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Abstract

In the Anthropocene1, watershed chemical transport is increasingly dominated by novel 

combinations elements, which are hydrologically linked together as ‘chemical cocktails.’ 

Chemical cocktails are novel because human activities greatly enhance elemental concentrations 

and their probability for biogeochemical interactions and shared transport along hydrologic 

flowpaths. A new chemical cocktail approach advances our ability to: trace contaminant mixtures 

in watersheds, develop chemical proxies with high-resolution sensor data, and manage multiple 

water quality problems. We explore the following questions: (1) Can we classify elemental 

transport in watersheds as chemical cocktails using a new approach? (2) What is the role of 

climate and land use in enhancing the formation and transport of chemical cocktails in 

watersheds? To address these questions, we first analyze trends in concentrations of carbon, 

nutrients, metals, and salts in fresh waters over 100 years. Next, we explore how climate and land 

use enhance the probability of formation of chemical cocktails of carbon, nutrients, metals, and 

salts. Ultimately, we classify transport of chemical cocktails based on solubility, mobility, 

reactivity, and dominant phases: (1) sieved chemical cocktails (e.g., particulate forms of nutrients, 

metals and organic matter); (2) filtered chemical cocktails (e.g., dissolved organic matter and 

associated metal complexes); (3) chromatographic chemical cocktails (e.g., ions eluted from soil 

exchange sites); and (4) reactive chemical cocktails (e.g., limiting nutrients and redox sensitive 

elements). Typically, contaminants are regulated and managed one element at a time, even though 

combinations of elements interact to influence many water-quality problems such as toxicity to 

life, eutrophication, infrastructure and water treatment. A chemical cocktail approach significantly 

expands evaluations of water-quality signatures and impacts beyond single elements to mixtures. 

High-frequency sensor data (pH, specific conductance, turbidity, etc.) can serve as proxies for 

chemical cocktails and improve real-time analyses of water-quality violations, identify regulatory 

needs, and track water quality recovery following and extreme climate events. Ultimately, a 

watershed chemical cocktail approach is necessary for effectively co-managing groups of 

contaminants and provides a more holistic approach for studying, monitoring, and managing water 

quality in the Anthropocene.
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Introduction

The Anthropocene has typically been characterized by an acceleration of climatic, 

biological, and geochemical signatures of human activity preserved in the geologic record 

beginning in the mid 20th century (Waters et al., 2016). While the term Anthropocene is 

widely used, it is still being debated in the scientific community as to whether it is a distinct 

geological epoch and exactly when it begins. The Anthropocene can be characterized by an 

increase in the transport of novel combinations of inorganic and organic chemicals (i.e., 

chemical cocktails) in fresh waters over time (Bernhardt, et al. 2017a; Kaushal et 2018). For 

example, nonpoint source pollution in human-impacted watersheds has increased in recent 

decades resulting in trends in concentrations of carbon, nutrients, salts, and metals (Foley et 

al., 2005, Kaushal et al. 2005, Raymond et al. 2010, Sinha et al., 2017, Seitzinger and 

Phillips 2017, Dugan et al. 2017, Kaushal et al. 2017). In addition to increased nonpoint 

source pollution, the frequency of floods and droughts has increased (Mallakpour and 

Villarini 2015, Archfield et al., 2016). The interaction between nonpoint source pollution 

and climate variability (Milly et al., 2008) amplifies watershed storage and release of most 

inorganic and organic chemicals, which can be observed in water-quality records (e.g., 

Kaushal et al., 2014, Loecke et al., 2017). Yet, the transport behaviors of distinct chemical 

mixtures within watersheds is controlled by a complex suite of hydrologic interactions 

between atmospheric deposition, geology, landscape modification, and water management 

(e.g., Bernal et al. 2012, Kaushal and Belt 2012, Likens 2013). Human interactions simplify 

drainage networks, accelerate chemical weathering, and magnify fluctuations in redox 

potentials across soil/sediment-water interfaces. All of these interactions enhance the 

formation of novel elemental combinations in watersheds, which we herein define as 

‘chemical cocktails’. These chemical cocktails are novel because human activities 

significantly: (1) enhance elemental concentrations above natural background conditions and 

(2) increase the probability for biogeochemical interactions and/or shared transport of 

elements along hydrologic flowpaths.

A watershed chemical cocktail approach accounts for converging sources, flowpaths, and 

reactivity of novel combinations of elements in the Anthropocene. Most studies in watershed 

science have focused on the dynamics of one or only a few elements in isolation rather than 

the synergistic behavior of combinations of elements (e.g., Burns et al. 1998, Kaushal et al. 

2008, and many other biogeochemical studies). Here, we propose that interactions between 

landscape modifications and climate enhance formation of novel combinations of elements, 

or chemical cocktails, depending upon their physical and biogeochemical properties (e.g., 

particle size, solubility, charge, and reactivity) across both short and long-term temporal 

scales. There is a need to move beyond the ‘black box’ approach of watershed mass balances 

for individual elements to simultaneous examination of multiple element cycles. A 

watershed chemical cocktail approach allows for the characterization of distinct water-
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quality signatures and sources for multiple elements across land use, underlying geology, 

atmospheric deposition, and climate, which has not been fully considered in watershed 

science. A watershed chemical cocktail approach can also be applied to high-frequency 

sensor data to develop surrogates and proxies (e.g., turbidity, specific conductance, pH, 

nitrate, etc.) for characterizing complex chemical mixtures transported in watersheds. 

Chemical Cocktails can also be used to diagnose interactive effects of emerging 

contaminants on ecosystem functions and services and comprehensively evaluate unintended 

consequences or multiple benefits of watershed restoration. Elemental transport and 

transformations don’t function in isolation in nature, and we demonstrate that this is 

particularly the case for chemical cocktails throughout this paper.

Climate and land use change mobilize different chemical cocktails during hydrologic events 

due to increasingly pulsed mixing of water and chemical reactants in soils and aquatic 

ecosystems (Kaushal et al. 2014, Loecke et al., 2017). Drainage simplification, increasingly 

pulsed hydrology, and an increased probability of biogeochemical interactions warrant a 

reconceptualization of watershed transport and transformation processes based on natural 

conditions (e.g., Vannote et al. 1980). Widespread drainage of wetlands and stream 

channelization decreases hydrologic storage and groundwater - surface water interactions, 

which exacerbates drying of soils and oxidation of chemical species during droughts. As a 

result, multiple oxidation by-products (sulfate, nitrate, Fe oxides, Mn oxides) accumulate 

during oxic events, and are then flushed together either as dissolved, colloidal or sediment 

bound chemical cocktails during storms (Burgin et al. 2011, Jenne 1968, Lupon et al., 2016, 

Hartland et al., 2015). Engineered drainage networks designed to efficiently move water 

downstream accelerate combined transport of dissolved carbon, nutrients, and sediment-

bound chemical cocktails of metals (Helsel et al. 1979). In contrast, wetlands and 

stormwater management slow runoff, reduce dissolved O2 during inundation, enhance 

microbial reduction events, dissolution, and mobilization of iron, manganese, phosphorus, 

and arsenic cocktails (Jenne 1968, Hartland et al., 2015). Human-accelerated weathering 

(such as carbonate dissolution from impervious surfaces) enhances formation of novel 

combinations of major ions (Kaushal et al. 2013, Kaushal et al., 2017, Haq et al., this issue). 

