
Watertight As-Built Architectural Floor Plans Generated from Laser Range

Data

Eric Turner and Avideh Zakhor

U. C. Berkeley

Department of Electrical Engineering and Computer Science

Berkeley, CA 94720

elturner@eecs.berkeley.edu, avz@eecs.berkeley.edu

Abstract

This paper proposes an algorithm that generates as-built

architectural floor plans by separating the floors of the Li-

DAR scan of a building, selecting a representative sampling

of wall scans for each floor, and triangulating these sam-

plings to develop a watertight representation of the walls

for each of the scanned areas. Curves and straight line

segments are fit to these walls, in order to mitigate any

registration errors from the original scans. This method

is not dependent on the scanning system and can success-

fully process noisy scans with non-zero registration error.

Most of the processing is performed after a dramatic di-

mensionality reduction, yielding a scalable approach. We

demonstrate the effectiveness of our approach on a three-

story point cloud from a commercial building as well as on

the lobby and hallways of a hotel.

1. Introduction

The use of laser scanning technology is becoming a vital

component of building construction and maintenance. Dur-

ing construction, laser scanning can be used to record the

as-built locations of HVAC and plumbing systems before

drywall is installed. In existing buildings, blueprints are

often outdated or missing, especially after several remod-

elings. In this paper we describe an approach to automati-

cally generate a floor plan for the interior environment of a

building using laser scan data. This floor plan is meant to

accurately indicate the positions of walls within an area of

interest in the building.

The point clouds generated from these scans represent

huge amounts of data that may contain noise or missing

gaps. There may exist excess clutter such as furniture or

other non-building objects. An existing and more usable

format in the architectural field is a 2D floor plan for the

zones of interest. The ability to separate these building el-

ements from the rest of the point scans and to generate a

coherent floor plan can potentially enhance semantic under-

standing of a point cloud representing an architectural envi-

ronment.

Accurate floor plans can also be used to generate full

3D models of a building. The input floor plans of these

modeling systems should not contain temporary objects or

clutter. The techniques described in [10, 13] spend signifi-

cant effort to discover walls and shapes in a rasterized floor

plan. Having a plan that is already represented by paramet-

ric curves and lines, such as the output of the approach to be

described in this paper, can facilitate modeling algorithms

that incorporate 2D information [3, 4, 10, 13]. The result-

ing 3D models can be used for virtual reality or in-building

navigation purposes. Both these 3D models as well as 2D

floor-plans can be used to generate semantic Building In-

formation Models (BIM), which can be used for building

maintenance and energy-efficiency analysis [15].

2. Background

Point cloud scans of building interiors can be captured in

a variety of ways. With static scanning, a stationary scan-

ner is manually placed at a finite number of locations in

the building to collect scans. In mobile scanning, a single

scanning system collects data continuously while moving

through the environment. In both cases, scans taken from

different locations must be registered against each other, so

that all scan points are represented in the same coordinate

frame. Any errors in this registration process can cause

errors in the resultant point cloud. Applications that ana-

lyze this point cloud must take these potential errors into

account.

An architectural floor plan is defined to represent a sub-

set of the interior walls and hallways of a building. It is

often preferred that floor plans contain semantic informa-

tion, such as the swing direction of doorways or restroom

labels. These features are not a requirement and the pro-

1

cessing required to produce them is beyond the scope of

this paper. The shape and configuration of wall placements

in floor plans are not arbitrary, but adhere to common prac-

tices and patterns. Walls customarily are simple geomet-

ric shapes, such as straight line segments or smooth curves

[15]. The placement of walls with respect to one another

is also methodical. Many building floor plan designs uti-

lize patterns and regularity to reduce the complexity of the

design and construction process [6]. The symmetric and

repeating pattern common in many buildings can be used

to reduce noise in an estimated model. Since the techniques

proposed in this paper are meant to be dispatched on subsets

of a building’s interior, the patterns across an entire building

cannot always be utilized.

3D modeling of building environments is a well-studied

field. Aerial and terrestrial laser scanning of urban envi-

ronments has yielded accurate, detailed models of external

architectures [14, 17]. Since exterior scans typically pass

through windows and other openings in a building façade,

they can be used to create a sparse representation of the in-

terior floor plan [7].

