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Abstract—Asymmetric Multi-Core (AMC) architectures
have shown high performance as well as power efficiency.
However, current parallel programming environments do not
perform well on AMC due to their assumption that all cores
are symmetric and provide equal performance. Their random
task scheduling policies, such as task-stealing, can result in
unbalanced workloads in AMC and severely degrade the per-
formance of parallel applications. To balance the workloads of
parallel applications in AMC, this paper proposes a Workload-
Aware Task Scheduling (WATS) scheme that adopts history-
based task allocation and preference-based task stealing. The
history-based task allocation is based on a near-optimal, static
task allocation using the historical statistics collected during
the execution of a parallel application. The preference-based
task stealing, which steals tasks based on a preference list,
can dynamically adjust the workloads in AMC if the task
allocation is less optimal due to approximation in the history-
based task allocation. Experimental results show that WATS
can improve the performance of CPU-bound applications up
to 64% compared with the random task scheduling policies.

Keywords-Workload-aware, Asymmetric Multicore architec-
tures, Load balancing, Task scheduling, Task-stealing

I. INTRODUCTION

Multi-core processors have become mainstream since they
have better performance per watt and larger computational
capacity than complex single-core processors. While chip
manufacturers like AMD and Intel keep producing new CPU
chips with more symmetric cores, researchers are investigat-
ing alternative multi-core organizations such as Asymmetric
Multi-Core (AMC) architectures, where individual cores
have different computational capabilities [1], [2], [3], [4].

AMC is attractive because it has the potential to improve
system performance, to reduce power consumption, and to
mitigate Amdahl’s law [1], [4]. Since an AMC architecture
consists of a mix of fast cores and slow cores, it can
better cater for applications with a heterogeneous mix of
workloads [2], [3]. For example, fast, complex cores can be
used to execute the serial code sections, while slow, simple
cores can be used to crunch numbers in parallel, which is
more power-efficient. Many modern multi-core chips offer
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Dynamic Voltage and Frequency Scaling (DVFS) which can
dynamically adjust the operating frequency of each core
and thus is able to turn a symmetric multi-core chip into
a performance-asymmetric multi-core chip.

Despite the rapid development of the AMC technology,
current parallel programming environments, as listed below,
still assume all cores provide equal performance. Due to this
assumption, parallel applications cannot utilize the asymmet-
ric cores of an AMC architecture effectively.

Most current parallel programming environments adopt
either task-sharing or task-stealing (aka. work-stealing)
policies for task scheduling. For example, MIT Cilk [5],
Cilk++ [6], TBB [7], Java’s fork-join framework [8], and
X10 [9] adopt task-stealing, while OpenMP [10] uses task-
sharing. Task-stealing is increasingly popular due to its good
scalability and high performance [11].

However, both task-stealing and task-sharing allocate
tasks randomly to different cores, which is not a problem
for symmetric cores but can cause extremely unbalanced
workloads among asymmetric cores. For example, a long
task may be scheduled to a slow core, while a short task
is executed by a fast core. This problem of unbalanced
workloads, which will be further discussed in detail in
Section II, can severely degrade the performance of parallel
applications. To the best of our knowledge, no study has
addressed this problem and investigated the optimal task
scheduling in parallel programming environments so that ap-
plications that are comprised of parallel tasks with different
workloads can perform efficiently in AMC.

The rest of this paper is organized as follows. Section II
describes the problem of unbalanced workloads in AMC
and its solutions. Section III presents the WATS scheme
that adopts a history-based task allocation algorithm and a
preference-based task-stealing policy. Section IV provides
experimental results, performance evaluation, and limitations
of WATS. Section V discusses related work. Section VI
summarizes our contributions, draws conclusions and sheds
light on future work.



II. MOTIVATION

A. The Problem

Let us use an example to explain the problem of unbal-
anced workloads in AMC. Suppose a parallel application
has four parallel tasks: T1, T2, T3 and T4. We assume the
application runs on an AMC architecture as shown in Fig. 1,
with one fast core (c0) and three slow cores (c1, c2 and c3),
where c1, c2 and c3 have the same speed but the speed of c0
is twice the speed of the slow cores. Note the speed here can
be more precisely represented by the operating frequency of
the cores. Suppose T1, T2, T3 and T4 take times 1.5t, 4t,
t and 1.5t on the fast core c0 respectively and all the tasks
are CPU-bound, then we can reasonably deduce that T1, T2
T3 and T4 would take 3t, 8t, 2t and 3t on the slow cores.
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Figure 1. Two possible allocations of T1, T2, T3 and T4.

Fig. 1 shows two possible allocations of T1, T2, T3
and T4 to the cores. Fig. 1(a) is an optimal allocation
where T2 is allocated to the fast core c0 and the shorter
tasks are allocated to the slow cores. The makespan (i.e.,
the overall completion time) for T1, T2, T3 and T4 is
max{3t, 4t, 2t, 3t} = 4t.

However, with random scheduling policies such as task-
stealing, T1, T2, T3 and T4 are likely to be randomly allo-
cated as in Fig. 1(b), where T3 is allocated to the fast core but
the long task T2 is scheduled to a slow core. In this case, the
makespan for T1, T2, T3 and T4 is max{3t, 8t, t, 3t} = 8t.
Obviously, allocating a long task to a slow core can degrade
the overall performance seriously.

