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Abstract 

Watson's method for determining the roots of a solvable quintic 

equation in radical form is examined in complete detail. New methods 

in the spirit of Watson are constructed to cover those exceptional cases 
to which Watson's original method does not apply, thereby making 

Watson's method completely general. Examples illustrating the various 

cases that  arise are  presented. 

1. Introduction 

In  the 1930's the English mathematician George Neville Watson 

(1886-1965) devoted considerable effort to the evaluation of singular 

moduli and class invariants arising in the theory of elliptic functions 
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[6]-[ll]. These evaluations were given in  terms of the roots of polynomial 

equations whose roots are expressible in terms of radicals. I n  order to 

solve those equations of degree 5, Watson developed a method of finding 

the roots of a solvable quintic equation in radical form. He described his 

method in a lecture given a t  Cambridge University in  1948. A 

commentary.on this lecture was given recently by Berndt, Spearman and 

Williams [I]. This commentary included a general description of Watson's 

method. However i t  was not noted by Watson (nor in  [I]) tha t  there are 

solvable quintic equations to which his method does not apply. In  this 

paper we describe Watson's method in  complete detail treating the 

exceptional cases separately, thus making Watson's method applicable to 

any solvable quintic equation. Several examples illustrating Watson's 

method are given. Another method of solving the quintic has  been given 

by Dummit [4]. 

2. Watson's Method 

Let f ( x )  be a monic solvable irreducible quintic polynomial in Q[x] .  

By means of a linear change of variable we may suppose tha t  the 

coefficient of x4 is 0 so tha t  

for some C, D, E, F E Q. Let X I ,  x2, x3, x4, x5 E @ be the five roots of 

f (x) .  The discriminant 6 of f ( x )  is the quantity 

I n  terms of the coefficients of f (x) ,  6 is given by 
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- 8 0 0 0 0 0 0 ~ ~ E %  800000E5 + 3 1 2 5 ~ ~  + 1 0 8 0 0 0 0 0 ~ ~ ~ ~ .  (2.3) 

As f ( x )  is solvable and irreducible, we have [4, p. 3901 

F > 0.  

We set  

Let X I ,  x2 ,  X Q ,  x4,  x5 E C be the five roots of f (x ) .  Cayley [2] has  shown 

tha t  

Watson [ I ]  has  observed a s  f ( x )  is solvable and irreducible t ha t  g ( x )  has  

a root of the form I$ = where p E Q, SO tha t  4 E Q(&). We set  
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Clearly 8 is a root of 

The following simple lemma enables us to determine the solutions of 

a quintic equation. 

Lemma. L e t  C ,  D, E ,  F E Q. I f  u 1 ,  u 2 ,  U S ,  u4 E C a r e  such that 

2 2  2 2  3 3 3 3 
~1 ~4 + U ~ U Q  - ~1 ~2 - ~ 2 ~ 4  - U Q U ~  - ~ 4 ~ 3  - ~ 1 ~ 2 ~ 3 ~ 4  = E,  (2.14) 

5 5 5 5  2 2 2 2 ~1 + ~2 + U S  + ~4 - 5(u1u4  - u 2 u 3 ) ( u 1  U S  - U ~ U I  - U S U ~  + u 4 u 2 )  = - F ,  (2.15) 

t h e n  t h e  f i v e  r o o t s  o f  f ( x )  = 0 a r e  

2 3 4 x = m u 1  + w u2 + w  ug + a  u 4 ,  (2.16) 

w h e r e  o r u n s  t h r o u g h  t h e  f i f t h  r o o t s  o f  u n i t y .  

Proof. This follows from the identity 

2 3 4 2 3 4 3 ( m u 1  + 0 u2 + 0 us + w u 4 ) 5  - 5 U ( w u 1  + w u2 + 0 ug + w u 4 )  

where 

U = U1U4 + U2U3, 
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5 5 5 5 Z = u1 + U 2  + U 3  + U 4 ,  

see for example [5, p. 9871. 

If 0 z 0, k C Watson's method of determining the roots of f ( x )  = 0 in  

radical form is given in  the next theorem. 