Interior scanning has traditionally been used for robotic

navigation in indoor environments. The rough locations of

walls are necessary to avoid collisions. Generating floor

plans for modeling, however, requires a much higher de-

gree of precision [12]. Given these antecedent studies, tech-

niques have been developed using a single horizontal scan-

ner collecting about the yaw direction [16]. Constructing

full 3D scans allows for more sophisticated means of iden-

tifying walls from other obstacles in a building. In this sce-

nario, one can compute a top-down 2D histogram of point

densities across the x-y plane [12]. Areas with high density

are considered likely to be wall locations. While clutter is

mitigated by being less represented in the histogram than

walls, no direct measures are taken to remove outlier sam-

ples before line-fitting. Further, each story of a building

must be processed separately.

Previous approaches to floor plan modeling typically as-

sume walls are well-fitted by straight line segments and

whether these fitted models are watertight is not guaranteed

[11, 12, 16]. Many architectural designs incorporate curved

features, which would not be modeled accurately by these

approaches. The absence of any water-tightness guarantee

requires extensive post-processing to be devoted to remov-

ing disconnected and outlier segments that are interpreted

as noise.

This paper presents a means of generating a floor plan

that fits both curves and straight segments with walls that

are guaranteed to be watertight. In Section 3 we describe

our approach. Sections 4 and 5 include results and conclu-

sions.

3. Proposed Approach

Given a point cloud representing a subset of the interior

of a building that can cover multiple stories, we propose

a three-step process to generate a watertight floor plan for

each story in the point cloud by fitting line segments and

curves to model features. First, we extract wall sample

locations for each story. This process is done using a 2D

projection and density analysis, in a similar manner as dis-

cussed in [12]. The output is a subset of samples that are

representative of each wall on each story, as discussed in

Sections 3.1 and 3.2. Second, the Delaunay Triangulation

of these samples is computed and each triangle is labeled as

“internal” or “external” using a 2D version of the Eigencrust

algorithm [9]. This process is discussed in Section 3.3. The

edges that border these two labels are output as wall loca-

tions, as detailed in Section 3.4. Thirdly, noise reduction is

achieved by fitting these facets to line segments and curved

components using Random Sample Consensus (RANSAC)

[5], as discussed in Section 3.5.

3.1. Finding Wall Samples

Given a 3D input point set, P , we wish to generate a

floor plan for each story represented. The coordinate sys-

tem is defined so that the z-component represents height.

First, we compute how many stories are present in P and

partition P into separate point sets P0, P1, ..., Pf for each

level by height, as shown in Figure 1. A histogram is calcu-

lated for the distribution of the heights of all points p ∈ P .

Next, we determine which bins of this histogram represent

the locations of floors and ceilings. We only consider bins

that are local maxima and contain the highest counts. The

bins with the highest counts are found by sorting the bins

by size in descending order and keeping the bins that ap-

pear before the greatest discontinuity. This step chooses the

most densely populated bins as potential floor and ceiling

locations. The bin with the lowest z-elevation that satisfies

these requirements is assumed to be the floor of the first

story. The lowest floor/ceiling bin that is at least a mini-

mum wall height threshold, typically taken to be ∼2 meters,

above the current floor bin is considered the ceiling bin for

that floor. The next highest floor/ceiling bin is taken to be

the floor height of the next story. This procedure contin-

ues for all stories. A partition level is taken to be halfway

between the ceiling of one story and the floor of the next

story. These levels partition the point set into f separate

stories P0 ∪ P1 ∪ ... ∪ Pf−1 = P .

For each story k, we wish to determine what subset of

points in Pk represent walls. Our goal is to find these wall

locations with a sparse sampling of points Sk ⊆ Pk. By

defining a grid along the x-y plane, we can find coordinate

locations that are likely to represent walls. The width of

each grid cell is the sampling distance ds, which should be

smaller than the minimum feature size expected in a floor

(a) (b)

Figure 1. A point set P , shown in (a), is separated into three stories

P0, P1, and P2 based on a histogram analysis of point heights, as

shown in (b).

Figure 2. A point set Pk (small dots in blue) is partitioned by a

grid in the x-y plane (lines in black). For each grid cell, a neigh-

borhood of points (medium dots in red) is computed and the me-

dian position of the points (large dot in green) is taken as a wall

sample. The normal of this neighborhood (vector in dark green) is

computed using PCA.

plan. A typical value for this parameter is 5 cm. This grid

partitions Pk laterally. For a grid cell g, let the neighbor-

hood set Ng be the subset of points of Pk that are within a

horizontal distance of ds from the center of g, as shown in

Figure 2. Thus a given point can be in the neighborhood of

multiple grid cells.

We perform the following checks on Ng to determine

whether this neighborhood represents a portion of a wall.