Finally, atmospheric deposition interacts with climate and land use to affect sorption and 

formation of organic carbon cocktails transported to streams and rivers (Monteith et al. 

2007, Duan and Kaushal 2013).

In this paper, we propose a new watershed chemical cocktail approach based on a review and 

analysis of evidence from previously published case studies that trace mechanisms of shared 

sources, hydrologic flowpaths, formation, and reactivity of elements along the terrestrial-

aquatic continuum. We explore the following two questions: (1) Can we classify elemental 

transport in watersheds as chemical cocktails using a new conceptual approach? (2) What is 

the role of climate and land use in enhancing the formation and transport of watershed 

chemical cocktails in the Anthropocene? We also explore the potential impacts of an 

increase in frequency, magnitude, and speed of drying-rewetting cycles on the short-term 

and long-term evolution of chemical cocktails.
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Reconceptualizing Watersheds as Sieves, Filters, Chromatographic 

Columns, and Reactors

We propose an approach that classifies both the formation and transport behaviors of novel 

combinations of elements into distinct chemical cocktails based on their solubility, 

reactivity, binding capacity, and dominant phases during hydrologic events. These physical 

and biogeochemical properties influence the formation and transport mobility of groups of 

elements within watersheds, and thus, the timing of the chemical pulse in streams and rivers 

during storms (vertical axis in Figure 1) and their chemical transport distance downstream 

(horizontal axis in Figure 1). Note that the same element can show multiple transport and 

transformation behaviors depending upon redox conditions, biological demand, solubility 

and other environmental factors (Figure 2). All of these factors fluctuate significantly during 

drying-wetting cycles (Figure 2). For example, nitrate and sulfate can show chromatographic 

transport behavior or reactive transport behavior depending upon the degree of ion exchange, 

biological demand, and redox conditions. Similarly, metals can show chromatographic 

transport behavior when mobilized from ion exchange sites or they can show sieved and 

filtered transport behavior when they form organometallic complexes or are present in 

mineral colloid and particulate forms. Thus, examples of chemical cocktails described below 

only represent a typology or spectrum of potential transport behaviors of different elemental 

combinations and mixtures.

Watersheds as sieves - particulate organic matter, mineral solids, and sorption of metal 

oxyhydroxides

Particulate bound or ‘sieved’ chemical cocktail transport behavior describes when particulate 

organic matter (POM), nitrogen, and phosphorus of biogenic origin, iron, aluminum, and 

manganese oxyhydroxides and elements associated with aluminosilicate species (as 

aggregates and coatings, and various other organometallic complexes) are rapidly flushed 

during storms. These particulate chemical cocktails settle out in response to changes in flow 

velocities or are ‘sieved’ out as water flows through soils and sediments (largely physical 

and mechanical separation based on size and density). Therefore, suspended solids and 

particulate bound elements are mobilized in an initial chemical pulse during storms in 

streams and rivers (e.g., Mulholland et al. 1990), typically showing a rapid increase during 

the ascending limb of the hydrograph and rapid decrease on the falling limb, although there 

can be exceptions in timing and hysteresis based on locations of sediment sources 

(Hamshaw et al. 2018). Sediment mobilization is also represented by an increase in turbidity, 

which can serve as a proxy or surrogate for suspended-sediment concentrations, on the 

ascending limb of the storm hydrograph (Figure 3). The magnitude of this particulate-bound 

cocktail pulse and its transport downstream is influenced by sedimentation and adsorption 

rates, while insoluble elements become adsorbed onto clay particles and other organic, 

mineral, and sediment surfaces (Chiarenzelli et al. 2012). Overall, the location of watershed 

sediment sources (stream channel, riparian zone, floodplains, vs. uplands) impacts the 

composition, timing, duration, and travel distance of downstream particulate-bound pulses 

before they are sieved by soils and sediments, through mechanical and physical separation 

based on size, density, and changing particle velocities (e.g., Hamshaw et al. 2018) (Figure 

1).
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Watersheds as filters - colloidal and dissolved organometallic complexes

Transport of sieved and filtered chemical cocktails varies primarily based on particle size 

(particulate vs. dissolved), and the smaller sized colloids and dissolved organic matter are 

further ‘filtered’ mechanically and chemically based on size, density, hydrophobicity, and 

charge as water flows through soils and sediments. Dissolved organic matter (DOM) and 

associated elements bound to DOM molecules represent a secondary pulse of chemical 

cocktails mobilized during floods following coarser particulates. Typically, the pulse in 

DOM is initiated later in a hydrologic event than the pulse in sediment bound chemicals, 

which can be represented by turbidity as a surrogate or proxy. However, the proportional 

relationships between total suspended solids and turbidity and DOC and turbidity can be 

different (Figure 3). Similar to coarser particulate matter, finer colloidal and dissolved 

organic matter form complexes with metals (iron, copper, lead, zinc, mercury), and their 

binding capacity depends on different size fractions, hydrophobic vs. hydrophilic chemical 

fractions of DOM, and sorption potential (Kaushal and Lewis 2005). In response to storms, 

the DOM pulse (and associated elements) is more persistent than the POM pulse over time 

(Figure 3). Firstly, this is because POM typically originates from near--stream sources while 

DOM can be flushed through the catchment from sources further Secondly, this is because 

during the recession limb of the hydrograph, coarser particles settle out rapidly while the 

finer size fractions of DOM can still be mobilized and travel further downstream, until they 

are filtered through smaller pores in soils and sediments.

Watersheds as chromatographic columns - ions are eluted from soil and sediment 

exchange sites

Ions represented by ‘chromatographic’ transport behaviors include H+, Ca2+, Mg2+, Na+, 

and Cl”. These ions can be rapidly flushed in a primary pulse, or ‘first flush’, if they have 

accumulated in nearsurface environments (e.g., acid rain, urban road salts, agricultural 

liming). However, significant pools of these ions are also typically located deeper in soil 

profiles due to chemical weathering of bedrock or mobile ion effects leading to rapid 

transport through the soil profile and eventual accumulation in ground water (Figure 1). 