Theorem 1. Let f ( x )  be the solvable irreducible quintic poly~tolnial 

(2.1). Suppose that 0 # 0,  k C .  Set 

Then  the pair o f  equatiolts 

P ( T )  = q ( T )  = 0 

has at  least one s o l u t i o ~ ~  T E C, which is expressible by radicals. Set 

If Rl z 0, then we have 

R2 = k\I(D + T ) ~  + 4(C + o ) ~ ( c  - 0 )  

Set 
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Let ul be arty fifth root o f  x 2 y / Z 2 .  Set 

Then the five roots of f ( x )  = 0 are given in  radical form by (2.16). 

The proof of Theorem 1 is given in Section 3. Theorem 1 does not 

apply when (i) 8 = 0, since in this case R2 is not always defined; when 

(ii) 0 = C, since Z = 0 and u2, u3,  u4 are not defined; and when (iii) 

0 = -C, since Z = 0 and u l ,  ug, uq are not defined. These excluded 

cases were not covered by Watson [l] and are given in Theorems 2, 3, 4. 

Theorem 2 covers 0 = fC # 0, Theorem 3 covers 0 = C = 0, and 

Theorem 4 covers 0 = 0, C ;t 0. 

Theorem 2. Let f (x)  be the solvable irreducible quintic po1:~aomial 

(2.1). Suppose that 0 = +C ;t 0. Set 

and 

Then the pair of equatiolts 

r ( T )  = s(T)  = 0 

has at least one solutiol~ T E @ expressible by radicals. 
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(a)  I f  D  # +T, we let ul be auy  f i f th  root of 

and set 

(b) I f  D = +T, then 

D = O  

a r ~ d  either 

2 16c3 - z2 (i) E = 4C or (ii) E = , F =  
64c6 - 88c3z2  - z4 (2.35) 

2C 4 c 2 z  

for some Z E Q, Z + 0. Let ul be alzy fifth root of 

and set 
u2 = 0,  
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U4  = 2 (2.39) 

-zU1' (ii).  

Then i r ~  both cases (a) a r ~ d  (b) the five roots of f ( x )  = 0 are given by (2.16). 

Theorem 3. Let f ( x )  be the solvable irreducible quintic polywornial 

(2.1). Suppose that 0 = C = 0. In  this case 

(i) D = E = 0 or (ii) D # 0, E + 0. (2.40) 

61, case (ii) we have 

Let ul be arty fi f th root of 

Set 
u2 = U 4  = 0 

and 

Then the five roots of  f ( x )  = 0 are given by (2.16). 

Theorem 4. Let f ( x )  be the solvable irreducible quintic polynomial 

(2.1). Suppose that 0 = 0, C 0. Set 
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Let R 1 .  R2 E C be such that 

Set 

1 1 
Y = -(- D - T  + R2), Y = - ( - D - T  - R2) .  2 2 (2.51) 

Let ul be a l ~ y  fifth root of - x2y  . set  
c 

- -- 

X 
U 2  = -Uf, xy 3 

X2Y 4 u3 = 4 u 1 ,  U q  =- 
C G  U 1 '  

(2.523 c2 C 

The7~ the five roots of f ( x )  = 0 are given by (2.16). 

3. Proof of Theorem 1 

If C + 0 or D + 0 or 25e4 - (10C2 + E ) o 2  + (C4 + CD2 - C 2 E )  * 0 ,  

then the polynomial q ( T )  is non-constar~t and the resultant R ( p ,  q )  of p 

and q is 

R ( p ,  q )  = 5 1 0 8 4 ( ~ 2  - ~ ~ ) ~ h ( € ~ ) h ( -  8).  (3.1) 

As h(8)  = 0 ,  we have R ( p ,  q )  = 0 .  Thus (2.19) has a t  least one solution 

T E C, which is expressible by radicals as it is a root of the quartic 

polynomial p(T) .  

On the other hand if C = D = 25e4 - (10C2 + E ) e 2  + (C4 + CD2 - C 2 E )  

= 0,  then we show that q ( T )  is identically zero and the assertion remains 

valid. In this case 25e4 - Ee2 = 0 .  As 8 + 0 we have e2 = E/25 .  Thus 

(2.3), (2.5), (2.6) and (2.7) give 

6 = 2 8 5 5 ~ 5  + 5 5 ~ 4 ,  K = E ,  L = 3 E 2 ,  M = E 3 .  
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Hence 

Thus 

As E + 0 we deduce that  F = 0 proving that q ( T )  = 0.  