The first assertion is that a wall must be densely sampled,

so if |Ng| is less than a threshold, it is rejected. Typically

a threshold of |Ng| ≥ 50 points is sufficient. The second

check is to verify the height of a wall. The vertical support

of Ng must be at least the minimum wall height threshold

mentioned earlier. We wish to verify that the distribution of

points is uniform vertically, which signifies that a flat sur-

face was captured. For this uniformity check, we compute

the histogram of the heights of Ng with 16 bins and enforce

that at least 12 of these must be non-empty. Additionally,

Figure 3. Average filtering reduces occurrence of registration er-

rors exposed in wall sampling.

at least three of the highest four bins must be non-empty,

which ensures a neighborhood extends all the way to the

ceiling. If these requirements are fulfilled, g is said to repre-

sent a wall. The median horizontal position for the elements

of Ng is computed. If this median lies within the bounds of

g, then it is taken as a “wall sample” for g.

The normal vector for this wall sample is calculated us-

ing Principal Components Analysis (PCA) [8]. Let C be the

2×2 covariance matrix of the x-y positions of the elements

of Ng and e1, e2 be the eigenvectors of C with correspond-

ing eigenvalues λ1, λ2. Let λ1 ≤ λ2. The normal vector is

chosen to be ~n = e1, as shown in Figure 2. The confidence

of this normal estimate is computed as c = 1 − 2λ1

λ1+λ2

. If c

is less than 0.15, then the neighborhood points are not well-

aligned and rejected as the location for a wall.

If pose information for the scanner is known for each

point, this normal vector’s direction may be flipped to guar-

antee that it points towards the laser scanner. Any wall sam-

ples captured far away from the scanner are thrown away as

outliers. This distance is typically 5-10 meters. If a feature

was not scanned within this distance, it was only partially

captured and cannot be accurately represented. Performing

the above operation for all grid cells results in a set of wall

sample points Sk ⊆ Pk.

3.2. Smoothing Wall Samples

A crucial step in generating a point cloud is to register

the poses of separate scan positions to a common coordinate

system. Any error in this process may result in duplicate

instances of a scanned wall with slight misalignments. Each

instance of a wall may appear in Sk and if the registration

error is significant smoothing may be required to force these

wall instances to become aligned.

For a given sample s ∈ Sk with normal vector ~n, its

smoothing set is a subset of Sk. The position of s is trans-

lated to be the mean position of this smoothing set. The

smoothing set contains all samples that are (a) within some

smoothing distance of s along the ±~n direction, (b) no more

than 3ds away from s in the direction orthogonal to ~n, and

Figure 4. The angles of intersection between two triangles u and

v, which share the edge s1s2. These values are used in computing

weights between triangle pairs.

(c) whose normals are aligned to within π
8

radians of ~n. The

smoothing distance must be less than the minimum allow-

able spacing between parallel walls, but at least as large as

the expected registration error. This step is not necessary

if registration error is smaller than ds. An example of this

smoothing process is shown in Figure 3.

3.3. Labeling Triangulation of Wall Samples

We wish to determine the topology of the 2D sample set

Sk for each story k ∈ {0, 1, ..., f − 1}. This task is accom-

plished using a 2D variant of the Eigencrust algorithm [9].

This will partition 2D space into regions labeled “inside”

and “outside” and export the borders between these regions.

This method guarantees that these borders form the faces of

a 2D simplicial complex, which will be watertight. Eigen-

crust has been shown to be more robust to outlier samples

than similar algorithms, such as Powercrust [9, 1].

The Eigencrust algorithm first computes the 2D Delau-

nay Triangulation, T , for the sample set Sk plus four bound-

ing box corners. Eigencrust constructs a sparse graph where

the nodes represent triangles and edges are placed between

the nodes with weights corresponding to the relative geom-

etry of the triangles. Edges with positive weights indicate

that triangles should have the same labeling, while negative

weights indicate that the triangles connected should be la-

beled oppositely. Generalized eigensystems are solved in

order to determine the best triangle labelings to fit these

connections. For our 2D varient of Eigencrust, we keep the

same criteria for placing edge weights as in [9], but mod-

ify the negative edge weight values. As compared to [9],

we have additional information of normal vectors for each

sample location. If a negative edge is placed between two

triangles u and v, we use the weighting:

wu,v = −e4+4cosφ+2sinθ1+2sinθ2 (1)

where these parameters are shown in Figure 4. The value

φ is defined as the angle at which the circumcircles of u and

v intersect. The intersection of the triangles u and v is a

line segment whose endpoints are samples s1 and s2, which

Figure 5. An example triangulation of wall samples. Each triangle

is denoted as “inside” (yellow) or “outside” (green).

have normal vectors ~n1 and ~n2 respectively. The value θ1

is defined to be the angle between ~n1 and s1s2, and θ2 is

defined as the angle between ~n2 and s1s2. This weight is

defined to have a large magnitude when both the normal

vectors are perpendicular to the line s1s2, which is a strong

indication of a wall in the original point cloud Pk.