Some studies (e.g., [12]) tried to improve the random
scheduling on AMC by allowing idle fast cores to snatch
tasks from slow cores. For example, with this rescuing
policy, for the situation in Fig. 1(b), c0 is allowed to snatch
T2 from c3 after finishing T3. Suppose c0 snatches T2 from
c3 after finishing T3 (which takes time t). c0 still needs
(1 − t

8t ) × 4t = 3.5t to finish T2 because c3 has only
finished t

8t of T2. Let ∆s represent the time of the snatching
operation. Then the overall time for c0 to finish both T3
and T2 is t + 3.5t + ∆s = 4.5t + ∆s. Therefore, with
the snatching policy, the makespan for T1, T2, T3 and T4
is max{3t, 4.5t + ∆s, t, 3t} = 4.5t + ∆s. If the system
knows the workload of each task and ∆s is not too large,
the snatching policy can improve the performance of random
scheduling, though it is still far from the optimal allocation.

However, since the workloads of the tasks are unknown
to the existing random schedulers, idle fast cores have to
snatch tasks randomly and thus the snatching policy will
still suffer from the randomness in the random scheduling.
For example, in Fig. 1(b), with the random snatching, the
worst case could be that c0 first snatches T1 and T4 before
snatching T2, where the makespan is roughly 5.25t+ 3∆s.

In summary, the knowledge of task workloads is essential
to optimal task scheduling in AMC. This knowledge can
help a scheduler allocate long tasks to fast cores, which is
often optimal. It can also help idle fast cores to steal or
snatch the long tasks if steal and snatch are necessary. It is
worth noting that an initial optimal allocation based on the
knowledge of workloads is more crucial to the makespan
than the snatching policy that tries to rescue a non-optimal
allocation.

In the rest of this section, we will generalize the task
allocation problem, assuming the workloads of tasks are
known. We will give theoretical analysis on the optimal task
allocation, which will guide our design and implementation
of task scheduling in AMC.

Fig. 2 illustrates the general problem of task allocation.
Suppose there are m independent tasks (γ1, ..., γm) with
different workloads and an AMC with cores operating at
k different speeds (or frequencies) in descending order:
F1, ..., Fk. The number of cores operating at Fi is Ni
(1 ≤ i ≤ k). The problem is to divide the m tasks into
k groups that are assigned to the k core groups (denoted
as c-groups) respectively, so that the makespan of the m
tasks is minimum. In the problem, we assume that tasks
can be optimally or near-optimally scheduled with random
scheduling policies inside the same c-group with symmetric
cores, which is a valid assumption for the task-stealing
policy [11].
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Figure 2. The task allocation problem in AMC.

B. Ideal solution

The following lemma and theorem provide theoretical
guidance to optimal allocation.

Lemma 1. Given m tasks γ1, γ2, ..., γm, suppose the
workload of each task γj(1 ≤ j ≤ m) is wj . The lower



bound of the makespan for the m tasks to run on k c-groups,
each of which has Ni cores with speed Fi (1 ≤ i ≤ k), is

TL =

∑m
j=1 wj∑k

i=1 Fi ×Ni
.

Proof: We adopt proof by contradiction. Suppose there
exists a makespan Ts, where Ts < TL. Since the makespan
Ts is the execution time of the last core that finishes
its tasks, the overall workloads of tasks processed by all
the cores must be smaller than

∑k
i=1 (Ts × Fi ×Ni) =

Ts ·
∑k
i=1 Fi ×Ni < TL ·

∑k
i=1 Fi ×Ni =

∑m
j=1 wj . This

contradicts the fact that the overall workloads of all the tasks
are

∑m
j=1 wj . Therefore, there must be no makespan that is

shorter than TL.

Theorem 1. For tasks γ1, ..., γm, if γpi−1+1, ..., γpi (1 ≤ i ≤
k, p0 = 0, pk = m) are allocated to the c-group with speed
Fi, their makespan is TL only when p1, ..., pk−1 satisfy

p1∑
j=1

wj : ... :

pi∑
j=pi−1+1

wj : ... :

m∑
j=pk−1+1

wj

= F1 ×N1 : ... : Fi ×Ni : ... : Fk ×Nk

(1)

Moreover, the task allocation is optimal and the makespan

is
∑p1
j=1 wj

F1×N1
=

∑pi
j=pi−1+1 wj

Fi×Ni ... =

∑m
j=pk−1+1 wj

Fk×Nk = TL.

Proof: As can be seen from Lemma 1, if the makespan
is TL, all the cores are fully utilized and they complete tasks
allocated to them at the same time. Thus the workloads of
tasks that are allocated to the c-group with core speed Fi are
Fi × Ni × TL. Therefore,

∑p1
j=1 wj : ... :

∑pi
j=pi−1+1 wj :

... :
∑m
j=pk−1+1 wj = F1 ×N1 × TL : ... : Fi ×Ni × TL :

... : Fk ×Nk ×TL = F1×N1 : ... : Fi×Ni : ... : Fk ×Nk.
If tasks are divided into groups in Eq. 1, the workloads are

balanced among the k c-groups in terms of the computation
capacities of the cores in different c-groups. Since all the
workloads are fully balanced during the time period TL and
the lower bound is achieved, this task allocation is optimal.
Therefore, the execution time for the group of tasks allocated
on the k c-groups can be calculated as

∑p1
j=1 wj

F1×N1
= ... =∑pi

j=pi−1+1 wj

Fi×Ni = ... =

∑m
j=pk−1+1 wj

Fk×Nk = TL.

C. Proposed solution

However, it is not feasible to find the ideal solutions to
Theorem 1 because they may not exist in real situations.
Even if they exist, finding the solutions to Theorem 1 is
similar to the job shop scheduling problem [13] which is NP-
hard. The difference between Theorem 1 and the job shop
scheduling problem is that the processors are symmetric
in job shop scheduling problem while Theorem 1 assumes
asymmetric cores.

