the important
trade-offs when selecting the values for these parameters.F + F

false hits G missed watermarksF - G robustness G data errorsG ) G robustnessGH* G robustness G data errors

Figure 11: Design Trade-Offs

5 Implementation and Experiments
We next provide some implementation notes and experi-
mental results obtained using a real-life dataset.

5.1 Implementation

We describe an implementation in which watermark inser-
tion as well as detection are implemented as database client



programs using SQL-92 level capabilities. We assume for
simplicity that the primary key of the relation I consists of
a single attribute J and only one attribute K is available for
watermarking.

A watermark is inserted by first retrieving tuples of I ,
with attributes JMLNK specified in the select list. The select
statement contains the additional clause “for update of K ”
that lets the database engine know that the selected tuples
of I will be updated. For each tuple O thus fetched, if the
watermarking algorithm determines that a change is needed
in the value of O!P K , an update statement is issued to markO!P K . The update statement has a “current of cursor” clause
that lets the database engine know that the tuple to be up-
dated is O .

Watermark detection is performed using a select state-
ment to fetch the tuples of the suspicious database relationQ

, specifying the attributes JRLSK in the select list. Appropri-
ate counts for totalcount and matchcount are incremented
for every result tuple. Finally, if the probability of finding
matchcount marks in totalcount tuples is within the signif-
icance level, the watermark has been detected.

5.2 Experimental Results

We now report some experimental results that comple-
ment the analysis presented in Section 4. Experiments
were performed using the Forest Cover Type dataset, avail-
able from the University of California–IrvineKDD Archive
(kdd.ics.uci.edu/databases/covertype/covertype.html). The
dataset has 581,012 rows, each with 61 attributes. We
added an extra attribute called id to serve as the primary
key. We chose the first ten integer-valued attributes as can-
didates for watermarking.

We ran experiments on DB2 UDB Version 7 using
JDBC connectivity on a Windows NT Version 4.00 work-
station with a 400MHz Intel processor, 128 MB of memory,
and a 10 GB disk drive. We used the default DB2 settings,
except for the log file and the lock list. It was necessary
to modify these settings because some of our experiments
were update intensive. The log file size was set to 20 MB
and the lock list to 2 MB.

5.2.1 Watermarking Overhead

We ran two experiments to assess the computational cost of
watermarking and detection. Performance was measured in
elapsed time. Each experiment was repeated 30 times and
the overhead ratios were computed from the summation of
individual trials.

The first experiment evaluated the cost of inserting a wa-
termark. We tried the worst case by setting T to 1. In this
case, the watermarking algorithm will read U tuples and
find that every tuple requires marking. However, on aver-
age, half the tuples will already have the correct value for
the mark. Therefore, we expect that watermarking will up-
date only UWV X tuples. We compare these latencies to the
time required to read U tuples and update U3V!X tuples. The
comparison yielded a ratio of 1.16, showing a rather small
overhead of 16% incurred by watermarking. This overhead

is due to the cost of computing hash values needed to deter-
mine the mark for individual tuples. The average elapsed
time to watermark the relation was 2245 seconds (roughly
37 minutes). This time included the cost of logging updates
to half the tuples in the relation.

The second experiment assessed the cost of detection.
We again chose the worst case by setting T to 1 and by
choosing the sample size for detecting the watermark to be
the entire relation. The experiment compared the time re-
quired to detect U marks across U tuples against the time
required to simply read U tuples. The comparison yielded
a ratio of 4.38. If this cost seems high, we should point
out that DB2 has very good sequential read performance
due to smart prefetching. The major component of the
cost of detection is the computation of one way hash func-
tions needed to determine the presence of the mark for each
tuple. The average detection time was only 214 seconds
(roughly 4 minutes).

These results indicate that our algorithms have adequate
performance to allow for their use in real world applica-
tions.

5.2.2 Imperceptibility

We next report the impact of watermarking on the mean
and variance of values of marked attributes. This experi-
ment was done by varying T from 10 to 10000 and by vary-
ing Y from 1 to 8. We found a minuscule change in the
mean value for all the attributes. Table 1 shows changes
in variance for different attributes. The values have been
rounded to the nearest integer. An empty entry indicates
very little or no change. As expected, greater changes in
variance occur when Y is large and T is small because of
larger perturbations in a greater fraction of tuples. Overall,
the changes are insignificant given the amount of original
variance. The only significant change occurred in the Slope
attribute for Y[Z]\�L^T�Z`_�a . Compared to other attributes,
this attribute has relatively small values that are perturbed
significantly when Y is large. Note that if these changes
seem significant, b , Y and T parameters can be adjusted to
reduce the impact of watermarking on the data.

These results can be understood as follows. When an
attribute value is marked, there is 1/2 probability that the
value will not change. A bit with value 1 is converted to 0
with probability 1/4 and vice versa. Thus, an original valuec will remain c with probability 1/2 and will become cedgf
or c?h[f , each with probability 1/4. Hence, if every value of
an attribute is equally likely to be selected and it is as likely
that the value will be incremented as decremented then the
mean and variance will not be affected significantly.

