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Abstract— Integrity of digital documents is a very important
issue if they are to be legally binding. Common solutions,
like digital signatures or message authentication codes, are
based on cryptography and require computers or similar
hardware to be produced. They can be trusted only as
long as the employed hardware can be trusted. We present
a complementary scheme for document authentication in
untrusted environment. The scheme combines visual au-
thentication, human-recognizable watermarks, and image
transformations, and is suitable also for larger text doc-
ument. Because it relies on visual cryptography, it requires
practically no computational power on the receiver side.
To prevent potential attackers from obtaining signatures
without author’s knowledge, we propose using a simple
challenge-response protocol.

Index Terms— visual authentication, digital documents, wa-
termarks, text deformations, CAPTCHA

I. INTRODUCTION

Today, in the industrialized world, most documents are

produced electronically, either completely or in large part.

Not only is the production process more comfortable, but

handling electronic documents—editing, storing, retriev-

ing, searching, disseminating etc.— is much easier than

for paper-based documents. However, paperless office,

although envisioned decades ago, has not yet come to

exist. For documents deemed “important”, the hardcopy

is still the prevalent medium. Although the notion of

“importance” might vary from person to person, the

consensus seems to be that documents of legal relevance

are important. Simply put, any legally relevant document

worth writing down is worth writing it down on paper, in

non-electronic form. Let us look at some examples where

both electronic and hardcopy documents are used:

• Many banks today offer online banking, which is

faster, cheaper, and more convenient than traditional

hand-filling of transfer forms or writing checks. Even

the forms for opening an account can typically be

downloaded over the Internet. However, to open an

This paper is based on “Visual Document Authentication Using
Human-Recognizable Watermarks” by I. Fischer and Th. Herfet which
appeared in the Proceedings of ETRICS 2006, Springer-Verlag LNCS
3995 c© 2006 Springer-Verlag. In this paper a more formal presentation
of the protocols is provided, new experimental results discussed, and an
improvement proposed.

account, one will usually have to print the forms,

hand-sign them and return them to the bank.

• Some countries (e.g. the United States) have visa

applications forms available on the Internet. They

can be filled out through a browser and a PDF file

is automatically produced. Nevertheless, in order to

apply for a visa, one has to print the file, attach his

or her photograph, sign the form and send it to the

consulate.

• Real estate can be found on online market places

and acquisition negotiated per e-mail. But, the legal

transfer of ownership is again done using printed and

hand-signed contracts.

What these examples have in common is the signature,

which—traditionally—serves as authentication. Signing a

document is a willful act and one can safely assume that

the signer has read the document before signing it. Also,

signature can be traced back to its originator (or at least

legal practice assumes so), so the signer cannot later deny

his or her knowledge of, and consent with the document.

Therefore, if a document carries the signature known to

belong to a certain person, the following is assumed to

hold:

1) The person whose signature appears on the doc-

ument, an no-one else, gave its consent to the

document, and

2) The person gave his or her consent exactly to the

document, and not to anything else.

These properties are very useful in the case of a dispute.

That the assumptions are not always valid is beyond the

scope of this paper.

For digital documents, the same features should be

provided by digital signatures [1]. User digitally signs

a document by applying a cryptographic function to the

document and a large number—the “private key”—which

is user-specific and which he or she never discloses to

anyone. As long as the key is kept private, the first of

the above assumptions holds also for digital signatures.

As far as the second assumption is concerned, digital

signatures are actually more secure than hand-written

ones, since they become invalid as soon as one bit in the

document is modified. For paper-based documents, such

minor forgeries might pass unnoticed.
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What has been tacitly assumed here is that the user

performs the cryptographic computation himself. Due to

computational complexity, this assumption is not realistic.

In practice, the user will delegate the computation to a

computer or similar cryptographic device. The problem

which arises here is not only whether the device is

trustworthy, but also whether the whole path, from the

user to the device and back, is not compromised. Even

for trusted devices (e.g. smart cards provided by a trusted

authority), the document can be tampered with on its

way to the device and back. If the device lacks sufficient

displaying capabilities, as is typically the case for smart

cards, the user cannot know what exactly the device signs

in his or her name.

A. Attack Scenario

To better understand the danger, consider a typical

scenario:

Alice1 (a human) is writing a document (e.g. a contract

with Bob) on her ordinary, general purpose computer.

