
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

2008-08-01 

Watertight Trimmed NURBS Watertight Trimmed NURBS 

Thomas W. Sederberg 
tom@cs.byu.edu 

Xin Li 

Hongwei Lin 

Heather Ipson 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Computer Sciences Commons 

Original Publication Citation Original Publication Citation 

T. W. Sederberg and G. T. Finnigan and X. Li and H. Lin and H. Ipson, "Watertight Trimmed 

NURBS," ACM Transactions on Graphics 27(3) , pp. 79:1-79:8, 28. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 

Sederberg, Thomas W.; Li, Xin; Lin, Hongwei; and Ipson, Heather, "Watertight Trimmed NURBS" (2008). 

Faculty Publications. 906. 

https://scholarsarchive.byu.edu/facpub/906 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/906?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F906&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Watertight Trimmed NURBS

Thomas W. Sederberg∗

G. Thomas Finnigan‡

Brigham Young University

Xin Li†

University of Science and

Technology of China

Hongwei Lin§

Zhejiang University

Heather Ipson

Brigham Young University

Abstract

This paper addresses the long-standing problem of the unavoidable
gaps that arise when expressing the intersection of two NURBS sur-
faces using conventional trimmed-NURBS representation. The so-
lution converts each trimmed NURBS into an untrimmed T-Spline,
and then merges the untrimmed T-Splines into a single, watertight
model. The solution enables watertight fillets of NURBS models,
as well as arbitrary feature curves that do not have to follow iso-
parameter curves. The resulting T-Spline representation can be ex-
ported without error as a collection of NURBS surfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational
geometry and object modeling—Curve, surface, solid, and object
representations

Keywords: Surface intersection, Booleans, NURBS, T-Splines

1 Introduction

The trimmed-NURBS modeling paradigm suffers from a serious
fundamental flaw: parametric trimming curves are mathematically
incapable of fulfilling their primary role, which is to represent the
curve of intersection between two NURBS surfaces. Consequently,
trimmed-NURBS models are not mathematically watertight, as il-
lustrated in Figure 1 in which trimming curves are used to express
the intersection between the body and spout of the Utah teapot
model. We use the term “watertight” to connote no unwanted gaps
or holes. That is, the surface is a gap-free 2-manifold in the neigh-
borhood of intersection curves.

This paper presents a two-step algorithm for representing the
Boolean combination of two NURBS objects as a single watertight
T-Spline. In the first step, each trimmed NURBS is converted into a
T-Spline without trimming curves, as illustrated in Figure 2.a. In the
second step, each pair of untrimmed T-Splines is merged along their
intersection curve into a gap-free T-Spline model, as illustrated in
Figure 2.b. The resulting model, shown in Figure 2.c is C2, except
at the C0 crease along the intersection curve. This T-Spline model
facilitates the creation of watertight fillets. The model in Figure 2.d
contains a C2 gap-free fillet between the body and spout.

Section 2 reviews the history and significance of the problem this
paper addresses, and reviews prior literature. Section 3 presents an
algorithm for converting a trimmed-NURBS into an untrimmed T-
Spline. Section 4 explains how to merge two NURBS or T-Spline
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(a) Spout translated away from

body; intersection curve in white.

(b) Body and spout trimmed using

trimming curves.

(c) Trimmed body and spout trans-

lated back into original orientation

(d) Blowup of green rectangle in

(c), showing gap

Figure 1: Trimmed-NURBS Representation of the Utah Teapot.

(a) Body and spout converted to

untrimmed T-Splines

(b) Body and spout merged into a

single gap-free T-Spline.

(c) Gap-free T-Spline model (d) Gap-free C2 fillet.

Figure 2: Gap-free Teapot.

surfaces with mis-matched parametrizations. Section 5 details how
the algorithms presented in Sections 3 and 4 work together to create
watertight trimmed-NURBS models, and examines the approxima-
tion error. This section also discusses the creation of gap-free, C2

fillets and the placement of feature lines on a T-Spline surface that
are not aligned with iso-parameter curves. Section 6 summarizes.