We can constrain some triangles to be interior or exterior

based on a priori information. The label “inside” refers to

locations of open area within a building where a person can

exist. The term “outside” refers to all other areas, which

include both the exterior of the building as well as the ar-

eas inside walls or other solid spaces. We can immediately

force the label of “outside” to any triangles connected to

the bounding box corner vertices. If the pose information

for the scanner is available, we can force the label of “in-

side” to a subset of triangles. First, we investigate whether

the 2D line-of-sight from a scanner pose to a scan sample

crosses triangles. If the center 50% of this laser travel dis-

tance crosses a triangle, that triangle is intersected by that

scan line. If a triangle is intersected by 10 or more scan

lines, it is assumed to be “inside”. Additionally, all trian-

gles that contain a pose position of a scanner are marked as

interior. If a mobile scanning system is used, then the path

traversed by that system can also be used to mark interior

triangles. Each pair of adjacent pose positions represents a

line segment in 2D space. If both of these poses contributed

scans to the wall sample set Sk, then any triangles that are

intersected by this line segment are also constrained to be

interior.

The remaining triangles are labeled inside or outside by

solving generalized eigenvalue systems that minimizes the

total positive edge weights that connect oppositely labeled

triangles and negative edge weights that connect triangles

with the same labeling [9].

3.4. Forming Floor Plan Boundary Edges

We have found the following post-processing clean-up

techniques useful for increasing the quality of the output

model. First, we represent this topology of triangles as a

(a) (b)
Figure 6. Original triangulation labeling (a) is cleaned by remov-

ing small unions and sharp protrusions (b).

set of unions. Any subset of triangles with the same label

that forms a connected component is represented as a sin-

gle union using the Union-Find algorithm [2]. Unions that

are composed of a small number of triangles are most likely

mislabeled, since the smallest building features should still

be sufficiently sampled. The appropriate cut-off value de-

pends on the value of ds used to form samples, but a value

of 30 triangles is typically used. All inside unions that have

fewer than this many triangles are relabeled as outside. The

set of unions is recomputed and then all outside unions that

meet this criterion are relabeled as inside. Another post-

processing smoothing process is to remove jagged edges

from the boundaries between labelings. Every triangle has

three neighboring triangles, each sharing one of its edges.

If a triangle t ∈ T has only one neighbor that shares the

same labeling and that neighbor is connected to t’s shortest

edge, then t is considered to be a protrusion. It is unlikely

for building geometry to be correctly represented by such a

protrusion, so all protrusions labeled as inside are relabeled

as outside. After this relabeling, all outside protrusions are

found and relabeled as inside. An example of this process-

ing is shown in Figure 6.

The set of edges in T that are shared by an “inside” trian-

gle and an “outside” triangle are exported as boundary edge

set, B. Each element in B is a line segment, which in total

constitute a water-tight floor plan of the scanned area.

3.5. Fitting Edges With Lines and Curves

Since there may exist areas in the building geometry that

are insufficiently scanned or errors incurred during process-

ing, it is important to utilize common architectural patterns

to reduce these errors. Additionally, applications may re-

quire a floor plan to be composed of parametric lines and

curves.

Local model-fitting approaches such as region growing

are sub-optimal because unconnected architectural features

may use the same geometric model. For example, the back

walls in a row of offices may lie on the same plane, even

though they are in different rooms. Since we need to fit both

curves and straight lines simultaneously, a reasonable tech-

nique for this situation is one that is non-local and flexible,

Figure 7. The walls of a circular room are fit to the same circle

model (shown highlighted in teal), even though they are comprised

of several connected components.

(a) (b)
Figure 8. (a) Watertight wall edges; (b) curve-fitting via RANSAC

reduces sample location error and sharpens corners.

such as Random Sample Consensus (RANSAC) [5].