In addition, Alice can count on help from a trusted

cryptographic device, which we call “Trent”. He can be

implemented, for instance, as a smart card and a reader

attached to the computer. Trent is the keeper of Alice’s

signature and, upon request by Alice, signs documents

he receives from her. Alice, having written the document,

authenticates herself towards Trent (e.g. by typing in her

PIN) and clicks the “Sign!” button on the computer. The

computer sends the document to Trent, who digitally signs

it and sends the signature back to Alice’s computer2. Alice

sends the document with the accompanying signature per

e-mail to Bob.

Unfortunately, Mallory has installed a malicious pro-

gram on Alice’s computer, which enables Mallory to

modify documents as she wishes without Alice’s knowl-

edge. When Alice sends the document to Trent, Mallory’s

program intercepts it, changes it (or lets Mallory herself

remotely change it), and passes it further to Trent. Trent,

not being aware of Mallory, signs the modified document

and sends this signature to Alice. Due to computational

complexity, Alice cannot check the signature herself and

see that it actually does not fit to her document. She

trusts the signature because she trusts Trent. When she

sends the document and the signature to Bob, Mallory’s

program acts again in the background and substitutes

Alice’s document with the Mallory’s. Consequently, Bob

receives a document written by Mallory, which carries

Alice’s signature. The signature is perfectly valid; there

is no way Bob can notice tampering.

So, although the digital signature algorithm might be

perfect, the trusted device functioning properly, and user

performing all actions as prescribed, this scheme fails

nevertheless. It fails because the protocol involves a non-

trustworthy participant: the general purpose computer. As

long as computers are open platforms, where software

1The actors’ names try to follow the convention from [2]
2Note that digital signatures need not to be incorporated in the

document

can be freely installed, there is no way of completely

preventing such scenarios.

Although preventing tampering with documents is im-

possible without completely trustworthy hardware, includ-

ing the input and output interfaces, detecting tampering

is not. Tampering occurs inside the computer, but its

detection can be done from the outside. Detecting tam-

pering might not be sufficient for Alice to have her work

done: If she needs to send a signed contract to Bob, she

still won’t be able to do it. However, it might prevent

greater damages which might occur if Bob received a

forged contract. Once Alice notices that her document has

been tampered with, she can stop using the compromised

computer, instead of allowing it to send forged documents.

There are two basic approaches to ensuring that only

authentic documents are signed and transmitted:

1) Hardware-based: Making the hardware trustworthy,

so that tampering is either prevented or detected by

the hardware, or

2) Human-based: Providing a mechanism which al-

lows users to detect tampering and prevent further

damage.

Attempts to pursue both approaches already exist, but

have their limitations. An overview is given in the next

two sections. In section IV we describe an approach

belonging to the latter family, based on visual cryptogra-

phy. Differing from previous approaches, it uses visually

recognizable watermarks to ensure the authenticity of the

message. Also, using a simple challenge-response proto-

col is proposed to prevent the attacker from obtaining

valid signatures without authors consent. In section V

we discuss a further improvement to the scheme, which

makes it less dependent on the watermark resolution,

texture, and quality.

II. HARDWARE-BASED APPROACHES

The critical point in the above signing scenario is the

path from the display to the trusted device. The user

wishes to sign the document he or she sees on the display,

but cannot be sure that this same document has arrived

to the trusted device. The hardware-based approach is to

make the display trustworthy3.

A. External Trusted Device With Input and Output Capa-

bilities

One possibility is to equip the external trusted hardware

with the display. Such device could then present the

received document to the user and ask his or her approval

before producing the signature. For approval, there should

also be an input interface, e.g. a small keyboard.

Similar approach is already in wide use for electronic

payment, especially with debit cards. Readers for such

cards include a small LCD and a numerical keypad and

are certified by some trusted authority. In Germany, for

3For completeness, we note that audible feedback, like synthesized
reading of the text, might also serve the purpose, but would not be very
practical.
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example, the authority is the Central Credit Committee

(Zentraler Kreditausschuss, ZKA), which lays down the

criteria which card readers have to fulfill for a certain

application. The highest security level is provided by

Class 3 readers, with a built-in display and a keypad.