2 Background

The fact that gaps are unavoidable in conventional trimmed-
NURBS mathematical models can be shown as follows. A trim-
ming curve is typically a degree-three NURBS curve defined in the
parameter domain of a NURBS surface. The image of such a trim-
ming curve on a bicubic patch (i.e., the curve on the bicubic patch in



R3 that the trimming curve maps to) is degree ≤ 18 and algebraic
genus zero. However, a generic intersection curve of two bicubic
surfaces is degree 324 in R3 [Sederberg et al. 1984] and algebraic
genus 433 [Katz and Sederberg 1988]. Hence, intersection curves
can only be approximated by parametric trimming curves.

The existence of these gaps in trimmed NURBS models seems in-
nocuous and easy to address, but in fact it is one of the most serious
impediments to interoperability between CAD, CAM and CAE sys-
tems [Kasik et al. 2005]. Software for analyzing physical properties
such as volume, stress and strain, heat transfer, or lift-to-drag ratio
will not work properly if the model contains unresolved gaps. Since
3D modeling, manufacturing and analysis software does not toler-
ate gaps, humans often need to intervene to close the gaps. This
painstaking process has been reported to require several days for a
large 3D model such as an airplane [Farouki 1999] and was once
estimated to cost the US automotive industry over $600 million an-
nually in lost productivity [NIS 1999]. At a workshop of academic
researchers and CAD industry leaders [Farouki 1999], the existence
of gaps in trimmed-NURBS models was singled out as the single
most pressing unresolved problem in the field of CAD.

Prior Art
Several solutions to the gap problem have been put forward, but
none address the problem adequately. The best solution from a the-
oretical standpoint is to use the precise representation for trimming
curves, which is an implicit (not parametric) equation of the form
f(s, t) = 0. In the case of two intersecting bicubic patches, f(s, t)
is a polynomial of bi-degree 54 × 54. [Krishnan and Manocha
1996] presents a solution to the surface intersection problem based
on such a representation, and [Krishnan et al. 2001] describes a
solid modeling system based on this approach, using exact arith-
metic. Unfortunately, exact arithmetic can be very expensive and
the method has not been adopted by the CAD industry. In appli-
cations for which a tessellation of the surfaces suffices, gaps can
easily be filled with a triangle strip or avoided altogether by careful
coordination while tessellating adjoining trimmed surfaces [Kumar
1996; Moreton 2001]. However, once a NURBS model has been re-
duced to a C0 tessellation, it loses its character as a smooth surface
and operations such as offsetting become impossible.

[Song et al. 2004] and [Farouki et al. 2004] describe methods for
creating a non-tessellated, watertight approximation of two or more
intersecting NURBS surfaces. Each method produces a set of piece-
wise C0 (but approximately C1) Bézier patches, although if patches
adjacent to an intersection curve are edited, the surfaces become
discontinuous. Our technique produces a watertight C2 surface de-
fined using a single T-Spline control grid, so the surface remains C2

if the control points are moved. [Song et al. 2004] requires the solu-
tion of a system of linear equations that under some conditions can
produce huge approximation errors. Our method is more amenable
to creating fillets than [Song et al. 2004] and [Farouki et al. 2004].

[Kristjansson et al. 2001] takes as input Loop subdivision surfaces,
although extension to other types of subdivision surfaces is possi-
ble. [Kristjansson et al. 2001] produces a G2 watertight subdivi-
sion surface defined by a multi-resolution control grid; the surface
remains G2 if the control grid is edited. The goal of [Kristjansson
et al. 2001] is an efficient algorithm suitable for animation, but not
necessarily for CAD.

