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Watersheds in Digital Spaces: An Efficient 
Algorithm Based on Immersion Simulations 

Luc Vincent and Pierre Soille 

Abstract- In this paper, a fast and flexible algorithm for 
computing watersheds in digital grayscale images is introduced. 
A review of watersheds and related notion is first presented, and 
the major methods to determine watersheds are discussed. The 
present algorithm is based on an immersion process analogy, 
in which the flooding of the water in the picture is efficiently 
simulated using a queue of pixels. It is described in detail and 
provided in a pseudo C language. We prove the accuracy of 
this algorithm is superior to that of the existing implementations. 
Furthermore, it is shown that its adaptation to any kind of digital 
grid and its generalization to n-dimensional images and even to 
graphs are straightforward. In addition, its strongest point is that 
it is faster than any other watershed algorithm. Applications of 
this algorithm with regard to picture segmentation are presented 
for MR imagery and for digital elevation models. An example 
of 3-D watershed is also provided. Lastly, some ideas are given 
on how to solve complex segmentation tasks using watersheds on 
graphs. 

Zndex Terms-Algorithm, digital image, FIFO structure, graph, 
grid, mathematical morphology, picture segmentation, water- 
sheds. 

I. INTRODUCTION 

W ATERSHEDS are one of the classics in the field of 
topography. Everybody has heard for example about 

the great divide, this particular line which separates the U.S.A. 
into two regions. A drop of water falling on one side of this 
line flows down until it reaches the Atlantic Ocean, whereas 
a drop falling on the other side flows down to the Pacific 
Ocean. As we shall see in further detail later, this great divide 
constitutes a typical example of a watershed line. The two 
regions it separates are called the catchment basins of the 
Atlantic and the Pacific Oceans, respectively. The two Oceans 
are the minima associated with these catchment basins. 

Now, in the field of image processing and more particularly 
in Mathematical Morphology (MM) [30], [40], [45], grayscale 
pictures are often considered as topographic reliefs. In the 
topographic representation of a given image I, the numerical 
value (i.e., the gray tone) of each pixel stands for the eleva- 
tion at this point. Such a representation is extremely useful, 
since it first allows one to better appreciate the effect of a 
given transformation on the image under study. We know 
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for example that an opening removes some peaks and crest 
lines, whereas a closing tends to fill in basins and valleys. 
Furthermore, thanks to this representation, such notions as 
minima, catchment basins and watersheds can be well defined 
for grayscale images. As we shall see throughout this paper, 

they turn out to be extremely important and useful. 
Quite naturally, the first algorithms for computing wa- 

tersheds are found in the field of topography. Topographic 
surfaces are numerically handled through digital elevation 
models (DEM’s). These are arrays of numbers that represent 
the spatial distribution of terrain altitudes. The most commonly 
used data structure for DEM’s is the regular square grid in 
which available elevations are equally spaced in two orthog- 
onal directions. Automated watershed extraction from DEM’s 
has received increasing attention in the past few years [9], 
[36], [28], [l]. The first step of most published algorithms is 
a parallel procedure performing local operations defined on a 
3 x 3 window. This allows one to extract potential dividing 
pixels. In a second step, the extracted pixels are connected into 
geomorphological networks. However, the very local approach 
of the first step and the lack of objective rules to perform the 
second one usually lead to poor results [43]. 

Meanwhile and apart from these researches in digital to- 
pography, the above notions were studied in the field of 
image processing. The introduction of the watershed trans- 
formation as a morphological tool is due to H. Digabel and 
Ch. Lantukjoul [ll]. Their data were piles of binary images 
representing successive thresholds of a bituminous surface’s 
relief whose drainability was to be studied. Later, a joint work 
of C. Lantuejoul and S. Beucher led to the “inversion” of 
this original algorithm in order to extend it the more general 
framework of grayscale images [3], [4]. Watersheds were then 
approached theoretically by F. Maisonneuve [27] and used 
in numerous grayscale segmentation problems. They are cur- 
rently being studied from theoretical, practical, and algorithmic 
points of view. When combined with other morphological 
tools, the watershed transformation is at the basis of extremely 
powerful segmentation procedures [49]. 

Extracting watersheds from digital pictures is far from being 
an easy task. As available algorithms for computing the water- 
shed transformation are either excessively slow or inaccurate 
(see Sections II-D and IV-B), the tremendous practical interest 
of this transformation is not as obvious as it should be. The 
purpose of the present paper is to introduce an efficient and 
completely new implementation of watersheds (see also [50]). 
Roughly speaking, it is based on a sorting of the pixels in the 
increasing order of their gray values, and on fast breadth-first 
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scannings of the plateaus enabled by a first-in-first-out type 
data structure. Our algorithm turns out to be hundreds of times 
faster than some classical ones on conventional computers 
(see Section IV). It is also more accurate and behaves well in 
all the particular pixel configurations where many algorithms 
produce incorrect results (see Section IV-B). Furthermore, the 
present algorithm is very general: its adaptation to any kind of 
underlying grid (4-, 6-, &connectivity . . . ) is straightforward, 
and it can be fairly easily extended to n-dimensional images 
and even to graphs. 

For the sake of clarity, Sections II and III only deal with 
watersheds for two-dimensional pictures. After some defini- 
tions concerning the objects which are considered in this 
paper, some reminders about watersheds and related notions 
are given in Section II. In particular, two different definitions 
of catchment basins and watersheds are brought to the fore. 
The existing algorithms for determining watersheds in digital 
images are then reviewed and discussed. Section III is devoted 
to the introduction of our implementation, here decomposed 
into two steps: an initial sorting and a flooding step. The em- 
phasis is put on the accuracy of the results. The efficiency and 
advantages of our algorithm are then discussed in Section IV 
and opposed to the existing implementations. The rest of the 
paper is concerned with some of its possible applications: 
its interest with respect to picture segmentation is proved 
and illustrated on an example taken from the field of MR 
imagery. The algorithm is then applied to digital elevation 
models. Lastly, it is extended to other digital spaces: three- 
dimensional images are first considered and second, the graph 
version of our algorithm is used for the hierarchical description 
and segmentation of grayscale images. 

II. DEFINITION AND COMPUTATION OF WATERSHEDS 

A. Basic Definitions 

It may seem easy to define watersheds on digital pictures, 
since this notion is a quite natural one. However, when looking 
closer at it, it turns out that there exist many particular cases, 
so that this definition task must be achieved very carefully. 

Let us consider a two-dimensional grayscale picture I whose 
definition domain is denoted DI c Z2. I is supposed to take 
discrete (gray) values in a given range (0, N], N being an 
arbitrary positive integer: 

I 
DI c Z2 + (0, l,... ,N} 

P ++ I(P). 
(1) 

In the following, we equally consider grayscale images as 
numerical functions or as topographic reliefs. 

Let G denote the underlying digital grid, which can be of 
any type: a square grid in four or eight connectivity, or a 
hexagonal grid in six connectivity. G is a subset of Z2 x Z2. 

Definition 1: A path P of length 1 between two pixels p and 
q in picture I is a (1 + 1)-tuple of pixels (~0, pl, . . . ,pl-l,pl) 
such that pa = p, pl = q, and V i E [l,l], (pi-l,pi) E G. 