Due to the above reasons, we relax the conditions of
Theorem 1 and propose a near-optimal solution for the task
allocation problem in AMC, as shown in Fig. 3.
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Figure 3. Allocate m tasks with different workloads to k c-groups.

In the solution, the m independent tasks are sorted in
descending order of their workloads. Based on the sorted
tasks, we choose p1, ..., pk−1 to divide the m tasks into
k groups that are allocated to the k c-groups (i.e., C1, ...,
Ck) according to Algorithm 1. In the solution, we assume
there are enough tasks to be allocated to the c-groups.

Algorithm 1 chooses pi that satisfies
∑pi
j=pi−1+1 wj

Fi×Ni ≤

TL and
∑pi+1

j=pi−1+1 wj

Fi×Ni > TL. In this way, we can keep

max(|
∑p1
j=1 wj

F1×N1
− TL|, ..., |

∑m
j=pk−1+1 wj

Fk×Nk − TL|) as small as
possible.

Algorithm 1 Static near-optimal task allocation algorithm
Input: A set of tasks {γ1, ..., γm}.
Input: The workload of γi is wi.
Input: The speeds of the k c-groups are {F1, ..., Fk}

(where Fi > Fj , if i < j).
Input: The number of cores operating at Fi is Ni.

1: compute the lower bound TL as in Lemma 1;
2: w = 0; j = 1; i = 1;
3: while i ≤ m && j ≤ k − 1 do
4: w = w + wi;
5: if w > TL ×Nj × Fj then
6: pj = i− 1; j++; w = wi;
7: end if
8: i++;
9: end while

Output: {p1, ..., pk−1}.

In the above near-optimal solution, we assume the number
of tasks and their workloads are known. However, in real
parallel applications, this assumption is not valid because
the tasks are generated dynamically and their workloads are
not known until they are completed. How to apply the above
theoretical solution to parallel programming environments is
a challenging issue in our study.

In our implementation, we propose history-based task
allocation to allocate a new task to the right c-group.
Basically we use history to predict the pattern of future task
workloads. Tasks are classified into task classes according
to their function names. Instead of allocating dynamically
generated tasks, we allocate the task classes to different c-
groups. For the same function f , we can collect the average
workload of the f -named tasks in the history. Since the



number of different functions and their average workloads
are known from history, we can adopt Algorithm 1 to
allocate the functions to different c-groups. Based on this
allocation, any newly generated task will be allocated to the
c-group where its function name is allocated. If history can
reasonably reflect future patterns of task generation, this task
allocation scheme will work well.

We should admit there are times history may mis-predict
the future. The above history-based task allocation is only an
approximation of the optimal allocation. In order to further
balance the workload, we propose a preference-based task-
stealing policy to adjust the workloads dynamically among
different c-groups. Each core is given a preference list of
task clusters (to be defined shortly). An idle core steals a
task according to the order of its preference list.

In the following section, we propose the Workload-Aware
Task Scheduling (WATS) scheme, which adopts both the
history-based task allocation algorithm and the preference-
based task-stealing policy.

III. WORKLOAD-AWARE TASK SCHEDULING (WATS)

The philosophy behind WATS is based on our previous
theoretical analysis: an optimal task allocation is more
crucial to the makespan of parallel tasks than the rescuing
policies like task snatching or stealing; and a workload-
aware task snatching/stealing is better than random snatch-
ing/stealing. The history-based task allocation algorithm and
the preference-based task-stealing policy are used to fulfill
the philosophy.

Again, in the following discussion, without loss of gen-
erality, we assume the asymmetric cores in AMC are com-
prised of k c-groups C1, ..., Ck, where Ci has Ni cores
operating at speed Fi (1 ≤ i ≤ k), and Fi > Fj if i < j.

A. History-based Task Allocation

There are two assumptions in this allocation algorithm.
First, tasks executing the same function have similar work-
loads. Second, the percentage of tasks executing the same
function among all tasks is almost the same during the
execution of a parallel application. Based on the two assump-
tions, we use the historical statistics to guide the allocation
of tasks to the k c-groups.

Tasks completed in history are organized as task classes
according to their function names. We use TC (f, n, w) to
represent a task class, where f is the function name, n is
the number of the tasks completed, and w is the average
workload of the tasks.

The workload of a task is measured with CPU cycles
through a performance counter and normalized against the
fastest core speed F1. Suppose a task γ is completed by a
core with speed Fi in n cycles, then γ’s workload wγ is
calculated with Eq. 2.

wγ = n× Fi
F1

(2)

Once a task γ is completed, the information of its task
class TC (f, n, w) is updated using Algorithm 2. If there is
no such a class, a new task class is created for f .

Algorithm 2 Workload information updating algorithm
Input: Completed task γ with the function name f .
Input: γ’s workload wγ .
Input: Existing task classes {TC 1, ..., TCm}.

1: for each TCi(fi, ni, wi) ∈ {TC 1, ...,TCm} do
2: if fi == f then
3: TC i(fi, ni, wi)⇒ TC i(fi, ni + 1,

ni×wi+wγ
ni+1 );

4: return ;
5: end if
6: end for
7: create a new task class TCm+1(f, 1, wγ);

Based on information about the task classes, the next
step is to allocate the task classes to the k c-groups us-
ing Algorithm 1. We sort the task classes TC i(fi, ni, wi)
(1 ≤ i ≤ m) in descending order of wi. Then we use the
overall workload ni × wi as the workload of the task class
TC i(fi, ni, wi), when applying Algorithm 1, to divide the
task classes into k groups and allocate them to the k c-
groups accordingly. We call the k groups of task classes
task clusters. Since task clusters and c-groups are a one-
to-one mapping, for the sake of convenience, we use Ci to
represent both a task cluster and a c-group in the following
discussion.