A pertinent prior art to Section 3 is [Litke et al. 2001], which de-
scribes a process of converting a trimmed subdivision surface into
an untrimmed subdivision surface such that each trimming curve on
the trimmed surface becomes a boundary curve on the untrimmed
surface. [Litke et al. 2001] uses an enhanced Loop surface (triangle
based), whereas our algorithm is based on tensor-product NURBS
surfaces. Both algorithms must perturb the surface in the neigh-

borhood of each trimming curve, but are capable of confining the
perturbation to an arbitrarily small magnitude and narrow neigh-
borhood. [Litke et al. 2001] uses trimming curves that lie in world
space, thus permitting the true intersection curve to serve as the
trimming curve, whereas we use conventional parametric trimming
curves, which can only approximate true intersection curves.

A key disadvantage of subdivision surfaces for use in CAD is their
incompatibility with NURBS. Billions of dollars have been in-
vested in NURBS software and models, and there is tremendous
economic pressure against abandoning the NURBS paradigm. Fur-
thermore, NURBS do have some advantages over subdivision sur-
faces. For example, numerous versions of subdivision surfaces
exist, with no current industry standard, and many capabilities of
subdivision surfaces involve special refinement rules. Also, subdi-
vision surfaces are limit surfaces, involving infinite sequences of
patches. Although there are efficient ways to evaluate subdivision
surfaces [Stam 1998], the infinite number of patches is more diffi-
cult to deal with than a finite number of NURBS patches, especially
when doing data file exchange.

One approach used in commercial CAD software to manage the
NURBS gap problem is to use a procedural definition of intersec-
tion curves, which keeps track of which surfaces intersect. Inter-
sections can then be approximated, on demand, to any desired tol-
erance. This approach complicates subsequent tasks such as offset-
ting or filleting that require an explicit representation of the inter-
section curve. Furthermore, if a procedural definition of the same
intersection is used by two different programs, it is possible to ar-
rive at different results. This has resulted in incompatibilities be-
tween NURBS representations by different CAD, CAM, and CAE
software applications, and the growth of an entire software industry
around translating, fixing and healing 3D models and surfaces.

The surface intersection problem has been very thoroughly re-
searched. A sampling of the vast literature can be found in [Pa-
trikalakis and Maekawa 2002; Song et al. 2004]. The algorithms
described in this paper assume the existence of a robust surface in-
tersection algorithm that can represent an intersection curve using
trimming curves to within a prescribed tolerance, such as in [Krish-
nan and Manocha 1997]. Such capability is now standard in most
commercial geometric modeling programs.

The topic of fillets has likewise been widely researched. See [Song
and Wang 2007] for a list of references, and a solution to the fillet
problem that provides Gn continuity. Most commercial software
approximates fillets of free-form surfaces as NURBS surfaces that
lie on the base surfaces, with approximate G1 continuity. The ad-
vantage of the fillet solution presented in this paper is that it is part
of a unified geometric framework. An entire geometric model, in-
cluding fillets, can be represented as a single watertight T-Spline.

3 Trimmed-NURBS to Untrimmed T-Splines

This section presents a method for converting a bicubic NURBS
surface with trimming curve into an approximately equivalent T-
Spline with no trimming curve. The approximation error can be
made arbitrarily small, and the perturbation can be confined to an
arbitrarily narrow neighborhood of the trimming curve. We de-
scribe the algorithm using the example in Figure 3. Figure 4.a
diagrams the trimming curve C in the parameter domain of the
NURBS surface. The grid lines are knot lines for the NURBS sur-
face. Points in the domain that correspond to NURBS control points
are highlighted in red.

Trimmed-NURBS to Untrimmed T-Splines Conversion

Step 1. Form an axis-aligned polygon A (i.e., a polygon whose edges
are parallel to one of the two parameter directions) that en-



(a) Trimmed NURBS. (b) Untrimmed T-Spline.

Figure 3: Trimmed-NURBS to Untrimmed T-Splines Conversion.

closes the trimming curve, as illustrated in Figure 4.b.