In the following, we denote Z(P) the length of a given 
path P. We also denote NG(P) the set of the neighbors 

Fig. 1. Minima, catchment basins, and watersheds 

of a pixel p, with respect to G :, NG(P) = {p ’ E Z2, 

(P,P’) E G). 
Before introducing watersheds, we need to recall the notion 

of minimum (see Fig. 1). 
Definition 2: A minimum M of I at altitude h is a connected 

plateau of pixels with the value h from which it is impossible 
to reach a point of lower altitude without having to climb: 

VP E V, $Z M, such that Ip 5 I(p), 

VP = (PO,Pl,. . .pl) such that po = p and pl = q, 

3i E [l, Z] such that I(pi) > I(p0). (2) 

A minimum is thus a connected and iso-intensive area where 
the gray level is strictly darker than on the neighboring pixels 
(the darker the pixel, the lower its value or elevation). These 
extrema are often referred to as regional ones [40], as opposed 
to the local ones. 

We can now proceed with the definition of catchment basins 
and watersheds, which is done below using two different 
approaches. 

B. Definition in Terms of Steepest Slope Lines 

Definition 3 (Catchment basin, first definition): Let I be a 
grayscale image. The catchment basin C(M) associated with 
a minimum M is the set of pixels p of DI such that a water 
drop falling at p flows down along the relief, following a 
certain descending path called the downstream of p [27], and 
eventually reaches M. 

The lines which separate different catchment basins build 
what is called the watersheds (or dividing lines for some 
authors) of I (see Fig. 1). The problem of the thickness of 
these lines is discussed in Sections II-C and III-C. 

Notice that the catchment basins of an image I correspond 
to the influence zones of its minima. In this sense, we have a 
close relation between the binary skeleton by influence zones 
[23] and the watersheds. As we shall see in Sections IV-B and 
V-B, the notion of catchment basin-like that of min- 
imum-is not a local one: in many cases, no local 
consideration can allow one to decide whether two pixels 
belong to the same catchment basin or not. 

For real, continuous, derivable and lower-complete func- 
tions (the only possible plateaus of these functions are their 
minima), the direction of the flow path at any point is defined 
almost everywhere by the opposite of the gradient’s azimuth at 
this point (Some theoretical problems with this definition are 
discussed in [40, p. 4461). On the contrary, when dealing with 
digital functions, there exists no rule to set up the path a drop 
of water would follow [27]. Therefore, this intuitive approach 
to watersheds is not well suited to practical implementations: 
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Fig. 2. Building dams at the places where the water 
different minima would merge. 

coming from two 

in fact, we will see in Section II-D that the algorithms relying 
on it yield biased results in some cases. The definitions given 
in the next section are more suited to the formalization of 
catchment basins and watersheds in digital spaces, and are 
more oriented towards algorithm design. Thus, from now on, 
we shall deal only with digital spaces. 

C. Definition by “Immersion” 

The second approach for introducing watersheds [3] can be 
considered as an algorithmic definition, and is more suited 
to practical implementations. The algorithm we introduce in 
Section III relies on the present definition. By analogy, we can 
figure that we have pierced holes in each regional minimum of 
I, this picture being regarded as a (topographic) surface. We 
then slowly immerse our surface into a lake. Starting from the 
minima of lowest altitude, the water will progressively fill up 
the different catchment basins of I. Now, at each pixel where 
the water coming from two different minima would merge, 
we build a “dam” (see Fig. 2). At the end of this immersion 
procedure, each minimum is completely surrounded by dams, 
which delimit its associated catchment basin. The whole set 
of dams which has been built thus provides a tessellation of 
I in its different catchment basins. These dams correspond to 
the watersheds of I. 

Let us express this immersion process more formally: 1 be- 
ing the grayscale image under study, denote hmin the smallest 
value taken by I on its domain DI. Similarly, denote h,,,, the 
largest value taken by I on DI. In the following, Th(I) stands 
for the threshold of I at level h: 

(3) 

We also denote C(M) the catchment basin associated with a 
minimum M and Ch(M) the subset of this catchment basin 
made of the points having an altitude smaller or equal to h: 

ch(M) = {P E C(M), I(P) 5 h) = c(M) fl Th(I). (4) 

As concerns the minima of 1, minh (I) refers to the set of 
points belonging to the minima at altitude h. 

We now need to recall the definitions of the geodesic 
distance [24] and of the geodesic influence zones. Let A be 
a set which is first supposed to be simply connected. 

Definition 4: The geodesic distance dA(x, y) between two 
pixels x and y in A is the infimum of the length of the paths 
which join x and y and are totally included in A: 

dA(x, y) = inf{l(P), P path between x and y 

which is totally included in A}. (5) 

Fig. 3. The geodesic distance between J and y inside A is the infimum of the 
length of the paths between these two points which are totally included in A. 

iz,( 

Fig. 4. Geodesic influence zone of connected component I31 inside set il. 

This definition is illustrated in Fig. 3. 
Suppose now that A contains a set B made of several 

connected components B1, B2, . . ’ , Bk. 
Definition 5: The geodesic influence zone iz4( Bi) of a 

connected component Bi of B in A is the locus of the points of 
A whose geodesic distance to Bi is smaller than their geodesic 
distance to any other component of B: 

iz~(Bi) = {P E A,vj E [I, k]/{i),d~(p,&) < ‘h(p,Bj)). 

(6) 

This concept is illustrated in Fig. 4. Those points of A which 
do not belong to any geodesic influence zone constitute the 
skeleton by influence zones (SKIZ) of B inside A, denoted 
SKIZA(B): 

SKIZA(B) = A/IZA(B) with IZA(B) = U iz~(Bi). 

&[l:k] 

(7) 

According to this digital definition, the geodesic SKIZ of 
B in A does not necessarily separate the different geodesic 
influence zones. Indeed, due to parity problems, it is often 
made of disconnected lines. Moreover the digital SKIZ may 
sometimes be a “thick” one, since the set of the pixels which 
are equally distant from two connected components may well 
be very thick, as illustrated by Fig. 9. In Section III-C, we go 
back to these subtleties, but we do not take these problems 
into account here: we suppose that the geodesic SKIZ is 
always made of lines having one pixel thickness and thus 
separating the different geodesic influence zones. Note that the 
algorithm introduced in Section III makes use of a labeling of 
the influence zones and catchment basins, which allows us to 
avoid parity problems. The above definitions easily extend to 
the case where A is not simply connected, nor even connected 
at all. 
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Fig. 5. The three possible inclusion relations between Y and Y n Xhmin. 

To simulate the immersion procedure described above, we 
start from the set Thmin(I), the points of which being those 
first reached by the water. These points constitute the starting 
set of our recursion. We thus put 

-%mn = Th,.(I). (8) 

Xhmn is made of the points of I which belong to the minima 
of lowest altitude. Let us now consider the threshold of I at 
level &in + 1, i.e., Th,,+t(l). Obviously, xh,i,, c Th,;,+l(I). 
Now, Y being one of the connected components of T&,+1(1), 
there are three possible relations of inclusion between Y and 
y n xhmi,: 

1) 

2) 

3) 

Y n X&, = 0: in this case, Y is obviously a new 
minimum of I. Indeed, according to the definitions in 
Section II-A, Y is a plateau at level hmin + 1, since 

VPEY 

i 

P 9 Xhmm * I(P) L kin + 1 

PEY * I(P) I &in + 1. 