With the above task clusters, we can allocate a newly
generated task to a c-group in the following way. When a
task γ with a function name f is generated, its task class
is checked first. If the task class TC (f, n, w) exists and
belongs to the task cluster Ci, then γ is allocated to the c-
group Ci. If there is no task class for f , then γ is allocated
to the fastest c-group C1 because we try to complete γ and
collect the information of f ’s task class for future use as
soon as possible.

It is worth noting that all the information used in the
algorithm is collected automatically. The number of cores
and their speeds can be acquired from the operating system.
The number of CPU cycles of a task is acquired at runtime
with a performance counter. Once a task is completed,
the information about the task classes is updated and the
task clusters are re-organized using Algorithm 1. Therefore,
historical statistics are updated in a timely manner.

B. Preference-based Task-stealing

The above allocation algorithm divides tasks into k task
clusters that are allocated to the k c-groups accordingly.
Each c-group needs a task pool, which is a double-ended
queue (aka. deque), to store the tasks allocated to it. Though
using a centralized task pool is an easy technique for
implementation, its serious lock contention can degrade the



system performance. Therefore, we have adopted distributed
task pools with the task-stealing policy.

Task-stealing can relieve the lock contention of the task
pools. It provides an individual task pool for each core. Most
often a core obtains tasks from its own task pool without
locking. Only when a core’s task pool is empty, should it
try to steal tasks from other cores with locking. Since there
are multiple task pools for stealing, the lock contention is
much lower.

In our situation, task-stealing becomes more complex
since each core needs k local task pools, labeled as C1, ... Ci,
..., Ck, corresponding to the k task clusters. When a new task
is generated, it is pushed into one of the local pools using
the history-based task allocation algorithm. A core from the
c-group Ci usually obtains tasks locally from its task pool
Ci which stores tasks allocated to its c-group. If the task
pool Ci is empty, it steals randomly from the Ci pools of
other cores, as the traditional task-stealing policy. However,
when all Ci pools are empty, which means all tasks allocated
to the c-group Ci are completed, we should allow the c-
group to execute tasks allocated to other c-groups in order to
balance the workloads among the c-groups. The complexity
arises when deciding which pool of tasks to choose in this
situation. The following preference-based task-stealing gives
our solution.

In the preference-based task-stealing policy, each core is
given a preference list of task clusters. The preference list
of a core contains all the k task clusters that are ordered as
detailed below.

For a core in the c-group Ci, its preference list is created
as {Ci, Ci+1, ..., Ck, Ci−1, Ci−2, ..., C1} as shown in Fig. 4.

... ...
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Figure 4. Preference list of the cores in the c-group Ci.

The preference list in Fig. 4 is generated based on the rob
the weaker first principle. This principle can help reduce
the makespan. For example, if a core steals a task that is
allocated to faster cores, it needs a long time to execute
the stolen task, which may prolong the makespan. On the
contrary, if a core steals a task that is allocated to slower
cores, it can execute the stolen task in a shorter time and
relieve the pressure on slow cores. However, this preference
list does not prevent slow cores to steal tasks from fast cores.
When the slow cores have no tasks, they can steal tasks from
the busy fast cores.

Algorithm 3 shows in detail the preference-based task-
stealing policy adopted by each core.

Algorithm 3 Preference-based task-stealing
Input: A core c from the c-group Ci.
Input: c’s preference list {Ci, ..., Ck, Ci−1..., C1}.

1: while c has not obtained a task do
2: for each Cj ∈ {Ci, ..., Ck, Ci−1..., C1} do
3: c tries to get a task from its local task pool Cj ;
4: if succeed then
5: return ;
6: else
7: while there are some non-empty Cj pools in

other cores do
8: c randomly chooses a victim core v;
9: c steals a task from v’s task pool Cj ;

10: if succeed then
11: return ;
12: end if
13: end while
14: end if
15: end for
16: end while

Fig. 5 shows an example architecture of WATS on an
asymmetric quad-core architecture with cores operating at 3
different speeds. That is, there are three c-groups C1 (with
core c0), C2 (with c1 and c2) and C3 (with c3).

c0

Asymmetric Quad-core Architecture

c3c1 c2

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Figure 5. An example architecture of WATS. Each core adopts one task
pool for each task cluster.

Therefore, tasks are classified into 3 task clusters (C1,
C2 and C3) and each core adopts 3 task pools C1, C2 and
C3 accordingly. The preference lists of the four cores are
generated as in Table I based on the rob the weaker first
principle as shown in Fig. 4. For example, c3 will always
look for tasks from the C3 pools first, which have the tasks
that are allocated to c3’s c-group using the history-based task
allocation algorithm. Then it will search the C2 pools, and
finally the C1 pools.

C. Implementation

WATS has been implemented in MIT Cilk. MIT Cilk
is one of the earliest parallel programming environments
that implement task-stealing [14]. It extends C with three
keywords: cilk, spawn and sync to declare parallelism in
the program. cilk identifies a procedure as a Cilk procedure,



Table I
PREFERENCE LISTS OF CORES

C-group Core Preference list

C1 c0 {C1, C2, C3}
C2 c1 & c2 {C2, C3, C1}
C3 c3 {C3, C2, C1}

spawn is used to generate a child task, and sync waits for
all the child tasks that are spawned by the current task, to
return.