Multiplying p ( T )  = 0 by C2 - O2 (+ 0 )  and rearranging, we obtain 

Define Rl and R2 as in (2.20) and (2.21). If R1 # 0 ,  as 8 # 0, t h ~ n  we 

deduce from (3.2) that 

which is (2.22). Define X, X ,  Y, Y, Z ,  7; as in (2.23), (2.24) and (2.25). 

Clearly 

From (2.20), (2.23) and (2.25; we deduce that 

xx = zZ2. 6 . 4 )  

From (2.21), (2.22), (2.24) and (2.25) we deduce that 

YY = z22. (3.5) 

From (2.23), (2.24) and (2.25) we obtain 
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Appealing to (2.20) and (3.2) if RI - 0 and to (2.21) if Rl ;t 0, then we 

deduce tha t  

From (2.20)-(2.25) we obtain 

Now define ~ 1 ,  u 2 ,  u 3 ,  u4 by (2.26). As Z, Z + 0 we deduce from (3.4) 

and (3.5) tha t  X, X. Y, Y + 0. Further, by (3.4) and (3.5), we have 

so that  

Then 

and 

Hence 
- 

U I U ~  + ~ 2 ~ 3  " Z + Z = -2C, 

which is (2.12). Next 

2  2  2  2  U1  U Q  + U 2 U l  + u 3 u 4  + U q U 2  
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that is, 

2 2 -20, with + signs, U1 U 3  + u;ul + u;u4 + UqU2 = 
2T, with - signs. 

The first of these is (2.13). 

Further 

2 2  2 2  3 3 3 3 U1 U q  + U2U3 - U11L2U3Uq - U1 U 2  - U2U4 - U3U1 - U4U3 

which is (2.14). 

Finally, from (3.7), (3.8), (3.9) and (3.10), we obtain 

which is (2.15). By the Lemma the roots of f ( x )  = 0 are given by (2.16). 

As 0 and T a r e  expressible by radicals so are R l ,  R 2 ,  X, X, Y,  Y ,  Z, Z. 
Hence u l ,  u 2 ,  U S ,  u4 are expressible by radicals. Thus the roots x l ,  x 2 ,  

x 3 ,  x 4 ,  x5 of f (x) = 0 are expressible Ey radicals. 
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4. Proof of Theorem 2 

Using MAPLE we find tha t  

515 R(r, s )  = - --- h ( C ) h ( -  C )  = 0, c2 (4.1) 

as  8 = + C ,  so tha t  there is a t  least one solution T E C of (2.29). As T is a 

root of a cubic equation, T is expressible in  terms of radicals. 

If D + +_T, then we define u l ,  u 2 ,  u 3 ,  u4 a s  in (2.30)-(2.33). Thus 

which is (2.12). 

Next 

i 
8 c 2 ~ u f  

if 8 - I., 
2 2 2 2 ( D  - T ) ~ ( D  + T )  ' 

U l U 2  + lL2Uq + U 3 U l  + U 4 U 3  = 
4 10 

4c2u: ( D  + T )  ul , if = -C, + -- 
( D  - T I ~  3 2 c 5 ( 0  - T I ~  

which is (2.13). 

Further, for both 8 = C and 8 = - C ,  we have 

by (2.27) and (2.29), which is (2.14). 

Finally, using (2.30)-(2.33), we obtain 

5 5 5 5  2 2 2 2 
U1 + U 2  + U g  + U q  - 5 ( u 1 u 4  - u ~ u ~ ) ( u ~  u3 - U 2 U l  - U 3 U 4  + u q u 2 )  
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by (2.28) and (2.29), which is (2.15). 

If D = +T,  then from r ( T )  = r(k D) = 0,  we obtain 

As C # 0 we deduce tha t  D = 0. Then (2.5)-(2.7) become 

From 

h(C)h(- C )  = h(8)h(- 0) : 0 

and (2.3) with D = 0 ,  we obtain 

12 12 If E = 8C2, then this equation becomes - 2 C = 0,  contradicting 

C t 0. Thus E t 8 c 2 .  Hence either 

(i) E = 4 c 2  

or 

(ii) F 2  = 
(400C4 - 60C2E + E ~ ) ~  

-- 

2C(8c2 - E )  



WATSON'S METHOD 

Since f (x)  is irreducible, F # 0,  and in case (ii) we have 

for some Z E Q with Z + 0.  Then 

and 

400C4 - 6 0 ~ ~ ~  + E~ 64C6 - 88C3Z2 - Z 4  F = - - 
Z 4 c 2 z  

Now define ul , u2, u3, u4 as  in  (2.36)-(2.39). Then 

uluq + u2u3 = u1u4 = -2C, 

which is (2.12). 