Therefore, many of these ions show differences in their chromatographic transport behaviors 

based on shallower vs. deeper hydrologic flowpaths. Along deeper hydrologic flowpaths, 

chemical cocktails exhibiting chromatographic transport are diluted on the ascending limb of 

the hydrograph, and there is increased transport during the recession limb from groundwater 

recharge forming a tertiary pulse during storm hydrographs that follows the pulses of 

particulates (sieved) and dissolved organic matter (filtered) chemical cocktails. Specific 

conductance can serve as a proxy or surrogate for most major ions and tends to peak on the 

receding limb of the hydrograph along with nitrate, following pulses in sediment-bound 

chemicals (represented by turbidity) and DOM (Figure 3). As an example, chloride and base 

cations typically peak on the recession limb of hydrographs due to accumulation and 

recharge from deeper groundwater flowpaths. In contrast, hydrogen ions accumulate in 

upper surficial soil horizons from acid rain and peak on the ascending limb of the 

hydrograph due to ion exchange and rapid flushing, which causes a rapid decline in pH 

resulting in episodic acidification (Figure 3). The potential for flushing vs. dilution of 

chromatographic chemical cocktails is based on pool sizes, storage during preceding drying 

periods, and deeper vs. shallower hydrologic flow paths. When dominant pools are 
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mobilized along deeper hydrologic flowpaths, chromatographic chemical cocktails produce 

longer sustained pulses downstream than sieved and filtered chemical cocktails before 

undergoing ion exchange in soils and sediments.

Watersheds as reactors - redox sensitive elements and limiting nutrients

Reactive transport behavior of chemical cocktails such as ammonium, nitrate, phosphate and 

sulfate is strongly influenced by biogeochemical processes occurring throughout drying/

rewetting cycles (Figure 1). Biological demand and redox conditions within the watershed 

and along the drainage network influence pulse magnitude as well as the transport distance 

of these bioreactive ions (Lupon et al. 2016). The importance of ecosystem metabolism as a 

regulator of chemical transport during baseflow conditions in human-impacted watersheds 

can be lost transitorily after storms. For example, there is initial scouring of stream microbial 

biofilms during extreme storms, but photoautotrophic biofilms and chlorophyll a can exhibit 

a rapid recovery (Figure 3). However, stream metabolism and diurnal fluctuations of oxygen, 

nitrate, and other chemicals can recover over weeks following disturbances (Smith and 

Kaushal 2015, Reisinger et al. 2017) (Figure 3). Biological activity contributes to remove 

essential and limiting nutrients that support life from soil water and ground water, and to 

dynamically transform chemical phases from dissolved to particulate to gas. For example, 

elements such as C, N, and S can be “lost” from watersheds as gases due to aerobic 

respiration, methanogenesis, hydrogen sulfide formation, and denitrification (Figure 2). 

Moreover, they can be retained and stored in biomass or in soils as particulate organic matter 

due to biological assimilation and microbial decomposition. This organic matter can then be 

decomposed and mineralized into soluble C, N, P, and S ions.

As mentioned previously, elements can show multiple transport behaviors as chemical 

cocktails depending upon environmental conditions. For example, iron and manganese can 

show reactive transport behavior depending on redox conditions and their presence as 

dissolved vs. particulate forms (Figure 2). Ultimately, reactive transformations such as 

organic matter mineralization, biological uptake, and abiotic/biotic oxidation-reduction 

reactions (in the context of metals, sulfur, and other elements) form pools of elements that 

are sieved, filtered, diluted, or eluted before being transformed again in response to drying-

rewetting cycles (Figure 2). There have been synergistic increases in nutrients such as nitrate 

and dissolved organic carbon in many fresh waters over the long-term, which suggests a 

potential increase in the global significance of biologically reactive chemical cocktails 

(Figure 4). In succession, an increase in long-term total and dissolved organic carbon 

concentrations can also influence transport of complexed metals in fresh waters (sieved and 

filtered chemical cocktails). Below, we discuss examples of formation and different transport 

behaviors of chemical cocktails in watersheds. We use chemical abbreviations for brevity in 

some cases, particularly for ions.

Chemical Cocktails Illustrating Sieved and Filtered Transport Behavior: 

Organic C, N, and P and Organometallic Complexes

Organic matter represents a diversity of chemical mixtures, which transport organic nutrients 

and complexed metals (Buffam et alv 2001; Inamdar and Mitchell, 2007; Raymond and 
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Saiers, 2010; Wilson et alv 2013) that are both sieved and filtered through soils and 

sediments. Changes in DOM cocktails (e.g., dissolved organic carbon (DOC), nitrogen 

(DON), phosphorus (DOP)) and their chemical composition occur with increasing discharge 

and are associated with a shift to shallower flow paths through near surface soils, riparian 

soils, and wetlands with high organic matter content (Boyer et alv 1996; Mei et alv 2014; 

Wilson et alv 2016; McGlynn and McDonnell, 2003; Inamdar et alv 2011 ). Under flushing 

conditions characterized by high flow and high concentration, a shift toward the export of 

more carbon rich DOM (higher C:N), higher molecular weight, and more aromatic material 

has frequently been observed in headwater systems (Hood et al., 2006; Vidon et al., 2008; 

Wilson and Xenopoulos, 2009; Wilson et alv 2016). Accompanying these compositional 

changes, amounts and proportions of labile DOM cocktails can also increase because 

recently flushed aromatic compounds have been identified as more bioreactive and 

photoreactive (greater %DOC reactive to biodegradation and photodegradation) than those 

exported during baseflow (Kaushal and Lewis 2005; Fellman et al., 2010, Fasching and 

Battin, 2012; Lu et al., 2013; McLaughlin and Kaplan, 2013; Coble et al., 2016; Wilson et 

alv 2016). The magnitude, persistence, and transport distance of aromatic compounds 

increases with storm magnitude (Raymond and Spencer, 2015; Creed et al., 2015), which 

has implications for associated organic nutrients and complexed metals.

Many trace metals share similar modes of transport and transformation associated with 

chemical cocktails of DOM and colloids, inorganic clays, or particulates as ligands or metal 

oxides and hydroxides. The close association between organic and inorganic particulates and 

colloids, and metals fosters the formation of chemical cocktails of organometallic complexes 

in watersheds (Figure 1). For example, there are significant positive relationships between 

iron and DOC concentrations during storms in urban watersheds (Figure 5). Rapid pulses in 

total iron and aluminum concentrations during storms in urban watersheds suggest chemical 

transport as oxyhydroxide particulates from surface soils and near stream environments 

more similar to POM and DOM responses rather than deeper flowpaths typical of nitrate and 

calcium ions (Figure 5). Concentrations of dissolved trace elements such as iron, aluminum, 

manganese, and zinc all show correlations with pH and DOC concentrations in aquatic 

environments, which affects solubility and potential for watershed sieving and filtering 

(Gaillardet et al., 2003). In particular, trace metal ions complex with the negatively-charged 

surfaces of organic colloids within the pH range of natural waters, at 4–8 (Dupre et al., 

1999). As such, organic colloids are important carriers of a variety of low-mobility trace 

metals (beyond just iron) in riverine waters and therefore influence coupled geochemical 

transport and transformation (Gaillardet et al., 2003). Because clay and/or DOC content can 

increase during high-flow events, the concentrations of trace elements in the stream water 

also increase during floods (Mohiuddin et al., 2010), and copper, cobalt, manganese, 

chromium, and vanadium all exhibit positive linear relationships with the proportion of 

colloidal DOC in fresh waters.