Although payment cards are generally not smart cards

and the payment process is technically not digital signing,

the above described readers could equally well be used

in the signing scenario. With such readers, the user

could verify the document on the display before using

the keypad to initiate the signing. As long as the card

reader and the card can be trusted—and this is the

basic assumption behind the technology—this procedure

is perfectly safe. In practice, however, due to physical

limitations on the display, it would be useful only for

very short documents: the reader’s display is usually only

a dozen or two characters wide with only a couple of lines.

This is sufficient for displaying the price or merchant

identification, but not for checking a legal document

stretching over several pages.

Since in the above scenario the document is created

outside the trusted device and displayed on it only for con-

trol purposes, this is only a tampering detection method.

Prevention could be achieved only if the document could

be produced directly on the trusted device. Although it

is technically possible to produce large, high-resolution

secure displays and full-size keyboards, the economic via-

bility of such devices, with the sole purpose of facilitating

digital signatures, is questionable.

B. Trusted Computing

Economic viability could be achieved through an op-

posite approach. Instead of adding human-accessible I/O

capabilities to trusted device, the idea is to extend the

trustworthiness to the whole general purpose computer,

including its keyboard and display. This is the approach

pursued by the Trusted Computing Group (TCG) and

supporting technologies, like LaGrande or TrustZone.

TCG describes itself as a “not-for-profit organization

formed to develop, define, and promote open standards

for hardware-enabled trusted computing and security tech-

nologies, including hardware building blocks and soft-

ware interfaces, across multiple platforms, peripherals,

and devices” [3]. AMD, Hewlett-Packard, IBM, Intel

Corporation, Microsoft and Sun Microsystems, Inc. act as

promoters and the group has over a hundred participants.

As envisioned by the TCG, today’s PC needs only a mi-

nor hardware modification in order to become a “trusted

platform” (TP): A specialized, low-cost cryptographic mi-

crocontroller, called “Trusted Platform Module” (TPM),

is added to the motherboard. Technically, TPM is similar

to microcontrollers employed in smart cards. It consists of

a processor, volatile and non-volatile memory, simple I/O

bus, and a cryptographic coprocessor. Its main purpose is

to produce digital signatures and provide safe storage for

security-relevant data.

The platform relies on the TPM to trace the state and

changes to its hardware and software, so no change can

pass unnoticed. The trust in the platform is achieved

through the chain of trust. At its beginning lies the

first program which executes at power-on. In common

personal computers it is typically stored in the BIOS.

At power-on this program would “measure” the next

program(s) to be executed, by computing a checksum or

some other hash value of its or theirs code. This value is

compared with the one stored and signed by the TPM. The

initial values are stored by some trusted entity, e.g. the

computer manufacturer. If the values match, it means that

the status of the tested program(s) has not changed and

that it or they can still be trusted. Thus the next program

is executed and performs further “measurements” on the

hardware (checking the graphics adapter, the hard disk

etc.) and uses the same mechanism to check if the values

are correct, i.e. that nothing has been changed. Again, if

this test passes, the hardware can be trusted. This chain

unfolds further, over the operating system loader and the

operating system, up to application programs. In each

step, a program checks its successor before executing it.

The security in this approach relies on the trustwor-

thiness of the BIOS (the trust in TPM is given by

definition). As long as the attacker cannot manipulate the

first program executed after power-on, he or she cannot

plant any program unnoticed, including, but not limited

to malicious ones. Since the BIOS is typically stored in

ROM, the attacker would need to have physical access to

the computer in order to tamper with it. Even then, the

computer might be physically protected, e.g. sealed, so

that user could detect unauthorized opening. The Trusted

Computing (TC) specification requires at least that the

BIOS is physically marked so that removing it cannot pass

unnoticed [4], at least for someone who bothers to take a

look inside the computer. For even higher protection it is

envisioned for the future to place the first program to be

executed inside the TPM.