Step 2. At each vertex of A that does not lie on a red point, perform
a T-Spline control point insertion as described in [Sederberg
et al. 2004]. In this example, the control point insertions will
occur at the five red points lying on the black line in Fig-
ure 4.c. (The insertion operation adds two additional control
points to the left of the black corner, and two beneath it, as
shown in Figure 4.d.)

Step 3. Remove the portion of the control mesh that lies on the inte-
rior of A and replace it with the mesh topology illustrated in
Figure 4.d. Note that each convex corner in A introduces a
valence three control point in the modified control grid, and
each concave corner in A creates a valence five control point.
Assign a knot interval of zero to all edges of the control grid
that connect a blue control point to a green control point, as
shown in Figure 5.a. These zeros create a Bézier end condi-
tion for this boundary curve. Assign a small knot interval α
to all edges connecting the outer layer of green control points
to the inner layer of green control point. A good choice for α
is the average of all parameter distances between the vertices
on A and the trimming curve.

Step 4. Leave all red control points in Figure 4.d in their initial loca-
tion. The blue control points in Figure 4.d define a NURBS
curve that approximates the image of C. The positions of
those control points are chosen to minimize the orthogonal
distance between the NURBS curve and the image of C, using
an algorithm such as in [Wang et al. 2006]. Likewise, the po-
sitions of the green control points are chosen to minimize the
orthogonal distance between the T-Spline surface and the in-
terior of the trimmed NURBS surface. The resulting T-Spline
and its control grid are shown in Figure 3.b.

This procedure introduces some perturbation error, the magnitude
of which in this example is 0.001 times the width of the model. The
domain of the perturbed region lies within the support the green and
blue control points. Figure 5.a illustrates the perturbation region in
yellow. For a fixed axis-aligned polygon, we can make the pertur-
bation region on the exterior of the polygon arbitrarily narrow by
performing a local T-Spline refinement, as illustrated in Figure 5.b.
Likewise, we can make the distance between A and C arbitrarily
small by finding an axis-aligned polygon that approximates C to
within a tolerance ǫ. Clearly, there are countless such axis-aligned
polygons, and numerous possible algorithms for finding such poly-
gons. We now present one such algorithm.

3.1 Finding an Axis-Aligned Polygon
The algorithm, illustrated by the example in Figure 6, has the flavor
of a curve rasterization in which the pixels are cells of a quadtree.
Related applications of quadtrees are reported in [Hunter and Stei-

(a) Trimming curve. (b) Axis-Aligned polygon A (blue).

(c) Control points inserted at vertices

of A.

(d) Topology modification.

Figure 4: Algorithm for Converting a Trimmed-NURBS into an
Untrimmed T-Spline.

glitz 1979; Samet 1984]. We begin by defining a color-based clas-
sification system for a rectangular domain R with respect to a trim-
ming curve C and a tolerance ǫ as follows:

White C does not intersect R.

Blue C does intersect R and the width or height of C is > ǫ.

Red C does intersect R, the width and height of C are < ǫ, but the
one-neigborhood of cells adjacent to R intersect C in more
than one connect component.

Gray C does intersect R, the width and height of C are < ǫ, and the
one-neigborhood of cells adjacent to R intersect C in exactly
one connect component.

Begin by assigning a color to each rectangle bounded by knot lines
in the parameter domain, using the above classification. Split each
red or blue rectangle into four axis-aligned rectangles and reclas-
sify each of those four new rectangles. Repeat these splitting and
reclassification operations until all cells are either white or gray. At
this point, each component of C will be covered by a contiguous set
of gray cells, which we might call a rasterization of the component.
For each component, the perimeter of its rasterization will serve as
an acceptable axis-aligned polygon. In Figure 6.f, the axis-aligned
polygon is highlighted in blue.