Inorganic colloids are also important in the formation of chemical cocktails with trace 

metals, which are sieved and filtered through soils and sediments. Inorganic colloids can be 

enhanced during extreme climate events by: (1) reduction and dissolution of iron oxides 

during wetting; (2) precipitation of iron and other metal oxides (manganese) at the oxic 

riparian stream interface; and (3) sorption of DOM by hydrous iron and aluminum oxides in 

Kaushal et al. Page 8

Biogeochemistry. Author manuscript; available in PMC 2019 August 19.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



oxic stream water (McKnight et al., 1990). Metallic oxyhydroxides— especially those 

composed of iron, aluminum, and manganese—are the most common mineral colloids in 

streams and rivers (Gaillardet et al., 2003). Inorganic colloids often occur in close 

association with organic colloids, and also with clay particles in the water column. As such, 

DOC is a useful index of both inorganic and organic colloidal chemical cocktails as 

suggested by the positive relationships between trace element contamination and colloid 

concentrations in streams worldwide (e.g., Dupre et al., 1999; Viers et al., 1997). However, it 

is important to note that mineral colloids can track sediment pulses in some cases. 

Ultimately, the transport behavior of inorganic colloids as sieved or filtered chemical 

cocktails depends largely on their provenance and surface chemistry.

How do land use and climate alter elemental responses and give rise to novel 

combinations?

DOM exported from agricultural and urban watersheds exhibits a greater prevalence of 

microbially derived and protein- like DOM (Baker and Spencer, 2004; Wilson and 

Xenopoulos, 2008; Wilson and Xenopoulos, 2009; Petrone et al., 2011; Hosen et al., 2014; 

Kaushal et al., 2014; Lu et al. 2013 Lu et al., 2014; Williams et al., 2016). These chemical 

fractions of organic matter are important for transport of DOC, DON, and DOP in sieved 

chemical cocktails, which can eventually contribute to eutrophication and hypoxia in 

receiving waters. These changes in DOM quality have been attributed to reduction of the 

relative input of more aromatic DOM from terrestrial sources and increased in-stream DOM 

production and processing due to increased loading of N and P primarily during baseflow 

(Wilson and Xenopoulos, 2009; Hosen et al., 2014; Lu et al., 2014; Kaushal et al., 2014, 

Butman et al., 2015; Williams et al., 2016). Pulses of aromatic DOM with high binding 

capacity for metals are amplified in urban and agricultural watersheds during storm events 

(Kaushal et al. 2014, Smith and Kaushal 2015), and this affects chemical cocktails of DOM, 

organic N and P, and complexed metals (Frost et al. 2015). There are also pulses of aromatic 

DOM and POM from human sources (e.g., polycyclic aromatic hydrocarbons), which are 

rapidly flushed during storms across land use (Figure 6).

Changes in the chemical cocktails of POM, DOM, and inorganic particulates associated with 

urbanization and agriculture alter timing, duration, and transport distance of metals during 

storms (copper, zinc, iron, etc.) (Characklis and Wiesner 1997). Both urban and agricultural 

lands experience elevated levels of POM and labile DOM from nonpoint sources (Kaushal et 

al. 2014), which are associated with a significant fraction of metals loads in streams. 

Riparian zones, streambeds, stormwater ponds, and wetlands can also be important sources 

or sinks of particulate matter and associated copper, zinc, lead, and cadmium chemical 

cocktails depending on streamflow; thus, hydrological and structural alterations of these 

landscape components influence the formation and transport of different organometallic 

chemical cocktails (Bain et al., 2012, Kuusisto-Hjort and Hjort 2013, Frost et al. 2015).
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Chemical Cocktails Illustrating Reactive Transport Behavior: Fe and S 

Compounds

Iron behaves as a transport vector or agent of sequestration for sieved and filtered chemical 

cocktails (as described above), but it can also contribute to formation and transport of 

reactive chemical cocktails (Rosenberg and Schroth 2017). While the majority of iron 

exported to coastal zones from rivers is in the particulate or suspended sediment form 

(Martin and Meybeck, 1979; Poulton and Raiswell, 2002; Schroth et al. 2011), the 

speciation and reactivity of iron in the suspended-sediment load is driven by iron mineralogy 

(Poulton and Raiswell, 2002; Raiswell and Canfield, 2012). Changes in chemical speciation 

of Fe(MI)(oxy)hydroxides and organics regulate the chemical and biological reactivity of 

chemical cocktails coupled with iron, which influence nitrogen, phosphorus, arsenic, carbon, 

and trace metal cycles in coastal waters (sensu Tagliabue et alv 2017). Iron and sulfur 

chemical cocktails are also coupled during drying-rewetting cycles through the formation 

and oxidation of iron sulfides (Burgin et al., 2011, Schoepfer et al., 2014) (Figure 2), which 

sorb other metals and arsenic and co-occur with other metal sulfides such as zinc and copper. 

These iron sulfides accumulate through ‘sulfidization,’ a microbially driven process in which 

sulfate-S is converted to sulfide-S during organic matter decomposition. This produces 

hydrogen sulfide and bisulfide, which react with iron to precipitate minerals eventually 

forming FeS2 (pyrite), creating chemical cocktails associated with mineral sorption 

(Fanning and Fanning, 1989; Leventhal and Taylor, 1990).

Drying events contribute to increases in watershed transport of sulfate and acidity to streams 

during re-wetting due to sulfide oxidation or ‘sulfuricization’ (Kerr et al., 2012). 

Sulfuricization produces sulfuric acid while releasing metal chemical cocktails that were 

previously sequestered as trace components of the soil minerals (Fanning and Fanning 

1989). Furthermore, the decrease in pH causes dissolution of aluminum, leading to 

groundwater and drainage concentrations, which may be high enough to cause toxicity to 

aquatic organisms (Muhrizal et al., 2003, Demas et al., 2004). The pyrite in exposed soils 

and sediments can oxidize depending on drying conditions and droughts, and an oxidation 

front may advance into unoxidized materials along the vertical soil profile (Rabenhorst and 

Valladares 2005). During droughts, sediments containing iron sulfide can be exposed to air 

and oxidized to form ‘active acid sulfate soils,’ which increase acidity to pH<4 and have the 

potential to dissolve chemical cocktails of metals (Creeper et al., 2013, Mosley et al., 2017). 

Thus, the formation and dominant transport modes of reactive chemical cocktails of iron and 

sulfur are driven by both the amount of time a soil spends in either saturated or unsaturated 

conditions and the time-period between drying and rewetting events (Figure 2).

How do land use and climate alter elemental responses and give rise to novel 

combinations?

In the Anthropocene, the most biologically reactive iron pool in floods is likely associated 

with colloidal/nano-colloidal size fractions (Raiswell 2011), much of which is complexed to 

various components of the DOM pool including phosphorus, arsenic, and trace metals 

(Hassellov and von der Kammer, 2008; Warren and Haack, 2001). Altered hydrology in 

human-impacted watersheds can also amplify redox extremes and tighten the coupling of 
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iron and sulfur cycles and formation and transformation of reactive chemical cocktails 

during baseflow. For example, agricultural and urban drainage promote the oxidation of 

reduced species including iron-sulfides (Boman et al., 2008). Groundwater levels are altered 

by ditches or channel incision in agricultural and urban watersheds, causing hydrologic 

drought and sulfuricization or production of sulfuric acid in soils (Boman et al., 2008). In 

addition, production of sulfuric acid can also occur when marine soils (high in sulfate) are 

diked and drained for agricultural production and development (Pons and Vandermo, 1973). 