MIT Cilk consists of a compiler and a scheduler. The Cilk
compiler, named cilk2c, is a source-to-source translator that
transforms a Cilk source into a C program. Once a task is
generated, a task frame is created to store the information
needed by the task and the scheduler. The Cilk scheduler
uses the traditional task-stealing policy.

To help task classification, we have modified cilk2c to
record a task’s function name in the task frame. When a
new task is spawned, it is subsumed into its task class
according to its function name in the task frame. With
the history-based allocation algorithm that groups the task
classes into task clusters, WATS can allocate any new task
to the corresponding task cluster.

WATS launches a helper thread to execute the history-
based task allocation algorithm at runtime. The helper thread
periodically (e.g., every 1ms) checks every core to find out
if it has completed some tasks. Once there is a completed
task, the helper thread updates the workload information of
the task class with Algorithm 2 and re-organizes the task
clusters with Algorithm 1. The helper thread is scheduled
by the OS to any free core at runtime. Our experimental
results show that the extra overhead incurred by the helper
thread is very small.

Two types of task-generating policies, parent-first and
child-first, can be adopted for task stealing. In the parent-
first policy, a core continually executes the parent task
after spawning a child task, leaving the child task for later
execution or for stealing by other cores. One such example
is the help-first policy proposed in [15]. In the child-first
policy, however, a core executes the child task immediately
after the child is spawned, leaving the parent task for later
execution or for stealing by other cores. For example, the
MIT Cilk uses the child-first policy, aka. work-first in [5].

WATS adopts the parent-first policy because it is difficult
to collect the workload information of tasks with the child-
first policy. If a core is executing a task γ, with the child-
first policy, it is very likely the core will also execute γ’s
child tasks before γ is completed. Therefore, γ’s workload
information may not be collected correctly as it could
include the workloads of γ’s child tasks. As a result, we
have modified cilk2c to spawn tasks with the parent-first
policy.

IV. EVALUATION

We use a Dell 16-core computer that has four AMD Quad-
core Opteron 8380 processors (codenamed “Shanghai”) to
evaluate the performance of WATS. In the processor, each
core can run at 2.5GHz, 1.8GHz, 1.3GHz and 0.8GHz. We
adjust the frequency of each core to emulate different AMC
architectures. Table II lists the emulated AMC architectures
in the experiment.

Table II
THE EMULATED AMC ARCHITECTURES

XXXXXXXXName
Freq. 2.5 GHz 1.8 GHz 1.3 GHz 0.8 GHz

AMC 1 2 2 2 10
AMC 2 4 4 4 4
AMC 3 2 0 0 14
AMC 4 4 0 0 12
AMC 5 8 0 0 8
AMC 6 12 0 0 4

Since WATS is proposed to improve the performance
of CPU-bound applications with tasks that have different
workloads, the benchmarks in Table III are CPU-bound.
The source code of benchmarks are from their official
websites but adapted to run on MIT Cilk. In the batch-based
benchmarks, the program launches many parallel tasks (e.g.,
64 tasks) in each batch. When the tasks in one batch are
completed, the program launches another batch of tasks. In
the pipeline-based benchmarks, the execution of a program
has several parallel stages. Tasks in different stages run in
parallel but communicate with each other with pipelines.

Table III
BENCHMARKS IN THE EXPERIMENT

Name type Description

BWT Batch-based Burrows Wheeler Transform
Bzip-2 Batch-based Bzip2 file compression algorithm
DMC Batch-based Dynamic Markov Coding
GA Batch-based Island model of Genetic Algorithm
LZW Batch-based Lempel-Ziv-Welch data compression
MD5 Batch-based Message Digest Algorithm
SHA-1 Batch-based SHA-1 cryptographic hash function
Dedup Pipeline-based Dedup from PARSEC
Ferret Pipeline-based Ferret from PARSEC

A. Performance of WATS

We compare the performance of WATS with the perfor-
mance of three other task schedulers: MIT Cilk, PFT and
RTS in AMC.

In MIT Cilk (denoted as Cilk for short) [5], tasks are
spawned with the child-first policy and scheduled with the
traditional task-stealing policy. In PFT (Parent-First Task-
stealing) [15], tasks are spawned with the parent-first policy
and scheduled with the traditional task-stealing policy. In
RTS (Random Task-Snatching) [12], tasks are also spawned
and scheduled as in Cilk, but a faster core snatches tasks



from a randomly chosen slower core if the faster core cannot
steal any task. To ensure fairness of comparison, WATS, PFT
and RTS are implemented by modifying MIT Cilk.
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(b) AMC 2
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(c) AMC 5

Figure 6. Performance of the benchmarks in AMC 1, AMC 2 and AMC
5.

We have tested the performance of the benchmarks in all
the 6 AMC architectures shown in Table II. Fig. 6 only
shows the performance of the benchmarks in AMC 1, AMC
2 and AMC 5 due to limited space, as the benchmarks in
other AMC architectures perform similarly.

The figure shows that WATS can significantly improve
the performance of the CPU-bound applications, with the
performance gains ranging from 17% to 64% compared to
Cilk and PFT, and with performance gains ranging from
6% to 57% compared to RTS. For example, for SHA-1
in Fig. 6(c), WATS reduces the execution time up to 64%
compared to Cilk.

The good performance of WATS is due to its balanced
workloads in the AMC architectures. With the history-based
task allocation algorithm, WATS allocates tasks with heavy
workload to fast cores and tasks with light workload to slow
cores. Even if the workloads are not balanced as expected
due to approximation, WATS can dynamically balance the
workloads in AMC using the preference-based task-stealing
policy.