Moreover, all the surrounding pixels do not belong 
to Thtin+t(l) and have therefore a gray level strictly 
greater than hmin + 1. The minimum thus discovered is 
“pierced,” hence its corresponding catchment basin will 
be progressively filled up with water. 
Y n Xh,i. # 0 and is connected: in this case, Y corre- 
sponds exactly to the pixels belonging to the catchment 
basin associated with the minimum Ynxh,,, and having 
a gray level lower or equal to hmin + 1: 

y = ch,,,!,+dy n Xh,d (9) 

y n xhm,. # 0 and is not connected: we therefore 
notice that Y contains different minima of I. Denote 

21, 22, * * * , zk these minima, and let Zi be one of them. 
At this point, the best possible choice for Ch,i,+t(&) is 
given by the geodesic influence zone of Zi inside Y: 

ch,i,+l(Zi) = izY(Zi). 

These inclusion relationships are illustrated in Fig. 5. Since all 
the possibilities have been discussed, we take as second set of 
our recursion the following one: 

xh,,,+l = minhm,n+l u ~-%,,i,+l(l)(xhti,)e (11) 

This relation holds of course for all levels h, and finally, 
we obtain the following definition. 

Definition 6 (Catchment basins and watersheds by immer- 
sion): The set of the catchment basins of the grayscale image I 
is equal to the set Xh, obtained after the following recursion: 

a) xbn,n = Thm,, (I), 
b) V h 6 [&in, hmax - 11, Xhfl = minh+l u IZTh+l(l) ’ 

cXh)* 

Fig. 6. Recursion relation between Xh and Xh+l. 

Fig. 7. A classic trap: edge A does not belong to the set of watershed lines. 

The watersheds of I correspond to the complement of this set 
in DI, i.e., to the set of the points of Dr which do not belong 
to any catchment basin. 

The recursion relation between two successive levels is 
illustrated in Fig. 6. 

D. Review of the Existing Algorithms 

We here restrict our attention to the algorithms developed 
in the field of image processing. (Those coming from the field 
of digital topography are indeed extensively reviewed in [12], 
[43].) In Section IV-B, their advantages and drawbacks will be 
summarized and opposed to those of the algorithm proposed 
in this paper. 

Beucher and Lantuejoul [3] were the first to propose a 
watershed algorithm based on a immersion analogy (see Sec- 
tion II-A). According to it, the geodesic influence zones of a 
level inside the next one are determined via binary thickenings 
until idempotence with structuring elements M and E (these 
capital letters refer to Golay’s alphabet [16]). As illustrated 
by Fig. 7, watersheds computed this way may, in some special 
configurations, contain undesirable arcs. This is due to the fact 
that the involved thickenings are homotopic ones, whereas the 
catchment basin associated with a given minimum does not 
necessarily have the same homotopy of this minimum. On 
Fig. 7, arc A is not part of the watersheds, since it does not 
separate two different minima! Furthermore, as explained in 
[50, ch. 21, such algorithms are inefficient on nonspecialized 
architectures, since the whole set of pixels needs to be scanned 
at each thickening step. 

Watersheds can also be determined through graytone skele- 
tons (see [32]). Following this approach, Beucher proved that 
the watersheds of a function are nothing but the closed arcs of 
its skeleton [4]. As in the binary case, skeletons of grayscale 
images can be computed by performing homotopic thinnings 
until idempotence with the L structuring element. Let us recall 
that the thinning of a function I by a two-phase structuring 
element T = (Tl, Tz), denoted 10 T, is given by 



VINCENT AND SOILLE: WATERSHEDS IN DlGITAL SPACES 587 

VIE DI. 

I(P) @ f2 
if I(p) $ T; < I(p) I 

I(P) 0 T = 
l(P) 0 fi > (14 

I(P) otherwise. 

In the above formula, $ and 8 refer to the well-known 
Minkowski operations [33]. The nonclosed arcs of the skeleton 
can then be easily removed by thinning it until idempotence 
with the structuring element E. However, the composition of 
two idempotent transformation is not necessarily idempotent. 
Hence, the whole process (skeletonization followed by prun- 
ing) must be iterated until idempotence [43]. This results in 
a highly time consuming algorithm which, like the previous 
one, falls into such traps as that illustrated by Fig. 7. (Arc A 
cannot be removed by pruning.) 

Fig. 8. An example of an arrowing on a hexagonal grid. There are here two 

The algorithm proposed by Friedlander in [14] is a sequen- 
minima which correspond to the hachured zones. 

tial one [38]. Such sequential algorithms are extensively used 
in the field of MM [25]. They rely on scanning of the images 
in predefined orders, in which the new value of each pixel is 

image under processing. This means that at each step, all 

immediately taken into account for the computation of the next 
the pixels are scanned one after the other in a predetermined 

pixel values. Here, an initial propagation step yields the “broad 
order, generally a video or an antivideo scanning. Second, 

catchment basins” of the image I under study. The broad 
these algorithms do not run in a fixed number of iterations: 

catchment basin associated to a minimum M is the set of pixels 
the image has to be scanned entirely at each iteration, the 

that can be reached by following a never descending path start- 
number of which being often very large. Some of these al- 

ing from M. Every pixel of DI belongs at least to one broad 
gorithms have been implemented on specialized architectures. 

catchment basin. The zone where two or more broad catchment 
In this case, their computation time remains acceptable. But 

basins overlap is referred to as a “watershed zone.” Its comple- 
on conventional computers, they are far from being efficient: 

ment constitutes the “restricted catchment basins.” Finally, the 
computing a watershed transformation may take hours in some 
cases. 

catchment basins themselves are obtained via the SKIZ of the 
restricted catchment basins. This procedure is relatively fast, 

To speed up the computations, one has to design algorithms 

since all steps are performed sequentially. In addition, since a 
taking into account the fact that, at a given step, only the values 

labelling of the different catchment basin is used in the algo- 
of a small number of pixels may be modified [50]. Rather 

rithm, such traps as that of Fig. 7 are avoided. However, the 
than scanning the entire image to modify only two pixels, the 

propagation step being based on the definition in terms of flow 
algorithm should be designed to have a direct access to these 

paths (see Section II-C), the resulting watershed lines may be 
pixels. Therefore, in the following, we suppose that the image 

improperly located, i.e., not even on crest-lines of the image. 
pixels are stored in a simple array, and that the following two 
conditions are satisfied: 

Beucher describes a sequential algorithm based on an arrow- 
ing of the image [6, ch. 51. It requires three major steps: first, 

1) Random access to the pixels of an image. 

complete the function in order to get a lower-complete function 
2) Direct access to the neighbors of a given pixel (its 

(i.e., a function where the only points without neighbors 
4 neighbors in 4-connectivity, 6 on a hexagonal grid, 

of lower altitude are the points of the minima). Second, 
8 on a 8-connectivity, etc.). 