The formation of reactive iron and sulfur chemical cocktails (and associated metals and 

arsenic) eventually becomes increasingly coupled during floods in agricultural and urban 

watersheds as water tables rise and reducing conditions dominate. As agricultural and urban 

waterways become eutrophic, organic matter increases, O2 is depleted by microbial 

metabolism, and sulfide minerals accumulate (Valdemarsen et al., 2010). These iron sulfides 

are then vulnerable to another repeated cycle of oxidation during drying in soils and oxic 

conditions. An increase in iron and associated chemical cocktails transported in watersheds 

can have implications for increased nutrient and contaminant loads to coastal receiving 

waters (sensu Schroth et al., 2014).

Chemical Cocktails Illustrating Chromatographic Transport Behavior: 

Cations and Anions

Cations and anions are paired in fresh waters to maintain electroneutrality and form distinct 

watershed chemical cocktails based on underlying geology, land use, and atmospheric 

deposition. During storms, chemical cocktails of major ions observed within streams and 

rivers change with respect to baseflow composition either through dilution or concentration 

of multiple paired ions to maintain electroneutrality and charge balance. The major ion 

composition of ground water is controlled by the ion exchange capacity of the soil 

(shallower) and mineral dissolution (deeper). In general, overland and shallow subsurface 

flow during storm events dilute concentrations of major ions in stream (Burns et al. 1998), 

with the exception of chromatographic chemical cocktails vulnerable to flushing (e.g., 

nitrate and sulfate and base cations are mobilized by road salts and ion exchange). For 

example, nitrate and phosphate concentrations can peak on the descending limb of the 

hydrograph during storms in agricultural watersheds in the Northeastern U.S. due to 

increased groundwater contributions, except where artificial tile drainage enhances rapid 

runoff (Figure 7). Nitrate dilution and hysteresis also occurs across urban streamflow due to 

high groundwater nitrate sources (e.g., Kaushal et al. 2008; Koenig et al. 2017; Vaughan et 

al. 2017; Wollheim et al. 2017). However, hysteresis patterns can also be quite variable 

across hydrologic events based on the advent of continuous high-frequency measurements of 

solutes (Vaughn et al. 2017), and such data could be useful in further calibrating the 

chemical cocktail approach for different watersheds in the future. On the other hand, 

concentrations of base cations show strong relationships to specific conductance as a proxy 

(Figure 8). Multiple base cations can also rapidly increase during snowmelt events in urban 

watersheds of the Northeastern U.S. (Kaushal et al. 2017); Na+ increases from road salt and 

Ca2+ and Mg2+ can increase from deicer inputs and/or rapid ion exchange in urban soils 

(Kaushal et al. 2017, Haq et al. this issue). In addition, concentrations of some metal cations 
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also peak and are also mobilized during snowmelt due to ion exchange induced by Na+ in 

road salts (Figure 8).

Although exceptions do exist, concentrations of H+ increase during rain storms in human- 2– 

2+ 2+ + - impacted watersheds whereas concentrations of NO3
−, SO4

2−, Ca2+, Mg2+, Na+, 

DIC−, Cl are typically diluted as chromatographic chemical cocktails. However, differential 

responses to rain storms are due to the magnitude and duration of the storm, antecedent 

precipitation patterns, and relative contributions of different hydrologic pathways. In 

contrast to the other base cations, concentrations of K+ can peak along with DOM during 

storms, even though K+ is under biotic control (Tripler et al., 2006, Hood et al., 2006, Vidon 

et al., 2008). Therefore, base cations increase or decrease as discharge increases depending 

on geology and supply vs. biotic demand in watersheds draining natural land cover (Hill, 

1993; O’Brien et al., 1993).

How do land use and climate alter elemental responses and give rise to novel 

combinations?

Human activities have significantly altered the composition of chemical cocktails of major 

ions on a global scale. Freshwater salinization syndrome due to acid rain, land-use change, 

and climate change has altered chromatographic chemical cocktails of Na+, Ca2+, Mg2+, K+, 

Cl−, HCO3 and H across North America, particularly in the Eastern U.S. (e.g., Kaushal et 

al., 2013, Dugan et al. 2017; Kaushal et al., 2018). Widespread deforestation has resulted in 

increased ion exports to streams including NO3, Cl and K+ salts (Likens et al., 1994, 

Jayawickreme et al., 2011). Interestingly, So/leaching has decreased in 2-response to 

deforestation because the associated decrease in soil pH increases SO4 retention by soils 

(Nodvin et al., 1986, Welsch et al., 2004). Thus, increased NO3 from nitric acid in 

precipitation and microbial nitrification in soils is the primary driver of acidification and can 

mobilize Al to toxic levels (Burns and Murdoch 2005, Baldigo et al., 2005).

Human activities synergistically enhance formation of chromatographic chemical cocktails 

and transport of major ions in streams and rivers (Aquilina et al., 2012, Kaushal et al., 2017). 

Soil acidification from increased soil respiration, fertilizer application and ammonia 

oxidation, and evaporative concentration of irrigation waters are all mechanisms that 

contribute to formation of chemical cocktails of base cations in agricultural lands. 

Agriculture has led to a 50-year increase in chemical cocktails of base cations in rivers in 

France due to accelerated silicate weathering from fertilizer use (Aquilina et al., 2012). 

Similarly, salinization from human-accelerated weathering of geologic materials and 

impervious surfaces and salt pollution has synergistically increased chromatographic 

chemical cocktails of major ions over almost a century in rivers in the U.S. (Figure 9) 

(Kaushal et al., 2005, Kaushal et al., 2017). Mobile anions from acid rain and salt pollution 

(SO4, NO3, and Cl”) further contribute to increased mobilization of base cations via 

maintenance of charge balance through ion pairing and electroneutrality (Mitchell et al., 

2006, Kaushal et al., 2017). Long-term changes in pH can also influence ion exchange 

capacity of soils, hence mobilizing different chemical cocktails of ions (Duan and Kaushal 

2015, Kaushal et al., 2018, Haq et al., this issue). Ultimately, formation and transport of 

chromatographic cocktails are enhanced by cation-anion pairing in waters, ion exchange in 
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soils, salt pollution, and accelerated chemical weathering (Kaushal et al. 2013; Kaushal et al. 

2018).