The low cost of TC hardware comes at a price. Since

most of the security is outsourced to software, the soft-

ware becomes increasingly complex. As a consequence,

despite optimistic announcements, TC-enabled products

are not yet available. Customers also seem to be reluctant

about accepting it, as the technology has faced serious

criticism. For example, the German Association of Insur-

ance Industry (GDV) is decidedly against TC, for three

basic reasons: lack of legal framework, lack of control

possibility and high misuse potential [5]. It is feared,

among other things, that through TC manufacturers might

coerce users into using or not using some software or

hardware, and that private information might be indirectly

disclosed without user’s knowledge. Also, it is not clear

how backups would work and what happens in the case

of a hardware failure. The TCG has attempted to dispel

the fears [6], but their success remains unknown. That

the fears are not baseless is indirectly confirmed by the

TCG best-practice manual [7], which denounces such

misuses of the TC technology. The manual is, however,

only a recommendation, and compliance with it cannot

be enforced. Experience shows that weaknesses tend to
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be exploited.

Notice that TC in its current form enables cautious

owner to detect manipulations on his or her computer.

It does not differentiate between a “good” manipulation

(for example, adding a new hard disk) and “bad” one

(infection by a virus) and leaves the action decision to

the owner. It also does not protect remote users (e.g. his

or her communication partners) from willful abuse by the

computer’s owner. If the owner alters the BIOS, remote

users have no way of knowing it. Therefore, to achieve the

level of trust needed for legally binding documents, TC

platforms will have to be complemented by technology

which is unconditionally trusted, such as external smart

cards.

III. DETECTING TAMPERING USING VISUAL

CRYPTOGRAPHY

A. Visual Cryptography

Beside their technical drawbacks, the above approaches

have to overcome the psychological barrier of users reluc-

tant to buy and install new hardware. An appealing, low-

tech alternative for short messages is visual authentication

[8]. The idea was originally developed for authentication

of electronic payments and is based on visual cryptogra-

phy [9].

Visual cryptography is a perfectly secure cryptographic

method based on a visual secret key. While the encryption

is computationally intensive and is done by the computer,

the decryption can be performed with little conscious

effort by the human visual system. The method is most

easily implemented for encrypting black-and-white im-

ages, and works as follows:

Each pixel in the original image is divided into a block

of N ×N so-called “subpixels”. Technically, this can be

done by scaling the image up by the factor N , simply by

repeating each pixel N×N times, without any smoothing

or interpolation. Thus, for each original pixel in the image,

there will be a block of N×N subpixels. For an originally

black pixel, they will all be black, and white for originally

white pixels. In the next step, in every “white” N × N
block (corresponding to originally white pixels) a random

half of the subpixels is flipped to black4. Such blocks,

looked at from appropriate distance, visually appear gray.

It can be said that the original black-and-white image has

been transformed into another, which visually appears to

be black-and-gray.

The final step is the actual “encryption”. The trans-

formed image is split into two half-images, so-called

“shares”, block-by-block. For understanding it is useful to

consider white subpixels to be transparent, as if printed on

a transparency. For practical implementation, one of the

shares is actually printed on a transparency. Then, each

“white” block is placed on both shares, so that overlaying

them does not change block appearance. But for black

blocks, two complementary half-blocks are produced,

4For this reason N is usually chosen as a multiple of 2, otherwise
there would be an unequal number of black and white subpixels in a
block

each with a different half of the subpixels black, and

placed each on one share. An example is shown in Figure

1.

Each share is, visually and statistically, indistinguish-

able from a random pixel distribution. But, when laid one

over another, the black-and-gray image reappears. If we

denote black subpixels in the shares with 1 and white with

0, superimposing the shares corresponds to binary OR.

This is a visual implementation of the 2-out-of-2 secret

sharing technique [10]. The basic idea of k-out-of-n secret

sharing is to split a message into n “shares”, so that

neither of them alone, nor any combination of less than k
of them, reveal anything about the message, but k shares

combined are sufficient to reconstruct the whole message.

If n = k = 2, this is actually a one-time pad cryptography.

One of the shares (transparencies in our case) is used

as the cyphertext and the other as the key. It is obvious

that one of the shares—the key—can be fixed and agreed

in advance, and the other one computed from it and the

document to encrypt. In the visual cryptography case, this

means producing a transparency with a random-looking

pixel pattern in advance and giving a copy of it to the

communication parties.

B. Visual Authentication

Visual cryptography can be used for authentication,

although not directly. Basically, the idea is for the user

(Alice) and the trusted device (Trent) to share a secret

key—Alice would have it in the form of a pre-printed

transparency, and Trent as a binary file. To allow Alice

to detect tampering, Trent would visually encrypt the

received document and send it back to Alice. She would

visually check if it is identical to the document she sent

him and only if yes, use the signed document. This simple

approach, as described in Protocol 1, however, won’t

Protocol 1 A naı̈ve, non-working attempt to perform

visual authentication.