“arrow” the completed function: for each pair of adjacent If these two prerequisites are fulfilled, one is able to design 

pixels (~1.~2) E G, the fact that pl is strictly higher than extremely efficient morphological algorithms. The algorithms 

p2 is indicated by an arrow pointing from pl to pa (see designed by M. Schmitt [39], based on the propagation of 

Fig. 8). Such an arrowing allows one to code the neighborhood chain codes along the images, rely on these principles and 

configurations of all pixels in a very compact way. Third, label are particularly efficient for geodesic transformations. Simi- 

the regional minima and propagate the labels along the image larly, some new algorithms have recently been designed for 

via the arrowing. This algorithm may be implemented sequen- computing morphological transformations with any kind of 

tially, and is thus faster than the two first ones. However, here structuring elements [51], various kinds of skeletons as well 

again, some errors may occur in the propagation step. as many different morphological transformations [50]. 
Our algorithm is based on the definition given in Sec- 

tion II-C.We therefore have to consider the successive thresh- 
III. PROPOSED ALGORITHM olds of the image under study, and to compute geodesic 

influence zones of one threshold inside the next one as fast 
A. General Description as possible. In the sequel, for the sake of clarity, the proposed 

The algorithms reviewed above share some characteristics: algorithm is decomposed into two steps. Putting them together 
first, they are based on successive complete scannings of the only allows one to save a little time and memory space. In or- 



588 IEEE TRANSACTIONS ON PAmRN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 6, JUNE 1991 

der to have a direct access to the pixels at a given level, the first 
step consists in an initial sorting of the pixels in the increasing 
order of their gray values. The method described in Sec- 
tion III-B completes this very efficiently, since it exploits the 
particular structure of our data. It runs in linear time with 
respect to the number of pixels to be sorted. In the second step, 
a fast computation of geodesic influence zones is enabled by a 
breadth-first scanning of each threshold level. This particular 
scanning is implemented via the use of a queue ofptiels, i.e., a 
first-in-first-out data structure. Notice that many morphological 
transformations can be efficiently performed by algorithms 
based on queue structures [52], [50]. This second step, called 
the flooding step, is detailed in Section III-C. 

B. The Sorting Step 

Among the vast number of available sorting techniques 
[26], one is particularly suited to the present problem. It 
is a distributive algorithm [26] which resorts to address 
calculations. This technique was introduced by E. J. Isaac 
and R. C. Singleton in [22] and is briefly described in [26, 
pp. 162-1661. The procedure first determines all the exact 
frequency distribution of each image gray level. The cumu- 
lative frequency distribution is then computed. This induces 
the direct assignment of each pixel to a unique cell in the 
sorted array. 

Let us denote n the number of image pixels and hmin 
and h,, the lowest and largest gray levels, respectively. 
The present sorting technique has the considerable advantage 
of requiring only 2n “look and do” operations-one for 
determining the frequency distribution and the other for the 
assignment-plus h,, - hmin - 1 additions to get the cumula- 
tive frequency distribution. As memory and time requirements 
to compute frequency distributions are generally negligible 
compared to those required for images, this sorting procedure 
constitutes one of the best choices to deal with our data. 
Together with the cumulative frequency distribution, the sorted 
array of (pointers to) pixels enables a direct access to the 
pixels at a given level h. This ability is extensively used in 
the flooding step described in the next section. 

C. The Flooding Step 

Once the pixels have been sorted, we proceed to the progres- 
sive flooding of the catchment basins of the image. Suppose the 
flooding has been done up to a given level h. Every catchment 
basin already discovered-i.e., every catchment basin whose 
corresponding minimum has an altitude lower or equal to 
h-is supposed to have a unique label. Thanks to the initial 
sorting, we now access the pixels of altitude h + 1 directly and 
given them a special value, say MASK. Those pixels among 
them which have an already labeled pixel as one of their 
neighbors are put into the queue. Starting from these pixels, the 
queue structure enables to extend the labelled catchment basins 
inside the mask of pixels having value MASK, by computing 
geodesic influence zones (see Section II-C). After this step, 
only the minima at level h + 1 have not been reached. Indeed, 
they are not connected to any of the already labelled catchment 
basins. Therefore, a second scanning of the pixels at level 

0 0 0 0 0 0 0 0 0 0 0 c c 

00000.0 

00000000 

00000000 

000000000 

Fig. 9. According to the hexagonal distance, all the bold pixels (gray areas) 
are equidistant to the two black ones. 

h + 1 is necessary to detect the pixels which still have value 
MASK, and to give a new label to the thus discovered catchment 
basins. 

The queue which is used is a first-in-first-out data structure: 
the pixels which are first put into it are those which can first 
be extracted. In practice a queue is simply a large enough 
array of pointers to pixels, on which three operations may be 
performed: 

l fife-add(p) Puts the (pointer to) pixel p into the queue. 
l jifo-first() Returns the (pointer to) pixel which is at 

the beginning of the queue, and removes 
it from the queue. 

l fife-empty () Returns true if the queue is empty and 
false otherwise. 

In order to implement such operations, a kind of “circular” 
queue is one of the most efficient choices: the array represent- 
ing our FIFO structure is addressed by two indexes, ptr-first 
and ptr-last. Each time a new element is put into the queue, 
it is stored at the address toward which ptr-last is pointing. 
prt-last is then incremented. When the limit of the array is 
reached, this index loops back to the beginning of the array. 
Similarly, ptr- first is a pointer toward the first element which 
can be removed from the structure, and is incremented after 
each removal. It may also loop back to the start of the array. To 
optimize memory requirements, “dynamic” queues may also 
be considered, but their use generally slows down the whole 
process. 

Not only does the use of a queue of pixels speed up 
the computations, it also allows us to solve the accuracy 
problems encountered by most of the algorithms reviewed 
in Section II-D. First, the labeling of the catchment basins 
automatically avoids such traps as that of Fig. 7. Now, in 
order to get perfectly located watershed arcs, the successive 
geodesic SKIZ involved in the process have to be as good 
as possible. The first thing to notice is that, according to 
the discrete distance associated with the underlying grid, the 
set of pixels which are equidistant to two given connected 
components may well not be a line, but a very thick area. This 
is illustrated by Fig. 9. (Recall that the distance between two 
pixels is equal to the minimal number of grid edges to cross 
to go from one to the other.) Consequently, some simplistic 
rules in the computation of the geodesic SKIZ’s could result 
in unwanted thick watershed areas. More precisely, suppose 
that the plateaus at elevation h are currently being flooded, 
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Fig. 10. Using simplistic rules in the breadth-first computation of the 
geodesic influence zones may result in unwanted thick watershed lines. Here, Fig. 12. Exact catchment basins and watershed points obtained with the 

the basins are not symmetric because the neighbors of the upper minimum present algorithm. 

were put into the queue before the neighbors of the lower one. 

3 c 0 ooooh hoot 

k- Deviated watershed 

Fig. 11. Some simplistic geodesic SKI2 computations may result in deviated 
watershed lines (same pixel configuration as in Fig. 10). 

and let p be the current pixel. A simplistic rule would be to 
say that p is necessarily a watershed-pixel (i.e., belongs to 
the set of the watershed lines) if it has a watershed-pixel in 
its neighborhood. An example of thick watershed produced 
with such a rule is illustrated by Fig. 10. Similarly, declaring 
that any pixel which has two pixels with different labels in 
its neighborhood is a watershed-pixel may result in deviated 
watershed lines, as illustrated by Fig. 11. Let us stress that 
these problems are not specific of the hexagonal grid and also 
exist with square ones. 

To get rid of such difficulties, one may think of resorting 
to better discrete distances in the geodesic SKIZ computations 
[7], [35], [46], [37]. It is even possible to make use of actual 
Euclidean distances by adapting such algorithms as those 
described in [lo] or [50, ch. 31 to the present case. However, 
this would involve propagating vectors rather than distances 
and would put a considerable burden on the entire flooding 
step. Therefore, these ideas have not been retained in the 
present implementation. 