Chemical Cocktails Illustrating Reactive Transport Behavior: C, N, and 

Greenhouse Gases

Production and transport of greenhouse gases (GHG) and reactive chemical cocktails during 

hydrologic events in human-impacted watersheds are related to temperature, organic matter 

availability, nutrient status, oxygen availability, and redox status (Kaushal et al., 2014). The 

consumption and production of GHG (GHG: CO2, N2O, CH4) is fundamentally linked to C 

and nutrient cycles and dominant heterotrophic processes in soils (Hedin et al., 1998). For 

instance, aerobic respiration produces CO2, while nitrification can lead to N2O production 

(Naiman et al., 2005). Denitrification, or the reduction of NO3 to N2 gas, can also lead to 

the production of N2O gas when denitrification is incomplete due to low pH, fluctuating 

water tables, and limited pools of labile soil organic C (Reddy and DeLaune, 2008). Under 

aerobic conditions, methane oxidation can consume CH4 in soils, while under anoxic 

conditions methanogenesis produces CH4 (Castro et al., 1995; Morse et al., 2012). Redox 

conditions, electron acceptors’ and donors’ availability, temperature, and moisture also 

impact water quality and reactive chemical cocktails by influencing NO3 removal by 

denitrification, PO4 release when iron oxides become unstable under anoxic conditions, and 

methylmercury production when sulfate reduction actively occurs.

Environmental conditions also influence the diffusion of N2O, CO2, and CH4 through the 

soil surface. Under dry conditions, large pores tend to be aerated, which facilitates not only 

the diffusion of oxygen from the atmosphere into the soil, but also the release of GHG 

produced at depth in the saturated zone out to the atmosphere. High CO2, CH4, and N2O 

fluxes can be observed at the soil- atmosphere interface of riparian zones when the water 

table drops due to a combination of O2 diffusion and stimulation of aerobic microbial 

respiration in upper soils and anoxic conditions occurring in deeper soils (Vidon et al. 

2014a; Vidon et al. 2017). This illustrates the formation of different GHG across soil depths 

and their transport through soil pores to the atmosphere (Groffman et al., 2009, Vidon et al., 

2010, Bernhardt et al., 2017b) (Figure 2).

How do land use and climate alter elemental responses and give rise to novel 

combinations?

GHG cocktails are shifting towards more pulsed transport in the Anthropocene. In human 

modified landscapes, organic matter reactivity, redox extremes, temperature, and nutrient 

availability all increase synergistically (Kaushal et al. 2014). Precipitation events stimulate 

N2O and CH4 pulses in riparian zones, streams, and rivers affected by both agricultural and 

urban land uses (Kim et al., 2010, Kim et al., 2012, Jacinthe et al., 2012, Jacinthe et al., 

2015, Sieckzko et al., 2016). Engineered and artificial drainage lead to more rapid (and less 

seasonal) water table fluctuations and associated solute flushes and pulses (Kaushal et al., 

2014). These hydrologic changes alter GHGs production and their subsequent flushing to 

streams (Kaushal et al., 2014). Pulsed transport of GHG cocktails through stream and river 

channels may be significant unrecognized components of watershed N and C mass balances 
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(Beaulieu et al., 2011, Butman and Raymond 2011, Smith et al., 2017). The role of stream 

channels as ‘vents’ from the soil critical zone to the atmosphere warrants further research 

(Smith et al., 2017, Gardner et al., 2016). Further, we hypothesize that headwater areas may 

be more sensitive to GHG fluxes in the Anthropocene because of increased potential for 

drying-rewetting cycles compared to the mainstem of rivers where perennial flow 

predominates. Given that headwaters drain a large area of landmass that aggregates over 

space, their role in regulating GHG fluxes could become more prevalent on a continental 

scale.

The Chemical Cocktail Approach as a Tool for Advancing Watershed 

Science

Developing a unified concept for chemical transport in catchments in response to 

hydrological events

Analyzing how chemical cocktails respond similarly or differently over time can allow us to 

formulate a unified concept for catchment chemical transport in response to hydrologic 

events (e.g., based on common modes of transport, mobility, and reactivity for carbon, 

nutrients, redox sensitive metals, and ionic salts). For example, NO3, DOC, and turbidity 

dynamics all change simultaneously during storms and are linked to hydrologic flowpaths 

and watershed source areas, but chemical species can have different response times (Fovet et 

al. 2018). A unified conceptual model (like the one proposed here) can allow us to include 

novel combinations of elements and how they are formed, transformed, and transported 

across the hydrograph through shallow ground water, deep ground water, riparian corridors, 

and uplands. Testable hypotheses can investigate the relative importance of hydrologic vs. 

biological drivers on formation, transport, and transformation of different chemical cocktails 

across gradients of land use, climate, geology, and atmospheric deposition.

Developing sensor data as proxies for characterizing pulses of chemical cocktails

There has been growing research on applications of in situ water-quality sensors, but not all 

chemicals of interest can be measured continuously. Proxies can be developed based on 

statistical relationships between continuous sensor data in the field and water-quality 

measurements in the laboratory at a less expensive cost and higher resolution than more 

intensive sampling. For example, specific ultra violet absorbance at 254 nanometers (SUVA) 

can be measured in the field with a spectrophotometer at higher frequency, and may be a 

robust surrogate or proxy for Hg and methylmercury in some watersheds along with 

fluorescent dissolved organic matter (FDOM) (Burns et al. 2013, Vidon et al. 2014b). 

Specific conductance data can be a robust proxy for chromatographic chemical cocktails 

such as Cl”, Ca2+, Mg2+, Na+, etc. (Figure 8), while turbidity can be a proxy for heavy 

metals in organometallic complexes and organic contaminants. All surrogates and proxies 

need to be individually calibrated based on changes in relationships across streamflow and 

watershed state factors such as climate, underlying geology, topography, human activities, 

and time. High frequency characterization of elemental peaks, times of concentration, 

recession curves, and fluxes for different chemical cocktails can reveal changes in sources, 

transport, and transformation within watersheds. The magnitude, frequency, and persistence 
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of different chemical cocktail pulses are still unknown for many watersheds at finer temporal 

scales. This information is critical for identifying water-quality violations, characterizing 

ecosystem resilience and recovery from extreme events, and evaluating the success of 

watershed management and restoration outcomes.

How do watershed chemical cocktails interact to influence ecosystems and water-quality 

problems?

Interactions between chemical cocktails often produce environmental effects greater than the 

sum of individual elements, and watershed chemical cocktails can be linked to the most 

pressing problems in modern water quality. However, the causes and consequences of water-

quality problems often focus on one or a few elements, and they are considered in isolation 

of potential interactions with other groups of elements. For example, chemical cocktails 

showing sieved and filtered transport behaviors (such as POM and DOM) can be linked to 

brownification and transport of heavy metals and organic contaminants (sensu Kritzberg et 

al. 2012, Sarkkola et al. 2013, Kritzberg et al. 2014). Chemical cocktails showing 

chromatographic transport behavior can be linked to salinization and influence acid- base 

status of fresh waters (acidification vs. alkalinization) based on different ion mixtures 

(Kaushal et al. 2013, Kaushal et al. 2018). Finally, reactive chemical cocktails can be linked 

to eutrophication, hypoxia, and increased solubility of mineral oxyhydroxides and 

mobilization of associated contaminants. By recognizing novel combinations of elements 

holistically as chemical cocktails, we gain an understanding of how water-quality problems 

relate to each other and how increases in one chemical cocktail (e.g. combinations of 

elements influenced by salinization) can affect mobilization of another (e.g. combinations of 

elements influenced by brownification or eutrophication) (Duan and Kaushal 2013, Haq et 

al. this issue).