Require: Trent and Alice share a visual secret key K.

Trent can be unconditionally trusted.

Alice:

Produce a digital text document D.

B ← bitmapImage(D).
Send B to Trent.

Trent:

Receive B′ (possibly identical to B).

E ← visuallyEncrypt(B′,K).
Send E to Alice for authentication.

Alice:

D′′
← visuallyDecrypt(E,K).

if D′′ semantically equals D then

Consider D′ authentic.

end if

work well, because Mallory can be assumed to know the
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Figure 1. An example of splitting a black (left) and a white (right) pixel in two shares for visual cryptography. Clearly, other choices of subpixels
are possible.

content of the document D or can deduce it by applying

character recognition on its bitmap image B, which she

intercepts. If she also intercepts the encrypted image E,

she can deduce the secret key K. Knowing the key, she

can produce any document and properly encrypt it, and

Alice would believe it comes from Trent.

Things get only slightly better if Alice sends the ASCII

text to Trent, and he produces the bitmap, as in Protocol

2. Here, Mallory also needs to know the parameters (font,

size, etc.) for producing the document image B before she

can deduce the secret key K. Considering that the number

of fonts and font sizes which come into consideration is

quite limited, this is not particularly secure. Also, sending

ASCII text is unlikely to be attractive for users who want

their documents to be formatted. Sending their bit-mapped

images is clearly an overkill, because the formatted

document is produced using some document description

language (RTF, PostScript, XML+FO, LATEXcode, PDF...).

If Trent would understand it, he could produce the image

of the formatted document. Unfortunately, the formatting

would then also be available to Mallory, so that the

Protocol 2 is not applicable.

Protocol 2 Slightly improved naı̈ve attempt to perform

visual authentication.

Require: Trent and Alice share a visual secret key K.

Trent can be unconditionally trusted.

Alice:

Produce a digital text document D.

Send D to Trent.

Trent:

Receive D′ (possibly identical to D).

B ← bitmapImage(D′).
E ← visuallyEncrypt(B,K).
Send E to Alice for authentication.

Alice:

D′′
← visuallyDecrypt(E,K).

if D′′ semantically equals D then

Consider D′ authentic.

end if

To achieve security, Trent must expand the document

image with information known to Alice, but not to Mal-

lory, before encrypting it. Several related methods have

been proposed in [8]:

1) Content/Black Areas: The transparency is twice as

big as the document image and is divided into

two areas, “black” and “content”. Trent and Alice

have agreed in advance which area is which, but

Mallory does not know it. Trent constructs the

cyphertext so that the document appears in the

“content” area, and the “black” area is completely

black. If Mallory tries to tamper with the document,

she has 1

2
chance of showing the document in the

wrong area. Security can be further increased by

having more k > 2 areas (and correspondingly

bigger transparencies), where Mallory’s chances fall

to 1

2k
−1

. Also, the transparency has to be a one-time

pad, otherwise the “black” area of the cyphertext

would not change from message to message and

Mallory could simply identify it.

2) Position on the Screen (or, generally, output device):

This is in a sense a generalization of the first

method. The transparency has a marked area in

which the document has to appear and Mallory does

not know where this area is positioned. Mallory

chances fall with the difference between the area

and the document size.

3) Black and Gray: instead of “white”, “gray” is

used. It is encoded by having three quarters of the

subpixels in a block black and one quarter white.

This increases the security even when the plaintext

is known, because for a fixed share of a gray block

there are many ways (four in case of N = 2) of

constructing the other share. So, for every “gray”

pixel in the original image, Mallory has only a

low probability of turning it into black. It does not

hold for the opposite direction, however, so Trent

is required to send the document (black on gray)

and its inverted version (gray on black) to Alice for

checking. The other drawback is that this approach

reduces the contrast, making the result difficult to

visually recognize.

All above approaches require transparencies bigger

than the document and possibly reduce its readability.