Extraordinary Points
[Sederberg et al. 2003] suggests dealing with extraordinary points
in T-Spline surfaces using the method presented in [Sederberg et al.
1998], which is a generalization of Catmull-Clark refinement that
takes into account knot intervals. For our purposes, we can modify
Step 2 in Algorithm 1 to include doing T-Spline refinements to
force all knot intervals to be identical in the 2-neighborhood of
each extraordinary point created in Step 3. This converts the
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Highlighted in Blue.

Figure 6: Algorithm for Finding Bounding Polygons.

extraordinary points into conventional Catmull-Clark style with
uniform knots, making possible the use of methods such as [Peters
2000] for patching valence n extraordinary points using G1 bicubic
patches, with one patch per face of the control grid. Alternatively,
the extraordinary region can be filled using G2 patches using a
method such as in [Loop 2004].

Discussion
An important property of this procedure is that the resulting T-
Spline is fully editable, meaning that its control points can be ad-
justed and all the properties of a C2 spline are honored. The al-
gorithm offers a tradeoff between accuracy and number of control
points. If the goal is to trim away some holes but then to continue to
modify the resulting T-Spline, an artist or designer can opt for fewer
control points. The resulting larger approximation error should be
acceptable since the surface will undergo additional modification.

Figure 7 shows an example involving two loops and a sharp corner.
In this case, the perturbation error is 0.00025 relative to the width
of the patch.

An improved algorithm for computing the green control points is
a problem calling for future research. To create our example fig-
ures, we chose a traditional method that appeared simplest to im-
plement. We begin by obtaining a set of sample points on the re-
gion of the trimmed surface that will be perturbed and then spec-
ify an initial position for the green control points. The following
process is then repeated: Assign each sample point a parameter
pair on the untrimmed T-Spline, then solve for the green control

(a) Trimmed NURBS. (b) Untrimmed T-Spline. (c) Untrimmed T-Spline.

Figure 7: Trimmed NURBS to Untrimmed T-Spline Conversion.

points that minimize the least squares error based on these parame-
ter assignments. It is known that this algorithm converges only lin-
early [Bjorck 1996], and indeed it can take several tens of seconds
to obtain good results if the initial positions of the green control
points are not chosen wisely. The algorithm has also been observed
to converge to a local min.

One possible solution is to extend to surfaces the curve-fitting algo-
rithm in [Wang et al. 2006], something the authors of that paper are
working on. Another line of research is to study whether the quasi-
interpolation methods used in [Litke et al. 2001] can be adapted to
T-Splines.

4 Merging using NU-NURBS

After two intersecting surfaces are converted into untrimmed T-
Splines using the method in Section 3, the final step is to merge
those two T-Splines into a single, gap-free T-Spline. A basic algo-
rithm for merging two T-Splines is presented in [Sederberg et al.
2003]. However, that algorithm gives poor results if the two sur-
faces to be merged do not have consistent parametrizations, as il-
lustrated in Figure 8. The first step in the merge algorithm in [Seder-
berg et al. 2003] is to insert knots such that the two surfaces have
the same set of knot intervals, as shown in Figure 8.b. (This might
also require that all knot intervals on one surface be scaled so that
their sum matches the sum of the knot intervals on the other sur-
face). The final step is to connect the two control grids, as shown
in Figure 8.c. However, if the adjoining boundary curves are not
parametrized similarly, the isoparameter curves will experience an
abrupt bend, imparting a kink in the resulting surface. For exam-
ple, Figure 9 shows a hand and arm modeled as separate NURBS,
whose parametrizations do not align. Figure 9.b shows the result
of merging them using the algorithm described in [Sederberg et al.
2003]. Unfortunately, most pairs of untrimmed T-Splines generated
using the method in Section 3 have this problem.