Instead, we chose to restrict ourselves to the distance 
induced by the used discrete grid. The idea is to make use of a 
work image where the successive geodesic distances are actu- 
ally stored during the breadth-first propagation. In conjunction 
with carefully written rules for the propagation of the labels 
inside the plateaus (see algorithm below, lines 31-43), this 
results in very well located watershed lines, even in the case of 
minima embedded in large plateaus, as illustrated by Fig. 12. 
Note that the algorithm given below is designed to yield a 
tesselation of the image in its different catchment basins. 
Only the pixels which are exactly “half-way between” two 
catchment basins are given a special value, hereafter denoted 
WSHED. 

Algorithm: Fast Watersheds 
# define MASK -2 /* initial value of a threshold level */ 

# define WSHED 0 /* value of the pixels belonging to the 
watersheds */ 

# define INIT -1 /* initial value of im, */ 
. -input: imi, decimal image; 

-output: im,, image of the labeled watersheds; 

l Initializations: 
-Value INIT is assigned to each pixel of im, : 

\J P E Dim,,, imo(p) = INIT; 

-current-label + 0; 
-current-d&: integer variable 
-imd: work image (of distances), initialized to 0; 

l Sort the pixels of imi in the increasing order of their gray 

values. 
Let hnlin and h,,, designate the lowest and highest values, 

respectively. 
l For h + hnlin to hII,,, { 

/* geodesic SKIZ of level h - 1 inside level h */ 
For every pixel p such that imi(p) = h { 

/* These pixels are accessed directly through the 
sorted array. */ 

imo (PI + MASK; 

if there exists p’ E NG(p) such that imO(p’) > 0 or 
im,(p’) = WSHED { 

imd(p) + 1; fife-add(p); 

1 

1 
current-dist+ 1; fife-add(jictitious-pixel); 
repeat indefinitely { 

P +-fife- firstO; 
if p = fictitious pixel { 

if jifo empty0 = true then BREAK, 
else {- fife-add(jictitious-pixel); 

current-dist + current-dist + 1; 

P + fife- firstO; 
1 

> 
For every pixel p’ E NG(p) { 

if irnd(p’) < current-d&t and (imO(p’) > 0 or 
im,(p’) = WSHED) { 

/* i.e., p’ belongs to an already labeled 
basin or to the watersheds *I 

if imO(p’) > 0 { 
if im,(p) = MASK or im,(p) = WSHED then 

h,(p) + h(p’); 
else if im,(p) # im,(p’) then 

im,(p) + WSHED; 

I 
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Fig. 13. To separate the different catchment basins, one cannot simply give value WSHED to the pixels having a pixel with another label in their 
neighborhood. Otherwise, some errors may occur. 

else if &z,(p) = MASK then in&(p) + wsHEo 

else if im,(p’) = MASK and imd(p’) = 0 { 
i,md(p’) t current-dist + 1; fife-add( p’); 

/* checks if new minima have been discovered */ 
For every pixel p such that im;( p) = h { 

h(P) + 0; /* the distance associated with p is 
reset to 0 */ 

if im,(p) = MASK { 

current-label t current-label + 1; 

jifo-add (p); im, (p) c current-label; 

while fife-empty0 = false { 

P ’ + fife_ first( 1; 
For every pixel p” E NG(P’) { 

if im,(p”) = MASK { fife-add(p”); 

im,(p”) t current label; } 

At this point, to get rid of the WSHED-pixels (i.e., to obtain a 
real tesselation of the image in its different catchment basins), 
it suffices to give them the value of one of their labelled 
neighbors (in fact, the pixels belonging to thick watershed 
areas must be processed differently . . . ). On the other hand, 
if we want to separate the different catchment basins, it suffices 
to give value WSHED to the labeled pixels having in their 
neighborhood at least one pixel with a smaller label. This 
is not symmetric, but Fig. 13 shows why it is not wise to give 
label WSHEDS to all the pixels having in their neighborhood 
a pixel with a different label: in some cases, the catchment 
basins could be disconnected and the watersheds be wrongly 
connected! 

IV. DISCUSSION, PERFORMANCES 

A. Analysis of the Algorithm 

This watershed algorithm runs in linear time with respect 

to the number N of pixels in the image which is processed. 
Indeed: 

l In the sorting step, two and only two scannings of the 
whole image are necessary to construct the sorted array of 
pointers to pixels. An additional scanning of the frequency 
array is also required.’ 

l In the flooding step, each pixel is scanned three times on 
average: at each threshold level h, all the concerned pixels 
are first assigned value INIT. Then they can be considered 
a second time during the breadth-first scanning of the 
plateaus at altitude h. Lastly, all the pixels at altitude h 

are scanned again in order to see if new minima have 
appeared. 

The two above steps running in linear time, the entire algo- 
rithm is linear with respect to N. Furthermore its execution 
time is practically independent of the number of gray levels 
in the image. On the SUN Spare Station 1, the computation 
of the watersheds of a 256 x 256 image takes approximately 
2.5 seconds. This is extremely fast compared to some of the 
existing algorithm, which may take more than one hour for 
the same computation (see Table I). 

As concerns the memory requirements, they are a little more 
restricting, since the algorithm uses: 

An output image im, of the same size as the initial image 
imi. The number of catchment basins may be large for 
practical grayscale images, so that im, has to be coded 
on 2 bytes per pixel. We usually use the same image for 
the input and the output, i.e., we take im, = im;. 

A sorted array of pointers to pixels. Its size is N (number 
of pixels in im;) and a pointer is generally represented 
on 4 bytes. 
A distance image imd of the same size as imi. In fact, 
imd is only used for local comparison, so that knowing 
it modulo 3 is enough. imd can therefore be coded on 
2 bits per pixel. 
An array of pointers to pixels, which must be large 
enough to contain all the pixels in the queue, at each 
step. Although this array can be dynamically allocated, it 

1 In most cases, i.e., for images coded on 8 bits or less, the size of this array 
is negligible compared to that of an image. We thus admit that the execution 
time of the sorting procedure is independent of the number of gray levels. 
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TABLE I 
COMPARISON OF THE PRESENT WATERSHED ALGORI~M WITH THOSE DESCRIBED IN SECXON II-D. THE EXECUTION 

TIMES REFER TO IMPLEMENTATIONS ON A SUN SPARC STATION 1, FOR A 512 x 512 DIGITAL ELEVATION MODEL ON 8 BITS. 

Algorithm 
Execution 

Time 

Precision Correct 
of the Result for 
Lines Fig. 7 

Detection of 
Thick Watershed 

Areas 

Adaptability 
to Other Grids 

Adaptable 
to Graphs 

Homotopic binary thickenings 
Grayscale thinnings 

Sequential algorithm 
Arrowing 

Present algorithm 

hours 
hours 
68 s 

51 s 
6.3 s 

xx 
xx 
X 

xxx 
xxxx 

no 
no 

yes 

yes 
yes 

no 
“0 

no 
no 

Yes 

xx 
xx 

xxx 
X 

xxxx 

no 
no 
no 
no 

yes 

is more efficient to use a fixed array of large size: N/4 
seems to be more than enough in all practical cases. 

l A cumulative frequency distribution array, whose size is 
equal to the number of possible gray levels in imi. We 
consider the additional memory it requires as negligible 
in practice. 