These are not grave issues for the originally envisioned

electronic payment application, where the documents

would be short (like the price to pay) and displayed on a

high-contrast screen. However, for documents consisting

of several pages they might be impractical.
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IV. USING WATERMARKS FOR OBFUSCATING THE

PLAINTEXT

It is worth noticing that already visual cryptography

considerably blows up the data needed for processing.

Instead of encrypting simple text, the algorithms now have

to work on images, which are much larger in terms of

memory. Obviously, the images must carry a great deal

of redundancies. Can we exploit them, instead of further

enlarging the images, as the above visual authentication

approaches require?

A method which does not physically enlarge the au-

thentication image was presented in [11]. The idea is

still to enrich the image with information unknown to

Mallory, but, instead of placing them in extra areas,

the information are embedded in the image. A separate,

faint image, serving as watermark is incorporated into

the document. The term “watermark” might be somewhat

confusing, since in the digital world it is sometimes used

for non-perceptible but machine-detectable data hidden

in e.g. audio or image files. For the purpose of this text,

watermarks are understood as digital, but visible, human-

recognizable images—the meaning more closely resem-

bling original, centuries-old, paper-based watermarks. The

proposed method can be summarized as in Protocol 3.

Since it does not require enlarging the image area, it is

Protocol 3 Visual authentication using visual watermarks.

Require: Trent and Alice share a visual secret key K and

a watermark W . Trent can be unconditionally trusted.

Alice:

Produce a digital text document D.

Send D to Trent.

Trent:

Receive D′ (possibly identical to D).

B ← bitmapImage(D′
∨W ).

E ← visuallyEncrypt(B,K).
Send E to Alice for authentication.

Alice:

if E looks like uniform distribution of pixels then

D′′
← visuallyDecrypt(E,K).

if D′′ semantically equals D and D′′ contains W
then

Consider D′ authentic.

end if

end if

more suitable for larger text documents. Beside the secret

key, as in above discussed methods, Alice and Trent share

a watermark: a visual pattern to be incorporated in the

document image. Like the key, Alice has the watermark as

a physical object, for example printed on a piece of paper.

This is necessary because, as in other methods, Alice’s

computer and its connections can be compromised. Trent

is a machine—an external hardware device (a smart card,

a USB stick...), a trusted remote computer (in Alice’s

LAN, connected over Bluetooth...), or a tamper resistant

program [12] running on the user’s PC—and, naturally,

has the watermark in a digital form.

Once Alice is convinced that D′ (the document re-

ceived by Trent) is authentic, she can request Trent to

digitally sign it and send her the signature. To prevent

Mallory from impersonating Alice and sending the request

for signature for a forged document, using a simple

challenge-response protocol has been proposed in [11].

In addition to key K and watermark W , Alice and Trent

share an authorization code C, for example a short (4-8

characters) alphanumeric string. Alice requests the signa-

ture by sending the code to Trent, as Protocol 4 shows.

Figure 2 visualizes the workflow and shows possible

Protocol 4 Authorizing the signing process.

Require: Trent and Alice share a visual secret key K, a

watermark W , and a short alphanumeric code C. Trent

can be unconditionally trusted.

Alice:

Run Protocol 3 to produce document D and check if

it has reached Trent unmodified.

if Trent has received authentic D then

Send C to Trent.

end if

Trent:

Receive C ′ (possibly identical to C).

if C ′ = C then

S ← sign(D).
Send S to Alice.

end if

attack points for Mallory. To prevent replay attacks, each

combination (W,C) should be applied only once. As a

consequence, for signing multiple documents Alice and

Trent need a whole list of watermarks and codes. Such a

list is just a more sophisticated variant of a Transaction

Authorization Number (TAN) list, often used in Europe

for online banking. It can be produced and distributed

in a similar way as the TAN lists, by the entity which

manufactures or distributes Trent. Alice could get her list

per post and Trent electronically and in encrypted form.

An example for the document, watermark, transparency

(key), encrypted document (produced by Trent), and the

superposition result is shown in Figure 3.