The problem is related to the fact that the refinements shown in
Figure 8.b must honor a restriction that is placed on the knot in-
tervals in a T-Spline: the sum of knot intervals on one edge of a
face on the control grid must equal the sum of knot intervals on
the opposing edge in the face. Better results could be obtained by,
instead of refining each surface as in Figure 8.b, we refine the two
surfaces so that their knot lines align, as shown in Figure 8.d. How-
ever, the resulting knot interval configuration violates the definition
of a T-Spline. Previous methods for dealing with such knot inter-
vals [Sederberg et al. 1998; Müller et al. 2006] devise variations on
Catmull-Clark refinement in which faces of the control grid map
to an infinite sequence of bicubic patches which, like extraordinary
points in a Catmull-Clark surface, are G1. The infinite sequence
of patches violates a key objective of this paper, which is to be ex-
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Figure 8: Merging Two NURBS Surfaces.

portable using a finite number of tensor-product patches.

To address this problem, we introduce a generalization of tensor-
product B-Spline surfaces that supports the knot interval configura-
tion in Figure 10.b, that is C2, and that yields one tensor-product
patch per face of the control grid. Since the knot intervals change
and hence are not “uniform,” we will refer to this surface as a non-
uniform NURBS surface, or NU-NURBS (spoken “new NURBS”).

(a) Arm and hand showing mismatched knot intervals.

(b) Merge using the algorithm in [Sederberg et al. 2003].

(c) Merge using NU-NURBS.

Figure 9: Merging NURBS Hand and Arm Models. (Model cour-
tesy of Zygote Media Group)

The idea is based on the fact that a tensor-product B-Spline surface
can be viewed as a family of iso-parameter curves:

P(s, t) =

m∑

i=1

Pi(t)Bi(s) where Pi(t) =

n∑

j=1

PijBj(t) (1)
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Figure 10: Knot Interval Configurations.

The Pi(t) can be viewed as “moving control points” that slide
along B-Spline curves, as illustrated in Figure 11.a.

e1 e1

e2 e2

e3
e3

e4 e4

P
11

P
61

P
15

P
65

P1(t)

P2(t)
P3(t) P4(t)

P5(t)

P6(t)

(a) “Moving control points” Pi(t).
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Figure 11: Constructing a Family of Isoparameter Curves on a
NURBS Surface.

For a fixed value of t = τ ,

P(s) =

m∑

i=1

Pi(τ)Bi(s) (2)

defines a cubic B-Spline curve that lies on the bicubic B-Spline sur-
face, and is the iso-parameter curve for t = τ . If we let τ vary, the
resulting family of iso-parameter curves sweeps out the B-Spline
surface. Figure 11.b shows four such iso-parameter curves for var-
ious values of τ .

Since most readers will be more familiar with B-Splines defined
using knot vectors rather than with knot intervals, we note that it is
straightforward to convert between the two representations. Define
ẽ−2 = 0, ẽi+1 = ẽi+ei, i = −2, . . . , 5 (e−1, e0, e5, and e6 are not
shown in the figure). Then the knot vector for the B-spline curves
Pi(t) is {ẽ−2, ẽ−1, . . . , ẽ6}. Likewise, the knot vector for each

of the isoparameter curves in Figure 11.b is {d̃−2, d̃−1, . . . , d̃7}

where d̃−2 = 0, d̃i+1 = d̃i + di, i = −2, . . . , 6

We now modify that description of a B-Spline surface to permit a
knot interval arrangement as in Figure 12.a in which the dij can
be any non-negative number. The basic idea is to treat the knot
intervals themselves as cubic spline functions, which in turn control
the basis functions Bi(s) in (2).
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Figure 12: NU-NURBS.



Figure 12.b shows an iso-parameter curve on a NU-NURBS sur-
face. The “moving control points” Pi(t) in this figure are identical
to those used in the description of NURBS surfaces in Figure 11.b.
The only difference is that in the NURBS case in Figure 11.b, the
knot intervals di are constants whereas for NU-NURBS, the di(t)
are spline functions. The coefficients of spline function di(t) are
di0, di1, di2, . . ., di5, di6 and the knot vector for the spline func-
tion is {ẽ−2, ẽ−1, . . . , ẽ6}. The NU-NURBS is thus defined as a
family of iso-parameter curves.