On the contrary, in Cilk and PFT, it is very likely that tasks
with heavy workload are scheduled to slow cores since tasks
are stolen randomly. Scheduling a task with heavy workload
to a slow core can seriously degrade the makespan of parallel
tasks.

Compared to Cilk and PFT, RTS can slightly improve the
performance of the benchmarks in AMC. This is because
in RTS faster cores can randomly snatch tasks from slower
cores and the snatched tasks can be completed earlier, which
can reduce the makespan of the parallel tasks. As a result,
comparing to Cilk and PFT, RTS improves the performance
of the benchmarks ranging from 3% to 56%.

However, since RTS is not aware of the workloads of the
tasks, it is possible for faster cores to snatch tasks with light
workload, in which case the makespan cannot be reduced.
Therefore, RTS still performs worse than WATS.

As shown in Fig. 6, the only benchmark of which WATS
cannot improve the performance is ferret. This is because
the parallel tasks in ferret have similar workloads and thus
it is neutral to the history-based task allocation algorithm
in WATS. However, the performance of this benchmark
suggests that the extra overhead incurred by WATS is very
small. As shown in Fig. 6(a), which is the worst case, the
performance of ferret in WATS is only degraded by 4.7%
compared to Cilk.

Fig. 7 shows the performance of the benchmark GA in
all the 6 AMC architectures. From the figure, we can see
that GA in WATS achieves better performance when an
AMC architecture has more fast cores. For example, WATS
reduces 31% execution time compared to Cilk and 19.5%
execution time compared to RTS in AMC 3 (2 fast cores),
while it reduces 59% execution time compared to Cilk and
reduces 40.5% execution time compared to RTS in AMC 6
(12 fast cores).

Fig. 7 also shows WATS can adapt to different AMC
architectures automatically and improve performance ac-
cordingly. From Fig. 7, we can see WATS can balance
workloads adaptively in different AMC architectures. When
there are more fast cores in an AMC architecture, WATS can
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Figure 7. Performance of GA in all the 6 AMC architectures.

allocate more tasks with heavy workload to fast cores using
the history-based task allocation algorithm. Therefore, the
performance of GA improves accordingly when the number
of fast cores increases. However, in Cilk and PFT, tasks with
heavy workload are still possible to be scheduled to slow
cores even when there are many fast cores, which degrades
the performance. As a result, the performance of GA in Cilk
and PFT has not been improved at all even when the number
of fast cores increases from AMC 4 to AMC 6, as shown
in Fig. 7.

GA in RTS achieves a slightly better performance when
an AMC architecture has more fast cores because the fast
cores can snatch tasks less randomly from the slow cores
when the number of slow cores becomes small. However,
the performance gain from the rescuing of the non-optimal
task allocation in RTS is still much less than that resulting
from the near-optimal task allocation in WATS.

B. Scalability of the history-based task allocation

Fig. 8 shows the scalability of the history-based task
allocation algorithm. It gives the performance of GA under
different distributions of workloads in AMC 5, though
other benchmarks show similar results in various AMC
architectures. In the experiment, GA launches 64 tasks with
4 different workloads (in proportion of 8t, 4t, 2t and t) in
each batch. The number of tasks with each type of workload
is adjusted to evaluate the scalability of the history-based
task allocation algorithm when the number of tasks with
heavy workload increases. The distribution of workloads of
8t, 4t, 2t and t follows the pattern α, α, α, 64− 3α, where
α is adjusted as shown by the x-axis in Fig. 8.

From the figure we can see that the history-based task
allocation algorithm works fine under different distributions
of workloads. When α is small and the workloads are mostly
light, WATS reduces the GA execution time by 53.5%
compared to Cilk. When α is large and the workloads are
mostly heavy, WATS can still reduce the execution time by
23% compared to Cilk.
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Figure 8. Performance of GA with different workloads in AMC 5.

However, RTS does not work well when the workloads
are mostly heavy (e.g. α is 20), as it does not improve
the performance at all compared to Cilk and PFT. This
is because fast cores are not able to snatch all the heavy
tasks that are allocated to the slow cores when there are too
many heavy tasks. Moreover, the extra overhead incurred by
the snatching operations even slightly degrades the overall
performance. This result again supports our philosophy of
WATS that an optimal task allocation is more important than
rescuing policies such as task snatching.

C. Effectiveness of preference-based task-stealing

To evaluate the effectiveness of the preference-based task-
stealing policy, we compare the performance of WATS with
WATS-NP, a scheduler that adopts the history-based task
allocation algorithm but its preference-based task-stealing is
not allowed to steal tasks that are allocated to other c-groups.
In this way, WATS-NP is able to show only the performance
of the history-based task allocation algorithm.
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Figure 9. Performance of GA in Cilk, PFT, WATS and WATS-NP.

Fig. 9 shows the performance of GA in WATS and WATS-
NP in all the 6 AMC architectures. From the figure we can



see that the performance of WATS is always better than
WATS-NP. The preference-based task-stealing in WATS is
very helpful when handling slightly unbalanced workloads.
Since the history-based task allocation algorithm may mis-
allocate the tasks to the wrong c-groups due to its static
approximation of the workloads of dynamic tasks, the
preference-based task-stealing can remedy this imprecision.
From Fig. 9 we can conclude that the preference-based task-
stealing policy works effectively.