A. Attacks on Watermarked Documents

Watermarking the document is a process of binary

ORing the two (here we use the convention black=1 and

white=0). Consequently, black pixels remain unchanged,

only white pixels in the document can by ORing be-

come black. Since Mallory knows the document and the

encrypted watermarked image, she can deduce how the

black pixels in the document (but not in the watermarked

image!) are encoded, i.e. split into shares. But, this would

not be enough to allow her to meaningfully modify it.
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Alice   Alice's computer    (Mallory?)      Trent 
 
 
     produce the document 
 
 
 
     initiate signing 
 

   (possibly manipulate 
    the document) 

 
 
 
       pass the document 
 
 

incorporate the watermark 
 
split the result into 
two shares 

 
send one share back 

 
 
 

   (possibly manipulate 
    the share) 

 
 
 

print the share or 
check it on the screen 
to see if it looks random 
 
 
if yes, superimpose the  
other share and check 
if it contains the cor- 
rect watermark 

    
 
if yes, type in the cor-  
responding code 

    
       pass the code 
 

check the code and, if 
correct, sign the document

send back the signature 
 

 

Figure 2. Document authentication protocol with possible attack points for Mallory

Figure 3. An example of visual authentication through watermarking. Top row: the image of the original document (middle) and the watermark
image (right). Bottom row, from left to right: the share agreed in advance to serve as the secret key (transparency for the human user); the share
produced by the signing device (“Trent”); and the watermarked and encoded document. Each share alone looks like a uniform distribution of black
and white pixels, but overlaid they produce recognizable document with the watermark.
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She would need to be able to turn black document pixels

into white, and white into black, without damaging the

watermark.

Consider the task of turning a black document pixel

d = 1 into white. Through watermarking the pixel is

ORed with the corresponding watermark pixel w, which is

unknown to Mallory. She knows the superposition result,

d∨w = 1 and how it is coded in shares, but, not knowing

w, cannot deduce d ∨ w. She has two options:

1) She can force the corresponding block to “white”,

by inverting its share, or

2) flip a coin and decide whether to leave it as it is or

invert it.

In both cases she is guessing the value of w and her

chances depend on the distribution of white and black in

the watermark. For watermarks with an equal number of

black and white pixels Mallory’s chances of guessing one

random pixel are 1/2.

In turning a white document pixel into black, Mallory

has similar problems. She knows d = 0, but not whether

d∨w is 0 or 1. If she decides to invert the corresponding

share, she again runs into the risk of distorting the

watermark. What she can do is to force an illegal share,

by making all subpixels in the block black, but such

tampering with the cyphertext is easily spotted before

overlaying it with the secret key.

It was argued that in a typical document, where a char-

acter is composed of dozens of pixels, Mallory’s chances

of tampering with the document without distorting the

watermark would be negligible. However, our experiments

show that watermark is a very sensitive issue, where pixel

distributions vary considerably across the image. Whether

Mallory’s chances are good or bad depends strongly on

the watermark, the place, and scope of modification. An

example is shown in Figure 4. Mallory tries to change the

account number from #12345678 to #12345679—a minor

change in terms of Hamming distance, but which might

be very important semantically—by randomly flipping

pixels. Because the watermark is quite “noisy” at the

position where the manipulation takes place and because

it is embedded only as a faint background image, the

tampering is visually not easy to detect. Only a careful

observer will notice that there is something wrong with

the digit 9.

Figure 5 shows the other type of attack, where Mallory

produces an illegal share by forcing desired pixels to be

black. It is practically impossible to detect the forgery

by looking on the watermarked image, but the share is

clearly illegal.

For comparison, Figure 6 shows cases where Mallory

makes a bigger modification on the document.

V. TEXT DEFORMATIONS INCREASE SECURITY

Attacks like the above are possible because Mallory

knows exact position of every pixel she wishes to modify.

A straightforward idea to prevent them is then to let Trent

move the text around in the document before applying

visual cryptography. The idea was proposed in [11] in

the context of applying one key for more than one

authentication. Here we extend it by allowing more visible

text transformations, for the purpose of preventing attacks

even in the case of weak watermarks.

The transformations can include translations, rotations,

or even distortions. The distortions are not so big to

prevent the user from recognizing the text, but can be big

enough to prevent current computers. This is the principle

behind visual CAPTCHAs [13], which many Internet ser-

vices apply to block robots or agents from consuming the

resources, while granting access to humans. CAPTCHAs

can also be used for document authentication [14]. In

the context of this paper, we use text transformations

as an additional security feature in visual authentication.