To summarize, if the initial image is coded as an array of N 
pixels, then 7: x N bytes are necessary for the watershed 
computation. This is a lot, but far from being unacceptable 
in comparison with the random access memory of today’s 
computers. 

B. Advantages, Summary Table 

Apart from its computational efficiency, the algorithm in- 
troduced in this paper has many other advantages: first, it 
is very general since it works in 4-, 6-, or 8-connectivity 
equally well. Once it has been implemented for a given 
grid, it is straightforward to adapt the program to another 
grid. To do so, it suffices to change the way the neighbors 
of a given pixel are generated. Note that on a square grid, 
if the 4-connectivity is used in the flooding step, the re- 
sulting watersheds are only &connected. Conversely, if the 
S-connectivity is used in the flooding, the resulting watersheds 
are 4-connected. 

Furthermore, the algorithmic definition 6 of watersheds 
extends to n-dimensional images. The adaptation of the pro- 
posed watershed algorithm to n-dimensional images is thus 
immediate. As said above, it suffices to modify the procedure 
for generating the neighbors of a given pixel. An example 
of three dimensional watersheds is shown in Section V-C, 
and the interest of such a transformation is also discussed. 
Lastly, Definition 6 also extends to general graphs. Provided 
the data structure used to represent graphs allows a direct 
access to the neighbors of a given vertex, our algorithm works 
fairly well for these objects [48]. Watersheds on graphs are 
presented in Section V-D and their interest with respect to 
picture segmentation is shown. 

On the other hand, none of the algorithms reviewed in 
Section II-D is easily adaptable to other digital grids: in 
particular, the adaptation of the algorithms based on bi- 
nary thickenings, grayscale thinnings, or arrowing would re- 
quire cumbersome neighborhood analysis. This is even more 
true when it comes to extending these procedures to three- 
dimensional images! 

Now, the accuracy of the present algorithm is also re- 

Fig. 14. A case where the watershed lines are no longer thin: 
a watershed area. 

we have here 

markable. We have seen in Section III-C that the labeling 
of the catchment basins allows one to avoid such pitfalls 

as that illustrated by Fig. 7. We have also shown that the 
use of a work distance-image results in watershed pixels 
which are perfectly located, even when large plateaus are 
involved. Unlike the algorithms reviewed in Section II-D, and 
in particular, unlike the classic flooding algorithm which uses 

successive geodesic skeletons by influence zones computed 
by iterative thickenings [3], the dividing lines are here never 

deviated. Moreover, the parity problems are avoided, since 
the algorithm constructs labelled catchment basins rather than 
watershed lines. 

Finally, the present algorithm also gives correct results in 
presence of configurations which have not been discussed yet: 

watershed areas. These areas are such that one cannot decide 
towards which minimum a drop falling on them will slide. 
They correspond to special pixel configurations which are not 
so rare in practice. An example of a “thick” watershed area 

is shown in Fig. 14. In such cases, the algorithm introduced 
in Section III-C will assign value WSHED to all the involved 

pixels, which is the correct statement. On the contrary, none 
of the algorithms reviewed in Section II-D is able to detect a 
thick watershed. 

In Table I, we have summarized the qualities of the present 
algorithm as opposed to those of the algorithms briefly de- 
scribed in Section II-D. The execution times are provided here 
for information only, since they may vary from one image 
to another. They refer here to an 8 bits, 512 x 512 digital 

elevation model with 18 catchment basins. The computations 
have been achieved in 4-connectivity. Note that algorithms 1 
and 2 have also been implemented on a specialized hardware, 
the Q 570 of Cambridge Instruments. On this machine and for 
the particular image used in Table I, their common execution 
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Fig. 15. Binary segmentation by watersheds of the opposite of the distance 
function. 

time was of approximately 200 s. 

V. EMPLES OF APPLICATION 

A. Use of Watersheds in Image Segmentation 

The watershed transformation constitutes one of the most 
powerful segmentation tools provided by mathematical mor- 
phology [3], [4], [49]. In this section, the word segmentation 
addresses the extraction of the different objects present in 
the image under study. As concerns the binary case, this 
comes down to the separation of the partially overlapping 
objects-provided there are no artifacts present. This prob- 
lem is extensively discussed in [49] and [50, Appendix]. Its 
solution is based on a marking of the different components that 
are to be segmented. A marking function is then constructed, 
whose different catchment basins correspond to the desired 
objects. Here, the marking function is nothing but the opposite 
of the distance jiuzction of our binary image, i.e., the function 
which associates with every feature point the opposite of its 
distance to the background. This binary segmentation process 
is illustrated in Fig. 15. It has been successfully used for many 
problems, such as the segmentation of rice grains [2] or of 
coffee bean images [49]. 

As concerns grayscale images, segmenting them means 
dividing then into regions: generally, one of them stands for the 
background whereas each of the others corresponds to one of 
the objects or areas to be extracted. This segmentation comes 
down to the extraction of the contours of the desired objects. 
Now, the problem is to clearly define what is a contour and 
what is not. Some well-known methods resort to the zero- 
crossings of the second derivative of the function representing 
the image I under study [29]. Other edge detectors can be 
computationally adapted to arbitrary edge profiles [8]. In the 
field of mathematical morphology, another kind of approach is 
commonly used: the starting point is to say that the contours 
of an image correspond to lines where the gray-tone is varying 
quickly compared to the neighborhood. Suppose now that we 
have determined an image grad(l) where the value of each 
pixel corresponds to the modulus of the gradient at this point 
(in the following, this image is referred to as a gradient image). 
If we regard it as a relief, the searched contours correspond 
to some crest-lines of this function. At this point, one can 

consider using on grad(I) the grayscale skeleton [32] as crest- 
line detector. The problem with this transformation is that it 
extracts all the crest-lines of a given image. This is not what is 
expected, since the contours that should be extracted are closed 
ones. Therefore, one has to remove the parasitic dendrites of 
the skeleton, i.e., to resort to the watershed transformation. 
According to the gradient which is being used, we define the 
contours of image I as the watersheds of its gradient. 

The watersheds of the gradient are thus at the basis of 
the general morphological approach to segmentation that we 
briefly present now. A more detailed presentation can be found 
in [49] or in [.50]. The image which will be used to illustrate 
the present segmentation methodology is denoted I and is 
displayed in Fig. 16(a)2 [17]. It is a 256 x 256 image of a 
vertebral column, digitized according to a hexagonal grid, from 
which the intervertebral disks have to be extracted. This is a 
rather difficult problem, since on the one hand, the noise level 
is relatively high and on the other hand, the desired disks do 
not have a fixed size and orientation, and can be mistaken for 
other features. Simple methods based on thresholdings or top- 
hats [31] do not work, so that one has to make use of more 
advanced tools. 