It is interesting to note that the history-based task alloca-
tion algorithm has mostly done effective allocation of tasks
according to Fig. 9. Except for AMC 3, WATS-NP performs
better than Cilk and PFT, which means the allocation algo-
rithm is more effective than random task stealing in terms
of load-balancing in AMC. As for the exception of AMC
3, it has only 2 fast cores but 14 slow cores. Therefore, an
imprecision of the allocation algorithm can easily cause a
large task to be allocated to slow cores with high probability
when the number of slow cores is large. Fortunately, the
preference-based task-stealing can remedy this imprecision
effectively, as shown in the figure.

D. Task-snatching in WATS

It is of interest to discover whether or not task-snatching
is also effective to WATS and thus should be integrated
into WATS. To investigate this issue, we implemented a
scheduler WATS-TS, where fast cores snatch tasks from slow
cores when the fast cores cannot steal any tasks using the
preference-based task-stealing policy.

In WATS-TS, when a core intends to snatch a task, it
selects a slower core with the largest task. In this way, large
tasks that affect the makespan seriously can be snatched to
fast cores and completed earlier. Therefore, our workload-
aware snatching policy is better than the random snatching
in RTS, as explained in Section II-A. Moreover, workload-
aware snatching causes fewer snatching operations than the
random snatching, since randomly snatched small tasks take
less time for the fast cores to complete, which causes the
fast cores to snatch more often.

Fig. 10 shows the performance of all the benchmarks in
WATS and WATS-TS in AMC 2. From the figure we see
surprisingly that the performance of WATS-TS is slightly
worse than WATS. Especially, for Bzip-2 and LZW, WATS-
TS increases the execution time by 8% compared to WATS.

Fig. 10 tells us that WATS has satisfactorily balanced
the workloads in AMC. When the workloads are balanced
among cores in AMC, it is not worthwhile to snatch tasks
from slower cores since the slower cores are also close to
completion. The extra overhead incurred by the snatching
operations simply makes WATS-TS perform worse. There-
fore, there is no need for WATS to adopt the task-snatching
policy.
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Figure 10. Performance of WATS and WATS-TS in AMC 2.

E. Discussion

Our experimental results have shown that WATS can sig-
nificantly improve the performance of parallel applications
in various AMC architectures. Both the history-based task
allocation algorithm and the preference-based task-stealing
policy in WATS have performed effectively, which nullifies
extra optimizations such as task snatching in WATS.

WATS can be extended to work for applications with both
CPU-bound and memory-bound tasks, though we have only
presented the results for applications with CPU-bound tasks.
We can decide if a task γ is CPU-bound or memory-bound
in the following way. Given an AMC with k levels of caches
and the cache miss penalty of the ith level cache is pi. Let ni
represent the ith level cache misses of γ. The normalized
cache misses of γ is M =

∑k
i=1(ni × pi

p1
). Suppose the

number of instructions in γ is N , we can use CMPI (Cache
Misses Per Instruction), CMPI γ = M

N , to decide if γ is
CPU-bound or memory-bound. If CMPI γ is greater than
some threshold, γ is memory-bound and its performance
depends on memory accessing time. We can allocate large
CPU-bound tasks to fast cores, but allocate memory-bound
tasks to slow cores because there will be no performance
gain for memory-bound tasks to run on fast cores. The above
information can be collected through performance counters
at runtime. Furthermore, if most tasks are known to be
memory-bound tasks from the initial stage, which simply
indicates the application is memory-bound, WATS can easily
adopt the random task-stealing for the rest of the execution.
In this way, we can avoid the extra overhead of WATS, since
it is indifferent for memory-bound tasks to run on a fast
core or slow core and WATS is neutral to memory-bound
applications.

Additionally, the above CMPI value can be used to save
power in combination with DVFS. If the CMPI of a task
is very large, we can scale down the operating frequency
of the core using DVFS, because it has little impact on the



performance of the task but saves power.
The general ideas in WATS can be applied to other situa-

tions. For example, WATS can be easily adapted to process-
level scheduling in AMC if the processes are independent
and their workloads can be estimated.

An interesting detail of the WATS implementation is that
WATS schedules the main task of a parallel program on
the fastest core. This is because the main task often has
time-consuming serial initialization code before spawning
tasks. If the main task is executed by a slow core, it will
increase the makespan of the program. To exclude the impact
of this optimization in WATS, we make all other schedulers
(Cilk, PFT, and RTS) launch the main task on the fastest
core, though those schedulers may launch the main task on
a randomly chosen core. If the chosen core is slow, which
is very likely, their performance will be even worse.

Not surprisingly, WATS has one limitation. If most tasks
in a parallel application execute the same function, the
history-based task allocation algorithm will only find out
a few task classes that cannot be evenly allocated to the
c-groups. For example, divide-and-conquer programs such
as nqueens are not suitable for WATS. To cope with this
problem, we have modified the compiler cilk2c to check
for the divide-and-conquer programs at compile time by
analyzing the task generating pattern in the source code.
If any function in the source code generates new tasks that
run the same function as itself, the program is assumed to
be a divide-and-conquer program. For divide-and-conquer
programs, random task-stealing is used instead to schedule
the program. Furthermore, if the program is also memory-
bound, our previous CAB scheduler [16] can be adopted
to improve its performance by reducing the cache misses.
Therefore, the above limitation will not affect the applica-
bility of WATS since the compiler can identify the class of
programs that are suitable for WATS.

V. RELATED WORKS

Researchers have shown the AMC architectures can
achieve high performance and low power consumption [1],
[2], [3], [4], [17]. An effective task scheduler is essential
for parallel applications to make good use of the AMC
architectures. However, the task scheduling policies, such
as task-sharing and task-stealing adopted in current parallel
programming environments, suffer from the problem of
unbalanced workloads in AMC due to the assumption that
all cores have equal performance. To our best knowledge,
no previous study had addressed the scheduling problem in
parallel programming environments where applications that
are comprised of parallel tasks with different workloads can
perform efficiently in AMC.