We apply RANSAC to the subset of samples used as ver-

tices in the boundary edges B. Each iteration randomly

picks three samples from this set that have not yet been as-

sociated with a model. These three points uniquely define

a circle. A line of best fit can also be obtained for these

points. Both the circle and the line models are compared to

the subset of samples still unassigned. Inlier sets for both

of these models are computed. An inlier is an unassigned

sample that is both within a threshold distance of a model

and whose normal vector is within a threshold angle to the

model’s normal vector at that location. Only models that ex-

ceed a specified minimum number of inliers are considered.

The line or circle model found with the smallest average er-

ror is returned as a valid model and its inlier vertices are no

longer considered for subsequent models.

This process continues until no new parametric model

can be found. The result is a set of models, where each

model has a set of inlier samples and a parametric repre-

sentation of either a line or a circle. The topology defined

in B has not been altered, so its edge elements can be used

to partition the inlier vertices of each model into a set of

connected components, again with Union-Find [2]. Any of

these connected components composed of too few samples

is most likely a misclassification. Thus the elements of any

of these components with fewer than 15 samples are reset

to not be associated with any model. Additionally, we wish

to encourage models to extend along the edges defined in

B. If an unassigned sample is within 15 edge hops to sam-

ples belonging to a model, that sample is associated with

the closest model. These two steps encourages outlier sam-

ples to belong to models that are topologically close. These

steps also help grow models be adjacent, which encourages

sharp corners.

Once the revised parametric models and their respective

inliers are computed, the inlier samples and edges in B are

replaced by edges that conform exactly to their models’ lo-

cations. This process reduces the overall number of samples

and removes small perturbation errors from the floor plan.

Figure 7 demonstrates the results of this process, which fits

a circle to the walls of a round room with several entrances.

Figure 8 shows how this process can also be applied to

straight walls.

4. Results

Our approach can be applied to either static or mobile

scan systems and to point sets representing one or more sto-

ries. Examples of these processes are shown in Figures 9,

10, and 11.

Figure 9 shows the processing of a scan of three stories of

hallways in an office building. The input point-set has 17.4

million elements and the resultant wall samplings for each

story are 5,544 samples, 5,357 samples, and 3,265 samples

from bottom story to top respectively. The hallways of all

three stories form a loop, however along the second and

third story, not all of the hallway was scanned. These re-

sults show how our algorithm enforces water-tightness by

fitting walls to the ends of any unscanned sections, such as

the hallways labeled 1 and 2 in the third column of Fig-

ure 9c. The resultant models are compared against the cur-

rent building floor plans, as shown in the fourth column

of Figure 9. In areas where the wall sampling is dense,

our generated floor plan is accurate with respect to these

ground-truth blueprints.

Figure 10 shows the processing of a scan taken of a sin-

gle level of a hotel. The input point-cloud has 5.8 million

elements and the wall sampling produced 13,557 samples.

This set demonstrates a model that is composed of both

curves and straight line-segments. Figure 11 shows the

lobby of this building, which has been statically scanned.

This dataset has an input point-cloud of 2.7 million points

from which 3,568 2D wall samples were extracted. This

model demonstrates the ability of our algorithm to capture

structural features such as columns. It shows how areas of

high curvature can be modeled just as effectively as straight

walls.

While enforcing watertight models allows for walls to

be created in areas that are not scanned, it may also cause

undesired homography changes. If two parallel walls get

arbitrarily close to each other, the space between them may

become incorrectly labeled with neither wall existing in the

final model. An example of this issue can be seen in the

north-west stairway in Figure 9d, labeled 3. Another lim-

itation is that the walls placed in areas of sparse scanning

may be inaccurate. The corridor in the south-east corner of

the floor plan represented in Figure 9c is not fully scanned,

so a wall is represented at the edge of the scan area, even

though the hallway continues much further in reality. While

the sparsity of a scan is typically due to the placement of

the scanning system, it can also be caused by the partition-

ing of the original point-cloud into separate stories. Note

that the south-west stairwell in the same model, labeled 1,

is sparsely sampled and as a result the north wall is incor-

rectly modeled at an angle. In this case, the wall in question

was thoroughly scanned, but higher in the stairway on the

next story. The immediate partitioning of levels in a point-

cloud causes cross-level scans to become under-represented

and introduces sparsity into the wall sampling.

Each dataset shown has an input of millions of points,

but uses the wall samples, a much sparser representation,

for all topology processing. This reduction allows for many

more model-fitting iterations than if fitting was performed

on the original point-cloud.

5. Conclusions and Future Work

This paper details a technique to generate 2D architec-

tural floor plans. These results can be exported directly or

used to enhance the generation of 3D models. By project-

ing each story’s point set to two dimensions and performing

a density analysis, we can yield an increase in wall loca-

tion accuracy than by using a direct 3D approach. Utilizing

prior knowledge about building design and construction al-

lows for estimation of poorly scanned areas.