This NU-NURBS formulation has the following properties:

1. It specializes to NURBS in the case where the knot interval
configuration is identical to that in Figure 10.a.

2. This NU-NURBS is C2 in s, since each iso-parameter curve
P(s) is a cubic spline curve whose knot intervals are constant
for a fixed value of t.. Since the knot interval functions are
C2 splines in t, the NU-NURBS is also C2 in t.

3. The cost of evaluating this NU-NURBS is comparable to the
cost of evaluating a bicubic NURBS surface, the only differ-
ence lies in evaluating the knot interval spline functions di(t).

4. Although this surface formulation is new and hence not di-
rectly supported in existing commercial software, it can be ex-
actly represented—and exported—as a set of rational Bézier
patches, with one patch per face of the control grid. Unfortu-
nately, the degree of those patches can be rather high.

We have devised other, lower-degree versions of NU-NURBS, all
that produce one patch per face, including a version that is C2 in t
and G1 in s with patches that are degree 3×6, and one that is C2 in t
and G2 in s with patches that are degree 4×9. We have also devised
a version of NU-NURBS that permits arbitrary non-negative knot
intervals in both parameter directions. These variations are being
recorded in a separate paper [Sederberg et al. ].

5 Examples

This section examines the behavior of the algorithms presented in
Sections 3 and 4 when they combine to represent two intersecting
trimmed-NURBS surfaces as a single watertight T-Spline. It also
shows how fillets are supported in this representation, along with
arbitrary feature lines.

As reviewed in Section 2, the problem of computing intersection
curves is very well-studied, and algorithms for computing the in-
tersection of two NURBS surfaces P1 and P2 are standard in most
geometric modeling programs. These algorithms can compute trim-
ming curves C1 and C2 in the parameter domains of P1 and P2,
along with an approximation C of the intersection curve in R3, to
within a prescribed tolerance. This paper assumes that C1, C2, and
C have been computed using an existing algorithm, and that the
geometric and topological accuracy of these curves is deemed ac-
ceptable.

Perturbation Error
Figure 13 shows the trimmed teapot body being converted into
untrimmed T-Splines with different degrees of precision. The
NURBS model of the teapot used throughout this paper is actually
a C2 NURBS model based on the original C1 Bézier model. In our
NURBS model, the body is defined using 90 control points.

Figure 14 shows the error distribution in both the body and the
spout. This figure shows how the perturbation domain decreases
as ǫ decreases.

By adjusting ǫ, the perturbation magnitude and extant can be held
below a specified tolerance.

(a) 108 Control points. ǫ = 1. Error

= 1.5 × 10−3

(b) 224 Control points. ǫ = .5. Er-

ror = 5.5 × 10−4

(c) 338 Control points. ǫ = .25. Er-

ror = 2.2 × 10−4

(d) 495 Control points. ǫ = .125.

Error = 7.5 × 10−5

Figure 13: Approximation Error for the Teapot Body.

(a) Error for ǫ = 1. Max error =

1.5 × 10−3
(b) Error for ǫ = .25. Max error =

2.2 × 10−4.

Figure 14: Error Plots. Dark Blue Denotes Zero Error.

The perturbation errors reported in the captions in Figure 13 are
relative to a teapot that is one unit wide. Hence, the error in Fig-
ure 13.a is about one tenth of one percent of the width of the teapot.

Figure 15: Trimless T-Spline Cylinders. Relative Error = 0.0009

Fillets
Figure 16.a shows the knot intervals adjacent to the intersection
curve. Immediately after the merge is completed, k = 0. This
creates a triple knot at the intersection curve and forces the T-Spline
to be C0 along the intersection curve. If the value of k is changed
to a small positive value, the C0 crease along the intersection curve
is changed into a C2 fillet whose radius increases with k.