5.2.3 Detectability in the Presence of Subset Attacks

This set of experiments study the impact on the detectabil-
ity of a watermark if only a subset of the watermarked re-
lation is available for detection. We considered several lev-
els of tuple selectivity i which determines the percentage
of tuples retrieved from the relation. For each selectivity



jlknmSopopoqo mSopopo mNopo mNo
Attribute Mean Variance r knm s t m s t m s t m s t
Elevation 2959 78391 +3 +16
Aspect 155 12525 +1 +8
Slope 14 56 +1 +14
Horz-Dist-To-Hydrology 269 45177 +1 +1
Vert-Dist-To-Hydrology 46 3398 +1 +2 +11
Horz-Dist-To-Roadways 2350 2431272 -1 -1 -2 -9 +6
Hillshade-9am 212 717 +1 +12
Hillshade-Noon 223 391 +1 +12
Hillshade-3pm 142 1465 +1 +10
Horz-Dist-To-Fire-Points 1980 1753490 +1 -3 -1

Table 1: Change in variance introduced by watermarkingu = 581012, v = 10, w = 1, x = 0.01
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Figure 12: Percentage of samples in which the watermarks
could be detected (gap y{z )

level, we took 100 random samples and computed the per-
centage of samples in which the watermark could be found.
The experiments were performed for z values of 10, 100,
1000, and 10000.

Figure 12 shows the results for significance level x5|}3~2}��
and

}�~2}!}3�
. We see that a watermark can be detected

even if a large fraction of tuples have been omitted from
the original data. For zn| ��}

, the watermark was detected
in 100% of the samples for all selectivities. As expected,
when z increases (i.e. less tuples are marked), we need a
higher percentage for selectivity (i.e. a larger percentage
of tuples from the relation) to be able to detect the water-
mark. A slightly bigger sample is needed for smaller x
for the same rate of success in detecting the watermark.
However, a large reduction in the value of x (hence greater

u = 581012, v = 10, z = 1000, w = 1, x = 0.01
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Figure 13: Percentage of samples in which the watermark
could be detected when some of the watermarked attributes
are dropped (sel y�� )

confidence in the test) does not require a large increase in
the minimum size of the sample needed for detecting the
watermark.

Figure 13 shows the effect of omitting watermarked at-
tributes from the database sample. We plot the results forz�| ��} }!}

and x�| }3~2}��
, and vary the number of attributes

dropped. Note from Figure 12 that the watermark could be
detected in 100% of the samples for �5|�� � . To study
the effect of dropping marked attributes in isolation, there-
fore, we started with �	|]� � and tried larger values. For
each selectivity and the number of attributes dropped, we
took 100 random samples and computed the percentage of
samples in which the watermark could be detected. The
desired number of attributes are randomly selected for in-
clusion in a sample. The figure shows that we could drop
4 out of 10 marked attributes without losing detectability.
As the number of attributes dropped increases, we need a
larger sample to maintain detectability. Even when 9 out of
10 marked attributes were dropped, the watermark could be
detected in 99% of the trials if the sample contained 25%
of the marked relation.

These results can be analyzed as follows. Let us repre-
sent by � the fraction of marked attributes included in the
sample. Since the probability of finding a matching marked
bit by chance is 1/2, we need to be able to find at least 7
correct marks to detect a watermark at significance levelx$| }�~ }��

. This number increases to 10 for x$| }3~2}!}��
.

Let us represent this number by � . That is, if a sample con-



tains � marked tuples, we can detect the watermark at the
desired significance level (assuming the watermark has not
been corrupted). If the marked tuples were uniformly dis-
tributed and marks were uniformly distributed amongst the
candidate attributes and we could get a truly random sam-
ple, it will be sufficient to have a sample obtained by using
a selectivity � such that ���A�3�#���
� . In the absence of this
fortunate situation, a rule of thumb will be to choose � such
that ���A�3�#���
�!� .

The graphs in Figure 12 and 13 exhibit this behavior.
Consider for instance the case of �;�`��� �!� and �g�$��� ���
in Figure 12. Since �����!�3�#�3�#� , ���(� and ���&��� �3��� , we
need a minimum � of 2.5% for 100% watermark detection.
For smaller values of � , the percentage of samples in which
watermark is detected comes down.

These experiments show that our watermark detection
algorithm is robust even when an attacker drops some of
the tuples or the watermarked attributes from the relation.
Moreover, depending upon the number of attributes omit-
ted and the number of tuples dropped, we can estimate the
size of the sample needed for detecting the watermark.

6 Summary

The following are the major contributions of this paper:� Identification of the rights management of relational
data through watermarking as an important and tech-
nically challenging problem for database research.� Articulation of the desirable properties of a water-
marking system for relational data.� Enunciation of the various forms of malicious attacks
from which the watermark inserted in a relation must
be protected.� First proposal of a watermarking technique specifi-
cally geared for relational data.� Extensive analysis and empirical evaluation of the ro-
bustness and effectiveness of the proposed technique
to demonstrate the feasibility of watermarking real-
life datasets.

In the future, we would like to extend the proposed wa-
termarking technique to also mark non-numeric attributes.
We also plan to address the related problem of fingerprint-
ing [13] [19] to be able to identify the culprit in cases where
there can be multiple sources of piracy.
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