They carry no information for the user and need not

be agreed in advance between him/her and Trent. The

authentication protocol is almost identical to Protocol 3,

the only difference being that Trent, after producing the

bit-mapped image B of the document and before visually

encrypting it employs a transformation T .

Figure 7 shows an example of such visually trans-

formed document and the result from attack attempts.

Notice that Mallory knows that the text is being trans-

formed, and even knows which kind of transformation is

used (“water ripples” in this example), but does not know

all the necessary parameters.

At this point, we might ask ourselves if the watermarks

are necessary when text transformations are applied?

Couldn’t we say that the transformation serves as a kind

of “watermark”? In some cases, particularly for densely

written text, this might be true. But notice that transfor-

mations transform only the text, but not the empty areas

inside and outside of it. On the other hand, watermarks are

most useful in empty areas, where they are not covered

by text. Actually, watermarks and transformations are

complementary.

VI. CONCLUSION

Numerical (as opposed to visual) cryptography offers

a high level of protection for digital documents and is

essential in ensuring an efficient and secure electronic

communication. However, due to its computational com-

plexity, users have to rely on machines (computers or

specialized hardware) for applying it. A big challenge

has been securing the path from the human to the cryp-

tographic machine. This path is currently the weakest

link, which limits the security of the whole cryptographic

chain.

In this paper, a method for document authentication

between the cryptographic module and the user was

presented. The method utilizes visual cryptography, visual

text transformations, and watermarking. It requires no

additional computer hardware and is very easy to imple-

ment using existing infrastructure. This method compares

favorably to previous similar methods, because it uses

the shared secret area (the transparency) more efficiently.

This makes it much more suitable for authentication of

larger documents, like full-page contracts. The proposed
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Figure 4. An example attack with randomly inverting shares of pixels that need to be manipulated. The forged document share (left) is visually
indistinguishable from the original one and even in the superposition with the key the tampering is hard to see (right).

Figure 5. An example attack, where the attacker, for the pixels he wants black, forces all subpixels in the share to be black. The result (right) is
almost indistinguishable from a legitimate document, but its encrypted share (left) is illegal, because the pixel distribution is not uniform. The digit
9 is almost completely recognizable in it.

Figure 6. An attack example, where Mallory attempts large modifications on the document. Left: Result of a “random flipping attack”. The text
is hardly recognizable and tampering is obvious. Middle: Result of a “forced black” attack. The text looks much better and tampering is harder to
spot. But: tampering becomes obvious if one takes a look on the document share produced by Mallory (right).

challenge-response mechanism prevents the man-in-the-

middle attacker from obtaining a signed document with-

out author’s approval. Assuming that the author would

not approve signing a forged document, the attacker is

prevented from obtaining a valid signature for it.

Notice that the method is intended strictly for local use,

between the user and his or her cryptographic module.

For communication with remote users, classical numerical

cryptography is still needed [15]. Also, the method is not

intended for to be used among arbitrary number of users

and trusted devices. It essentially relies on symmetric

cryptography, so the number of key sets (staples of

transparencies and watermarks) increases linearly with

the number of user per trusted device. However, for the

envisioned application—securing the channel between a

user and her trusted device—there should be only one key

set per user.

An implementation issue that needs to be clarified is

key distribution and management. On the user’s side, the

method requires a list of watermarks and a staple of trans-
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Figure 7. Example of visually transformed text and attacks on it. Mallory introduces only a minor modification, trying to change one digit in
the account number. Left: Transformed and watermarked original document. Middle: Result of a “random flipping attack”. The text is hardly
recognizable and tampering is obvious. Right: Result of a “forced black” attack. The text looks better, but tampering is still visible. As in above
examples, tampering becomes obvious if one takes a look on the document share produced by Mallory (not shown).

parencies. To achieve optimal security, a new watermark

and a transparency are needed for authenticating each

document page. The watermarks, which appear only faint

over the document, can be printed in high contrast, but

reduced in size, so that a dozen or two fit on a sheet of

paper. The transparencies, however, have to be full-sized

and would probably be distributed in a form of a booklet.

They both must be distributed in a physical, and not

electronic form. Otherwise, an authentication mechanism

would have to be provided, which is a recursion of

the problem we try to solve. The distributing authority

would be electronically distribute the corresponding files

to cryptographic modules. The security and confidentiality

would be guaranteed by classical cryptography.
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