In fact, the brutal computation of watersheds of the gradient 
does not constitute a good segmentation method either. Indeed, 
whatever gradient is used, the simple computation of its 
watersheds mostly results in an over-segmentation, i.e., the 
correct contours are lost in a mass of irrelevant ones. This 
is true even if one had taken the precaution of filtering the 
initial image or its gradient. For example, I’ [see Fig. 16(b)] 
was obtained by performing on I an alternating sequential 
filtering [41, ch. lo]. A morphological gradient of I’ was 
then determined, which is the supremum of three directional 
gradients. More precisely, denoting 5’1, 5’2, and Sa the three 
elementary segments of the hexagonal grid, we computed 

grad’(1’) = lzua [(I’ @ Si) - (I’ 8 Si)]. (13) 
-- 

This gradient is displayed in Fig. 16(c). Now, in Fig. 16(d), 
one can see the watersheds of this gradient and appreciate the 
resulting segmentation! In many cases, the over-segmentation 
is simply due to noise. But, as in the present example, some 
irrelevant arcs may also correspond to objects that do not have 
to be extracted, and whose contours should not appear in the 
final segmented image. In both cases, so as to get rid of this 
over-segmentation, one has two possibilities: 

l Remove the irrelevant contour elements. 
l Modify the gradient function so that the resulting catch- 

ment basins only correspond to the desired objects. 

The first choice is the most natural and classical one: on 
the other hand, the watershed image can be regarded as an 
image of contours, some of which having to be suppressed. 
On the other hand, one may consider the different catchment 
basins as regions and merge adjacent regions according to 
some criteria. These methods are referred to in literature 
as region-growing algorithms [18], [34]. A morphological 
region growing algorithm relying on watersheds on graphs 

‘This image was provided by Neil Roberts. 
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Fig. 16. Segmentation of invertebral disks. (a) Original image I (vertebral column). (b) I’ = filtering of 1. (c) Gradient image grad’ (I’). (d) Watersheds 

of grad’ (I’). (e) Markers: skeletons of the “domes” of I. (f) Inner and outer markers. (g) Watersheds of modified gradient. (h) Final segmentation. 

is presented in Section V-D. The second choice makes use 
of some external knowledge on the collection of images under 
study, in the sense that it requires and initial marking step. One 
has to use the knowledge available on the problem-shape 
of the desired objects, noise present on the image, darkness 
of the background, etc.-to design a robust algorithm for 
extracting markers of the different regions to be segmented. 
By marker of a region, we mean a connected set of pixels (or 
even one single pixel) included in this region. On the example 
of Fig. 16, using again a topographic analogy, one can see that 
the intervertebral disks correspond to domes of I having a well 
defined shape. At this point, the idea is to detect markers of 
all the domes of I, to extract their precise contours and lastly 
to remove the unwanted domes by using shape information. 
Hence, a morphological dome extractor described in [17] is 
utilized. To get more precise markers, the results it yields is 
then skeletonized. The domes of I as well as their skeletons 
(actual markers) are displayed in Fig. 16(e). As concerns the 
background marker, it corresponds to the deepest valley-lines 

of the original image which separate the previous markers. 

The algorithm for extracting it is quite similar to the one 
presented in the next paragraph for selecting the crest-lines 

of the gradient and is detailed in [49], [50]. This marker is 

displayed in Fig. 16(f) together with the previously obtained 

ones. 
Once these markers are extracted, a morphological trans- 

formation based on grayscale geodesic operations (see [49, 

Section 4.41, [50, Appendix]) allows us to: 

1) impose them as minima of a gradient function grad(l), 
2) suppress all the other gradient minima (the insignificant 

ones) by filling up their catchment basins, 

3) preserve the most important crest-lines of grad(l) lo- 

cated between the markers. 

This transformation is called modification of the gradient 
homotopy, or simply gradient modification. In some cases, 

the initial gradient has to be carefully chosen, since its most 

important crest-lines separating the extracted markers must be 
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(cl Cd) 
Fig. 17. Topographic watersheds computed on a digital elevation model. (a) Digital elevation model. (b) Catchment basins of original DEM. (c) Catchment 

basins of modified DEM. (d) Watersheds of modified DEM. 

properly located. For the present application, the gradient grad 

introduced in (13) is sufficient. 
The computation of the watersheds of this modified gradient 

provides then the desired segmentation: the catchment basin 
of the background marker stands for the background itself 
whereas the boundaries of all other catchment basins-i.e., the 
watersheds-correspond to the desired objects. In Fig. 16(g), 
the resulting contours are superimposed on the initial image. 
Finally, to extract the actual disks from the thus contoured 
object, one has to use the already mentioned shape informa- 
tion: the disks are the only objects whose skeleton is smooth, 
elongated in only one direction, and not too long. The final 
segmentation is displayed in Fig. 16(h). The methodology 
presented in this section has already been successfully ap- 
plied to many problems, such as the segmentation of 2-D 
electrophoresis gels [4], holograms, circuits, cells, etc. Thanks 
to the algorithm introduced in this paper, the sophisticated 
segmentation procedure we have presented here runs in less 
than ten seconds on a SUN Spare Station. 

of 50 meters. We consider it in square grid and 8-connectivity, 
so that the resulting watersheds will be 4-connected. The major 
part of the model belongs to the hydrologic basin of the Thyle 
river (Belgium). 

Applying the present watershed algorithm directly to the 
model leads to Fig. 17(b). Like in the previous section, the 
disappointing over-segmentation is due to the many minima 
present inside the DEM. However, fluvial erosion processes 
do not normally produce any minima at the spatial resolution 
of usual DEM’s. One may thus assume that all minima within 
the present DEM represent artifacts or data errors. Hence, the 
only minima to keep are located along the boundaries of the 
model. The removal of the others by modifying the homotopy 
of the model is straightforward. The used technique is similar 
to that presented in the previous section, and is detailed in [43]. 
Applying the watershed transformation to the modified model 
leads to the desired catchment basins, which are displayed in 
Fig. 17(c). In Fig. 17(d) the watersheds are superimposed on 
the initial DEM. 

B. Watersheds on Digital Elevation Models C. Three-Dimensional Watersheds 

Watersheds constitute primarily a topographic concept. The 
present algorithm provides thus an efficient tool for extracting 
topographic basins from DEM’s [43]. The DEM shown in 
Fig. 17(a) is used to illustrate the methodology.3 It represents a 
256 x 256 matrix of elevations having an equal X-Y resolution 

“This DEM was produced by Eric Loutie, Catholic University of Louvain, 
Belgium. 

As already mentioned, the present algorithm works for 
n-dimensional images without any modification: it suffices to 
consider the appropriate set of neighbors of each pixel. For 
example, Fig. 18(a) is a 32 x 32 x 32 binary image displayed 
as thirty-two 32 x 32 2-D images (from left to right and top 
to bottom). It has four voxels set to zero in the lower plane as 
well as in the upper plane, the rest of the volume being set to 
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Fig. 18. An example of a three -dimensional watershed. 

one. Fig. 18(b) represents the watershed surfaces associated 
with Fig. 18(a). The cubic grid in six connectivity was used 
(each voxel is connected to its six nearest neighbors). In fact, 
the watersheds we have determined are nothing but the SKIZ 
of the zero voxels present in the 3-D image. n-dimensional 
watersheds are currently being applied to the segmentation of 
3-D medical images and of multispectral images [44]. 

D. A Morphological Region-Growing Algorithm Based 
on Watersheds for Graphs 

The extension of the present algorithm to graphs4 is con- 
sidered here and shown to be at the basis of a powerful 
region-growing algorithm. 

I) Mathematical Morphology on Graphs: Let us first provide 
some quick reminders on mathematical morphology for graphs: 
digital images studied through morphological transformations 
are usually digitized according to square or hexagonal graphs, 
but one can well imagine using general graphs and applying 
the same kind of processings 1471. In fact, graphs constitute 
nothing but a particular kind of lattice and fit very well in 
the general framework within which MM is defined in [41, 
ch. 1,2]. 