Managing multiple chemical cocktails and contaminants in a changing environment

Managing multiple water-quality problems presents trade-offs because no single best 

management practice is a panacea in the Anthropocene. In fact, one form of water quality 

management can exacerbate management of another due to differences in fate and 

transformation. For example, anoxic conditions and organic matter are needed to foster 

denitrification and nitrate removal in riparian zones, but anoxic conditions and low redox 

potential enhance desorption of P from Fe and Mn oxyhydroxides (sensu Duan et al. 2016). 

Similarly, wetlands are effective at denitrification, but they are also hot spots of 

methylmercury production (St. Louis et al. 1994). Finally, imbalances in pollution 

management strategies targeting only one element can influence changes in elemental ratios 

of N:P:Si:Fe and harmful algal blooms (Paerl et al. 1997). The watershed chemical cocktail 

concept implies managing novel combinations of elements based on their potential for 

transport and transformation in relationship to environmental conditions. Water-quality 

management can be optimized for chemical cocktails instead of individual compounds based 

on knowledge of shared sources, outcomes, and tradeoffs. Models of contaminant toxicity 

can explicitly consider chemical cocktails and their interactive effects. Finally, ecosystem 

restoration strategies can consider managing chemical cocktails instead of individual 

elements, and anticipate effects of contrasting watershed management on transport and 

transformation of chemical cocktails.
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Formation, Transport, and Transformation of Watershed Chemical Cocktails 

in the Anthropocene

Overall, a watershed chemical cocktail approach suggests that novel combinations of 

elements have transformed the chemistry of fresh waters in the Anthropocene. Over the past 

100 years, there have been trends in novel combinations of elements showing different 

transport behaviors in fresh waters (Figure 9). Long-term increases in organic carbon and 

metals concentrations (e.g., sieved and filtered transport) provide information about the 

effects of changing atmospheric deposition, climate change, and/or changing ecosystem 

retention functions of floodplains and riparian zones. In headwaters, watershed retention 

processes such as sieving and filtering can be overwhelmed during storm flow when there is 

a high degree of hydrologic connectivity between landscapes and aquatic systems, and 

chemicals pass through watersheds faster than they can react. Further downstream, sediment 

fluxes from land to aquatic networks have increased, but much of this sediment is often held 

on the continents behind dams shifting sieving and filtering functions downstream along 

fluvial networks and establishing new reactive surfaces (effects of dams on sediment 

transport have been discussed extensively in other publications). As impoundments fill with 

sediment, mobilization may occur during large storms, representing a shift in behavior of 

sediment-associated elements and sieved chemical cocktail transport behavior along river 

networks (Zhang et al. 2013). Furthermore, a shift towards more reactive DOM in human-

impacted streams alters their role as bioreactors, and stimulates microbial metabolism and 

formation of reactive GHG chemical cocktails. Finally, increased chromatographic transport 

behavior occurs due to freshwater salinization syndrome and human- accelerated weathering 

(Kaushal et al. 2018) (Figure 9). These coupled transport and transformation dynamics help 

advance and redefine our understanding beyond minimally disturbed river networks 

(Vannote et al 1980).

Many questions still remain regarding how land use and climate change will modify the 

formation, transport, transformation, and ecological stoichiometry of different chemical 

cocktails and ecosystem impacts. Chemical cocktails in fresh waters are likely reflecting a 

warming climate over large geographic scales and temperature influences biological and 

weathering reaction rates. Increasing water temperatures, increasing solutes, increasing 

dissolved inorganic carbon, and increasing pH can shift the role of inland waters as sources 

and sinks of CO2 and other greenhouse gases (Kaushal et al. 2010, Kaushal et al. 2018). 

Characterizing concentrations, compositions, and consequences of varying chemical 

cocktails across local, regional, and global scales allows us to develop more coordinated 

research, management, and monitoring approaches. A reconceptualization of watershed 

transport and transformation processes as chemical cocktails is critical to holistically 

managing freshwater ecosystems in the Anthropocene.
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Figure 1. 
Conceptual model illustrating how groups of elements can be hydrologically linked as 

‘chemical cocktails’ and transported along fluvial networks of the Anthropocene depending 

on the timing of the peak (before or after the hydrograph peak), and the distance travelled 

along the fluvial network. Chemicals showing ‘sieved’ behavior such as mineral solids, 

particulate organic matter (POM) and organometallic complexes usually lead to primary 

pulses because sources are in surficial soil layers; they travel short distances due to 

sedimentation and adsorption or ‘sieving’ through soils and sediments. Secondary pulses 

correspond to elements showing ‘filtered’ transport behavior such as colloids, dissolved 

organic matter (DOM) and bound metals. These have a smaller particle size as dissolved 

chemicals compared to sieved transport. Consequently, they are more persistent, and can 

travel longer distances than sieved transport before eventually being filtered through soils 

and sediments based on size, hydrophobicity, and sorption. Chemicals showing 

chromatographic transport behavior such as cations and anions can have the highest mobility 

as they are either eluted or diluted from different catchment pools. The timing of transport 

from these pulses will depend on the size and location of sources within watersheds and on 

the soil ion-exchange capacity. The pulse and mobility of reactive chemical cocktails, mostly 

biologically essential and limiting nutrients and redox sensitive elements, further depend on 

biogeochemical transformations and biological assimilation within watersheds and fluvial 

networks. Thus, reactive chemical cocktails can exhibit shorter travel distances than pure 

chromatographic transport behaviors of elements.
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Figure 2. 
Conceptual model illustrating how reactive chemical cocktails vary in formation and 

transport along the drying-rewetting cycle with water table, pre vs. post precipitation 

conditions, and soil redox conditions. Sources and sinks of reactive chemical cocktails are 

stratified vertically along the soil profile and longitudinally along the drainage network as 

water moves along elevation gradients (Grimm et al. 2003). During floods, peaks in 

greenhouse gas production may occur due to inundation and decreases in redox potential. 

During hydrologic contractions, the riparian groundwater table can become vertically 

disconnected from superficial soil layers. As the groundwater table lowers, previously 

reducing zones become oxidized and rates of mineralization increase, which produces an 

abundance of oxidized products such as nitrate, sulfate, iron and manganese oxides, and 

others. As soils rewet, anaerobic greenhouse gas production increases again and oxidized 

products and DOM can be quickly mobilized (DOC, NO3, SO4, PO4, Fe and Mn oxides, 

etc.). During rewetting periods, old water enriched with reduced forms of elements (e.g., Fe, 

Mn), weathering products (e.g., Ca, Mg, K, Na), and solutes concentrated by 

evapotranspiration are also pushed out laterally in ground water. Thus, elements are 

sequentially reduced or oxidized while moving from uplands to streams, starting the drying-

rewetting cycle over and over again.
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Figure 3. 
Changes in water quality during Hurricane Patricia in the Passaic River, New Jersey, USA. 