Many studies on scheduling in AMC focus on resource al-
location at the OS level [18], [19], [20], [21], [22], [23], [24].
They aim to achieve high system throughput by balancing
the hardware resources (e.g., cores, caches) among different

programs. In [25], several phase co-scheduling policies are
proposed for the OS to improve the overall throughput by
reducing the conflicts among the phases of different threads.
In [26], age-based scheduling is proposed to schedule the
threads with larger remaining time to fast cores in AMC.
[27] proposes a bias scheduling which matches threads to the
right type of cores through dynamically monitoring the bias
of the threads in order to maximize the system throughput.
All of the above studies have not considered the scheduling
problem in parallel applications that WATS has addressed in
AMC.

Some recent studies addressed specific aspects of task
scheduling of parallel applications in AMC. For example,
in [28], ACS (Accelerated Critical Sections) is proposed to
accelerate the execution of critical sections by migrating the
threads with critical sections to fast cores. In [29], a speed
balancing algorithm is proposed to manage the migration of
threads so that each thread has a fair chance to run on the
fastest core available. Instead of balancing the workloads,
the algorithm balances the time of a thread executing on
faster and slower cores. The downside of this work is that
it assumes all threads have the same workload. Therefore,
it cannot work for parallel tasks with different workloads as
WATS does.

The only work that addresses the general scheduling
problem in parallel applications is the random task-snatching
[12] (i.e., RTS in Section IV-A), though it addresses the
problem in the context of an Asymmetric Multi-Processor
(AMP), which is similar to the context of AMC. RTS
presents a model where each processor maintains an esti-
mation of its speed. The model allows a fast core to snatch
tasks randomly from a slow core when the fast core is idle
and the task pool of the slow core is empty. As shown before,
RTS cannot balance tasks as well as WATS due to its lack
of workload information about the tasks.

Task-stealing has been extensively studied and adopted by
parallel programming environments [5], [6], [7], [8], [15],
[30], [31], though it does not perform well in AMC. An
extension to task stealing for improving cache performance
in multicore architectures has recently been proposed [16].
The preference-based task-stealing policy in WATS is a
novel extension to task stealing to balance workloads among
different groups of cores in AMC.

Task-stealing has also been extended to distributed sys-
tems. In [32], the authors extend task-stealing for large scale
scientific applications on large distributed system (e.g. Blue
Gene/P) in X10. In [33], high-level compiler optimizations
and transformations are performed on the X10 programs
to reduce communication and synchronization overheads of
task stealing in distributed system. In [34], a lifeline graph
that connects threads into k-dimensional hypercubes is pro-
posed to provide high performance task stealing and active
distributed termination in distributed memory architectures.
However, these extensions to task-stealing are not relevant



to the problem in AMC we address in this paper.

VI. CONTRIBUTIONS AND CONCLUSIONS

The contributions of this paper are as follows.
• We have identified, defined, and formalized the problem

of unbalanced workloads in AMC architectures.
• We have analyzed the load-balancing problem and

given theoretical guidance to optimal task allocation in
AMC.

• We have proposed a history-based task allocation algo-
rithm that can allocate tasks in AMC near-optimally.

• We have proposed a novel preference-based task-
stealing policy that can effectively balance workloads
among different groups of cores.

• Based on the above techniques, we have implemented
a task scheduler, WATS, which achieves a performance
gain of up to 64% compared to the random task stealing
approach commonly employed.

AMC architectures are promising due to their high perfor-
mance and power efficiency. It is essential for parallel appli-
cations to run on AMC architectures efficiently. Though task
scheduling policies like task-stealing work efficiently for
parallel applications in symmetric multicore architectures,
they cannot balance the workloads well in AMC since they
have no knowledge of task workloads and schedule tasks
randomly to the performance-asymmetric cores.

From our theoretical analysis, we know that the initial
optimal task allocation is more crucial to the makespan than
any rescuing means for a non-optimal allocation and that
static task allocation can produce near-optimal allocation
if the workloads of the tasks are known. Therefore, we
propose history-based task allocation that takes advantage of
the static allocation by using the historical statistics of the
tasks to predict the workloads and patterns of future tasks.
From our experiments we showed that the history-based task
allocation can produce near-optimal allocation and its extra
overhead is small.

For any occasional inaccurate or incorrect allocation of
tasks, the preference-based task-stealing policy comes to
play. It can remedy any slightly unbalanced allocation
and effectively schedule tasks among c-groups through
preference-based stealing.

The experimental results show that our techniques adopted
in WATS are effective and our approach to the scheduling
problem in AMC is valid.

One potential avenue of future work is to explore near-
optimal task scheduling in heterogeneous multi-core archi-
tectures that have heterogeneous accelerators (e.g., GPU or
streaming processor). To schedule tasks in heterogeneous
multi-core architectures, we can divide parallel tasks into
task clusters according to their internal features and the
hardware features. The task clusters will be allocated to
the most suitable accelerators that can complete them in

the shortest time. For example, we can schedule memory-
bound tasks to cores with large and fast caches, but schedule
data-parallel tasks to GPU or streaming processors. Another
promising future research avenue is to investigate energy-
aware task schedulers that would scale down the speed of
the cores for memory-bound tasks with the assistance of
DVFS. It would be interesting to find out how much energy
will be saved and how much performance will be degraded,
so that we can make the best tradeoff between energy and
performance.
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