More precisely, let 6 = (V, E) be a graph with V its set 
of vertices and E its set of edges. For the sake of simplicity, 
D is here supposed to be a nonoriented and planar l-graph 
without loops [19]. It constitutes the underlying structure, just 
like grids for digital images. The discrete distance induced by 
E on the set V is denoted dE and defined as follows: 

Definition 7: V (~1, ~2) E V2, the distance LEE(q) up) be- 
tween ~1 and ~2 is equal to the length of the shortest paths 
between them in E : dE(al, ~2) = inf{l (P), P path joining 
v1 and ‘112 in E}. 

Similarly, the erosion is defined by taking an inf raihe; 
than a sup. An example of a dilation of size one of a binary 
morphological graph-i.e., a morphological graph taking its 
values in (0, l}-is presented in Fig. 19. Now, all trans- 
formations of Euclidean morphology which do not involve 
any notion of direction can be easily transposed to graphs 
[47]. In particular, the “immersion” definition of watersheds 
(see Section II-C) extends to graphs, and the implementation 
introduced in Section III works very well in this framework 
[48]. It suffices to use vertices rather than pixels and to code 
the graphs by means of data structures allowing a direct access 
to the neighbors of a given vertex [47], [50]. 
2) Watersheds on Graphs and Picture Segmentation: The 
watersheds transformation for graphs will now be at the 
basis of a new segmentation procedure. As explained in Sec- 
tion V-A, one cannot simply use the watersheds of the 
gradient--a gradient-of a grayscale image I to segment 
it. Indeed, although the correct contours are most of the 
time present in the watershed image, many contour arcs are 
irrelevant to the problem. At this point, the solution presented 
in Section V-A makes use of an external knowledge on the 
sample under study, in order to find a way for extracting 
markers of the different regions. These markers are then 
utilized to modify the homotopy of the gradient on which 
watersheds will be computed. This method avoids the over- 
segmentation to appear. 

The kind of objects we will process can now be defined. 
Definition 8: A morphological graph G on S is a mapping 

from V into W: 

v -+R 
G 

w H G(w). 
04) 

However, for some very complex segmentation problems, 
and especially when the sample are very different from one 
another, extracting robust markers is an almost impossible 
task. The idea is then to remove the insignificant contour arcs 
of the gradient watersheds. In the present section, rather than 
using the watershed lines, the dual representation is used: we 
consider the tessellation provided by the catchment basins of 
the gradient (here, we implicitly suppose that the watersheds 
have zero pixel thickness). Suppressing a watershed line comes 
down to merging two catchment basins. 

Considering a morphological graph on 6 comes down to 
assigning a “gray-tone” to each of its vertices. 

4Surprisingly, the first implementation of this algorithm was designed for 
graphs [48]. 

Fig. 19. Dilation of size one of a binary graph 
in white). 

(l-vertices in O-vertices 

Now, erosions and dilations can well be defined for graphs. 
Definition 9: Let G be a morphological graph on 4. The 

dilation of size n of G, denoted Scn)(G) is the morphological 
graph defined on G by 

S(")(G) 
v --+R 
w H sup{G(u’),d E W&w’) I n>. 

(15) 

Let bdkE[l,7t] be the minima of the gradient grad(l) of 

grayscale image 1, and denote {C(m~)}k,,l,~l their associated 
catchment basins. Each minimum mk corresponds to an area 
of I which is “more homogeneous” than the neighborhood. 
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quadtree decomposition described in [ 151. Similar algorithms 
have already been successfully developed by S. Beucher 
to segment road images [5]. This method also provides a 
hierarchical decomposition of images which is an alternative 
to other morphological decompositions, such as those based 
on openings and closings [20]. 

Fig. 20. Mosaic image and associated adjacency graph. 

VI. CONCLUSION AND PROSPECTS 

The associated catchment basin G(mk) simply extends this 
area until it is bounded by some crest-lines of the gradient 
function. By assigning to each basin a unique gray level, we 
decompose image I into homogeneous areas and get a simpler 
image called mosaic image. Of course, the gray level assigned 
to each catchment basin in the mosaic image has to be carefully 
chosen, and must be close to the corresponding gray levels of 
the original image 1. One of the best solutions is to assign to 
the pixels in G(mk) the infimum (the supremum would work 
equally well) of {I(p),p E mk}. 

Definition 10: Let I be a grayscale image and grad(I) be a 
gradient image of I. Let {mk}kEIinl be the minima of grad(l) 

and {C(mk))kc[l,n] their associated catchment basins. 

The mosaic image of order 1 of I, denoted 1(l), is given by 

v k E [l, n], t/p E c(mk), I(‘)(p) = inf(l(p), p E mk}. 

(16) 

The mosaic image I(‘) provides a decomposition of I into 
roughly homogeneous regions, but as said above, one has 
to merge regions into larger ones to get rid of the over- 
segmentation. To do so, we consider the adjacency graph 
G(l)(I) of 1(l): its vertices correspond to the different catch- 
ment basins, and there is one and only one edge between 
two adjacent regions. Moreover, the value associated with 
each vertex of G(l)(I) is the gray level of the corresponding 
region. The algorithm for determining the graph is based on a 
contour tracking of the different regions of 1(l). An example 
of adjacency graph is displayed in Fig. 20. The procedure 
described in the previous paragraph for I can now well be 
applied to G(l)(I), by using gradients and watersheds on 
graphs. This yields a mosaic image of second order I(‘) where 
each region corresponds to a catchment basin of the gradient 
of G(‘)(I). Homogeneous regions of 1(l) have been merged 
into larger ones, thus removing a bit of the over-segmentation. 
The process is then iterated until the desired merging level is 
reached, or until a given criterion is fulfilled. 

An example of this procedure is shown in Fig. 21. Unfor- 
tunately, this example is not extremely significant, since there 
are not actually regions to segment on image 21(a). But it 
shows how the described procedure works. Compared to most 
region-growing algorithms [21], [15], [34], this method has 
the advantage of being absolutely independent of the order in 
which the vertices are scanned. Moreover, the merging is not 
done according to local criteria: the watershed being a global 
transformation, numerous regions may be merged at each step 
into a single one, whereas other regions remain unchanged. 
Lastly, contrary to many split and merge algorithms, the 
initial decomposition is not done blindly: the catchment basin 
tessellation we have presented is meaningful compared to the 

The watershed algorithm introduced in this paper is ex- 
tremely powerful compared to the existing ones. Not only is it 
often hundreds of times faster on conventional computers, but 
it also proves to be more accurate. Furthermore, it turns out to 
be very flexible, since it can be easily adapted to any kind of 
digital grid and extended to n-dimensional images and graphs. 

The examples of application which have been provided 
clearly illustrate the huge interest of the watershed transfor- 
mation. Until now, its computation was so time consuming on 
conventional computers that only few people could actually 
use this transformation in practice. The present algorithm 
should now allow anyone to resort to watersheds for solving 
complex segmentation problems. Furthermore, the first steps 
into the watershed segmentation of 3-D grayscale images have 
already been enabled by this implementation. It is thus ex- 
pected to contribute to new insights into the use of watersheds 
in the field of image analysis. In particular, more experiments 
are currently being carried on to evaluate the interest of 
watersheds on graphs with respect to picture segmentation. 
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