The responses in water quality are typical of urban streams and rivers in the Mid-Atlantic 

U.S. region. Sediment bound chemicals and dissolved organic matter form a primary pulse 

before they are retained by being ‘sieved’ and ‘filtered’ as they pass through soils and 

sediments. Reactive chemical cocktails are highly influenced by stream metabolism and 

redox conditions. Microbial biofilms are scoured during floods and then gradually recover 

afterwards contributing to increasing amplitudes in diurnal cycles of oxygen and nitrate. 

Chromatographic chemical cocktails are typically diluted during the peak in the hydrograph 

and then increase on the receding limb as groundwater recharge increases in importance. An 

exception can be H+ ion, which can be rapidly flushed from soil exchange sites and 

contribute to episodic acidification and a decrease in pH during storms. Data are courtesy of 

USGS gauge 1389005.
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Figure 4. 
There has been an increase in chemical cocktails of nutrients and organic carbon in global 

fresh waters during the Anthropocene. (Top Panel) Nitrate concentrations (N-NO3 in mg/L) 

from rivers around the world from 1902 to 2014. Before the 1950s these records show 

concentrations below 2 mg/L. After 1950, nitrate concentrations increased coinciding with 

events such as the production of chemical fertilizers for modern agricultural practices (US 

EPA 2015). North American datasets include the Potomac River, USA, Delaware River, 

USA, Schuylkill River, USA (Jaworski, unpublished data), and the Mississippi River, USA 
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(Goolsby and Battaglin 2001). European datasets include the Loire River, France (Minaudo 

et al., 2015), Seine River, France (Meybeck et al., 2016; Romero et al., 2016), Rhine at 

Bimmen/Lobith, Germany (European Environment Agency 2012), River Ythan, Scotland 

(European Environment Agency 2012), and River Tyne, England (European Environment 

Agency 2012). Asian datasets include the Lower Changjiang River at Hankou and at Lake 

Dongting, China (Duan et al., 2007). (Bottom Panel) Monthly and seasonal organic carbon 

concentrations (in mg/L) from surface waters in the northeastern United States and United 

Kingdom from 1988–2003. United Kingdom datasets of upland catchments show significant 

upward trends potentially resulting from changes in discharge, increased temperatures, and 

changes in land management (Worrall et al., 2004). Hudson River data also demonstrate 

upward DOC and DOM trends (Findlay et al. 2005), potentially linked to changes in use, 

nitrogen, and CO 2 enrichment (Evans et al., 2005). WebPlotDigitizer was used to extract 

data from graphs when it was not available in text form (Rohatgi 2017).
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Figure 5. 
(Top Panel) Relationships between total iron concentrations (particulate plus dissolved) and 

dissolved organic carbon (DOC) following Superstorm Sandy in urbanized streams of the 

Baltimore LongTerm Ecological Research site. (Middle Panel) Relationships between total 

dissolved nitrogen and dissolved organic carbon (DOC) following Superstorm Sandy in 

urbanized streams of the Baltimore LongTerm Ecological Research site. GFGL and GFGB 

are suburban watersheds and GFVN and GFCP are urban watersheds. (Bottom Panel) 

Changes in elemental exports in the Gwynns Falls watershed at the Baltimore Long-Term 
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Ecological Research site following Superstorm Sandy. Fe and Al fluxes are attenuated more 

rapidly than base cations likely due to settling and ‘sieving’ of particulate Fe and Al 

oxyhydroxides as water passes through soils and sediments.
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Figure 6. 
Anthropogenic sources can also contribute to chemical cocktails of organic matter. 

Polycyclic aromatic hydrocarbons (PAHs) vary in streams across a land use gradient at the 

Baltimore Long-Term Ecological Research site. BARN is forest dominated with low 

residential development, and sites are described in Kaushal et al. 2008. Automated samplers 

were used to capture the first flush of organic contaminants during storms and to also 

characterize baseflow concentrations. Concentrations of PAHs increased in streams with 

increasing watershed urbanization, and they also increased rapidly during the first flush of 

storms.
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Figure 7. 
Changes in water quality during storms in the Maidford River, which drains an agricultural 

watershed in Rhode Island, USA. High frequency data were obtained from a combination of 

sensor data and grab samples for streamwater chemistry analyses throughout the duration of 

the storm. Mobile anions were flushed after the peak in discharge as groundwater 

contributions increased in importance.
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Figure 8. 
(Top Panels and Bottom Left Panel) Mobilization of chromatographic chemical cocktails 

from soil exchange sites and relationships between specific conductance and base cations. 

Specific conductance can serve as as a proxy and surrogate for chromatographic chemical 

cocktails in watersheds of the Baltimore Long-Term Ecological Research (LTER) site. 

(Bottom Right Panel) Pulses in cation concentrations following road salt applications 

suggest the importance of ion exchange in response to sodium chloride inputs in urban 

watersheds and streams of the Baltimore-Washington DC metropolitan region.
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Figure 9. 
There have been significant changes in sieved, filtered, reactive, and chromatographic 

transport behaviors of chemical cocktails due to climate and land use change over the past 

century. (Top Panel) In the mid-20th century, the “Great Acceleration” of the Anthropocene 

was marked by significant increases in rates of change in global population, urban 

population (World Bank data, Steffen et al., 2015), and atmospheric CO2 (NASA.gov data). 

(Middle Panel) In the mid-20th century, global population, agriculture, and industrialization 

increased watershed inputs of highly reactive elements and chromatographic elements such 
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as salts (World Bank data, US EPA data, Steffen et al., 2015, Anning et al. 2014, USGS 

Mineral Resources). Land development decreased the amount of pristine sediment and 

increased anthropogenic sediment loads overwhelming watershed sieves (Syvitski and 

Kettner, 2011). (Bottom Panel) During the Anthropocene, there has been an increase in: (1) 

highly reactive chemical cocktails containing nitrate-N (annual mean concentrations in 

global rivers are estimated from Bührer and Ambühl 2001; Goolsby and Battaglin 2001; 

Duan et al., 2007; Friedrich and Pohlmann 2009; Bouraoui and Grizzetti 2011; EEA 2012; 

Kelly et al. 2015; Minaudo et al., 2015; Jaworski, unpublished data; Meybeck et al., 2016; 

Romero et al., 2016). 2); (2) sieved and filtered chemical cocktails containing organic carbon 

(annual mean concentrations are estimated from temperate and boreal rivers analyzed in 

Worrall et al., 2004; Evans et al., 2005, Kritzberg and Ekstrom, 2012; Sarkkola et al., 2013); 

(3) sieved and filtered chemical cocktails containing iron (annual mean concentrations are 

estimated from rivers and groundwater wells in forested and urban areas in the United States 

and Europe analyzed in Sloto 2003; Kritzberg and Ekstrom, 2012; Sarkkola et al., 2013; 

Kritzberg et al., 2014); (4) chromatographic chemical cocktails containing Cl− (annual mean 

concentrations are estimated from global rivers and lakes in studies reviewed previously by 

Kaushal et al. 2014, Kaushal 2016).
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