Feature Lines
Feature lines in NURBS models must follow iso-parameter curves.
T-Splines allow for sharp features along portions of iso-parameter



(a) Knot intervals following merge.

Initially, k = 0.

(b) Setting k = 0.1 to create a small

fillet.

Figure 16: Fillet.

(a) Untrimmed T-Spline. (b) With control grid.

Figure 17: Filleted CSG Object as an Untrimmed T-Spline.

curves [Sederberg et al. 2003]. Subdivision surfaces don’t have a
strong notion of iso-parameter curves, and hence procedures have
been devised for placing a fillet or feature curve in an arbitrary di-
rection on a subdivision surface [DeRose et al. 1998]. A general-
purpose tool for placing arbitrary feature lines on any geometric
model, based on a deformation, is described in [Singh and Fiume
1998].

To create an arbitrary a feature curve on a NURBS surface, using
the algorithms presented in Sections 3 and 4, the feature curve is
drawn as a parametric curve in parameter space of the surface, much
like a trimming curve except that the curve need not be closed. The
curve is then processed as discussed in Section 3: An axis-aligned
bounding polygon is found, and topological and fitting operations
are performed. The resulting control points can then be moved to
create the desired feature.

(a) Control grid. (b) Surface.

Figure 18: NURBS Car Hood.

We illustrate the procedure using the model of a NURBS car hood
in Figure 18. Figure 19.a shows the control points that result from
the process in Section 3, after they have been adjusted to create the
desired feature lines, and Figure 19.b shows the resulting surface.

6 Discussion

The modeling tools presented in this paper extend the capabilities of
T-Splines to express Booleans, fillets, and arbitrary feature curves
in a single unified framework. The geometric models thus created
are watertight, C2 (or C1 or C0 if multiple knots are specified),

(a) Control grid. (b) Surface.

Figure 19: T-Spline Car Hood with Detail.

and can be exported without translation error as a finite collection
of NURBS patches, making them compatible with CAD industry
standards. The models are editable in that control points can be
adjusted and the surface will remain C2. These results can help to
streamline the CAD modeling–analysis pipeline. In addition, these
tools introduce new design workflows into the styling and CAD in-
dustries, allowing NURBS modelers to continue to style their mod-
els even after Booleans have been performed.

The paper also presents an enhanced merging capability involving
an augmentation of the definition of T-Splines to support differ-
ent knot intervals on opposite sides of the same control polygon
face. This enables the merging of two NURBS or T-Splines sur-
faces whose mating curves are parametrized differently, a case not
handled well in [Sederberg et al. 2003].

Our process for merging two trimmed NURBS surfaces into an
untrimmed T-Spline involves a perturbation of the original sur-
faces. The perturbations can be limited to an arbitrarily narrow
strip. Tighter tolerances demand more control points, making the
resulting T-Spline more difficult to edit, although if the designer’s
intent is to ultimately edit the resulting T-Spline, a high initial tol-
erance may not be as crucial.

This paper invites future research on several fronts. Section 3 dis-
cusses possible lines of research for finding an efficient algorithm
for computing the green control points, the problem we view as
most pressing. Also called for is a rigorous analysis of approxima-
tion error. What is the relationship between ǫ, positional error, and
normal-vector error? What is the convergence rate?

The paper focuses on two intersecting surfaces. Details of how to
handle three or more intersecting surfaces are not presented and in-
vite further study. The existing algorithms should extend readily to
handle most cases where all intersections are to be computed simul-
taneously. The case where an untrimmed T-Spline that represents
two intersecting surfaces is later intersected by a third NURBS or
T-Spline is more challenging because it can involve the intersec-
tion of NU-NURBS or of faces next to extraordinary points. It is
also not clear how the error might propagate upon repeated such
intersections.

The paper only addresses non-singular intersection curves. Full
treatment of intersection curves that self-intersect is another topic
of further study.
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