Further techniques could be used to increase the accu-

racy of our system. Most scanning systems capture opti-

cal imagery along with LiDAR data, but we currently do

not use any camera information when forming estimates of

building geometry. Accuracy could also be improved by

coordinating the triangulations of each story in multi-story

models. Currently the layout of each story is independent

and this coordination could only be used if there is minimal

registration error between building stories.

References

[1] N. Amenta, S. Choi, and R. K. Kolluri. The power crust. Pro-

ceedings of the Sixth Symposium on Solid Modeling, pages

249–260, 2001. 4

[2] J. Doyle and R. L. Rivest. Linear expected time of a sim-

ple union-find algorithm. Information Processing Letters,

5:146–148, November 1976. 5

[3] S. El-Hakim, L. Gonzo, F. Voltolini, S. Girardi, A. Rizzi,

F. Remondino, and E. Whiting. Detailed 3d modeling of

(a)

(b)

(c)

(d)

Figure 9. (a) Full point cloud for three-story model, taken with mobile scanning system; (b-d) Processing of each story, with (left to right)

wall sample locations, triangulation labeling, watertight curve-fit model, and comparison against ground-truth blueprints.

castles. International Journal of Architectural Computing,

5(2):200–220, June 2007. 1

[4] S. El-Hakim, E. Whiting, L. Gonzo, and S. Girardi. 3-d re-

construction of complex architectures from multiple data. 3D

Virtual Reconstruction and Visualization of Complex Archi-

tectures, August 2005. 1

[5] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: A paradigm for model fitting with applications to image

(a) (b)

Figure 10. Hallway of hotel, captured with mobile scanner. (a) The

full floor plan; (b) a close-up of a hallway intersection. The point

cloud (top) was converted into wall sampling locations (middle)

and boundary edges were fit to these samples (bottom).

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, June 1981. 2, 5

[6] P. Galle and N. Kollegium. An algorithm for exhaustive gen-

eration of building floor plans. Communications of the ACM,

24(12):813–825, December 1981. 2

[7] M. Johnston and A. Zakhor. Estimating building floor-plans

from exterior using laser scanners. SPIE Electronic Imaging

Conference, 3D Image Capture and Applications, January

2008. 2

[8] I. T. Jolliffe. Principal Components Analysis, Second Edi-

tion. Springer, 1986. 3

[9] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien. Spectral sur-

face reconstruction from noisy point clouds. Symposium on

Geometry Processing 2004, pages 11–21, July 2004. 2, 4

[10] R. Lewis and C. Sequin. Generation of 3d building mod-

els from 2d architectural plans. Computer-Aided Design,

30(10):765–779, September 1998. 1

(a) (b)

(c) (d)
Figure 11. Hotel lobby, captured with a static scanner. (a) The

captured point-cloud; (b) a close-up of the center columns; (c) the

wall samples extracted from this point cloud; (d) the set of wall

boundary edges.

[11] A. Nuchter, H. Surmann, and J. Hertzberg. Automatic model

refinement for 3d reconstruction with mobile robots. 3-

D Digital Imaging and Modeling, pages 294–401, October

2003. 2

[12] B. Okorn, X. Xiong, B. Akinci, and D. Huber. Toward auto-

mated modeling of floor plans. 3DPVT, 2009. 2

[13] S. Or, K. H. Wong, Y. Yu, and M. M. Chang. Highly auto-

matic approach to architectural floorplan image understand-

ing and model generation. Pattern Recognition, November

2005. 1

[14] F. Rottensteiner and C. Briese. A new method for building

extraction in urban areas from high-resolution lidar data. IS-

PRS, 2002. 2

[15] P. Tang, D. Huber, B. Akinci, R. Lipman, and A. Lytle. Au-

tomatic reconstruction of as-built building information mod-

els from laser-scanned point clouds: A review of related

techniques. Automation in Construction, 19(7):829–843,

November 2010. 1, 2

[16] C. Weiss and A. Zell. Automatic generation of indoor vr-

models by a mobile robot with a laser range finder and a color

camera. Autonome Mobile Systeme, (3):107–113, December

2005. 2

[17] A. Zakhor and C. Frueh. Automatic 3d modeling of cities

with multimodal air and ground sensors. Multimodal Surveil-

lance; Sensors; Algorithms and Systems, pages 339–362,

2007. 2