Next 

which is (2.13). 

Further 

= E ,  
1 

which is (2.14). 

Finally 
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5 5 

= 1 U l  + u 4 ,  (ih 

u: + u! + ui + ~ o C Z ,  (ii), 

= -F, 

which is (2.15). 

In  both cases (i) and (ii), by the Lemma the roots of f (x )  = 0 are 

given by (2.16). As T is  expressible in terms of radicals, so are u l ,  u 2 ,  

U Q ,  u 4 ,  and thus X I ,  x 2 ,  x 3 ,  " 4 ,  x5 are expressible i r  radicals. 

5. Proof of Theorem 3 

As 8 = C = 0 we deduce from h(8) = 0 that  

If E = 0, then D = 0 and conversely. Thus 

(i) D = E = 0 or (ii) D # 0, E # 0. 

In case (ii) we have 

Define u l ,  u 2 ,  u 3 ,  u 4  a s  in (2.42)-(2.44). Then 

which is (2.12). Also 

which is (2.13). Further 

2 2  2 2  3  3  3  3 U l  U q  + U 2 U 3  - U1 U 2  - U2U4 - U Q U ~  - U4U3 - UlU2U3U4 
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- - U ~ U :  = { 0 ,  (1) } = E ,  
E, (ii) 

which is (2.14). Finally 

which is (2.15). Hence by the Lemma the roots of f(x) = 0 are given by 

(2.16). Clearly u l ,  u2, us ,  u4 can be expressed in radical form so that 

X I ,  x2. x3, x4, x5 are expressible by radicals. 

6. Proof of Theorem 4 

M We define T by (2.45). As 8 = 0 we have h(8) = h(0)  = - - 
3125 

- 0 so 

that 

- 25c6 + 35C4E - 40c3D2 - 2c2DF - 1 1 ~ ~ ~ '  

('c3 + D2 - T ~ )  . 
Replacing E by -- 

C 
m (6. l),  we obtain (2.46). Define Rl and 

R2 as in (2.47)-(2.49). Define X, X, Y ,  Y as in (2.50) and (2.51). Clearly 

and 

a - Y Y = - c 3 ,  x + x + y + Y = - 2 D .  (6-2) 

Next 

Also 
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Now define ul, u2, us, u4 by (2.52). Then 

uluq = ~ 2 ~ 3  = -C. 

Also 

Then 

ulu4 + u2u3 = -2c, 

which is (2.12). Also 

which is (2.13). Further  

2 2  2 2  3 3 3 3 ~ 1 ~ 4  + ~ 2 ~ 3  - U ~ U ~ U Q U ~  - (u1u2 + ~ 2 ~ 4  + ~ 3 ~ 1  + u4u3) 

2 XY XY xY+E = C  + [ c c c c  + + -  -1 
by (6.3), which is (2.14). Finally 

5 5 5 5  2 2 2 2 
U1 + U2 + U3 + U4 - 5(u1U4 - u2U3)(u1 u2 - U 2 U l  - U3U4 + u4u2) 

5 5 5 5 
= U1 + U2 + U3 + U4 

= -F,  

by (6.4), which is (2.15). By the Lemma the roots of f(x) = 0 are given by 
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(2.16). As T, Rl, R2, X, X, Y, Y are  expressible by radicals, so are ul, 

u2,  U Q  , u 4 ,  and thus  xl ,  x2, x3, x4,  x5 are expressible by radicals. 

7. Examples 

We present eight examples. 

Example 1. This is Example 3 from [I] with typos corrected 

Theorem 1 and (3.9) give 
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Example 2. 

f (x)  = x5 + l ox3  + l ox2  + l o x  + 78, Gal ( f )  = Fz0 [MAPLE] 

C = 1 ,  D = 1 ,  E = 2 ,  F = 7 8  

4 13 K = 5, L = -125, M = 5625, 6 = 2 5 

4 9 
h ( x ) = x 6 - x 4 - x 2 - - x + - = ( x - 1 )  

5 5 

6 = 1 ,  T = 3 .  

Theorem 2(a) (6 = C )  gives 

5 2 1 3  
U l  = -4, u2 = -u1, u3 = - - U1, u4 = 0 

2 

= -022/5 - 0224/5 + 0321/5. 

Example 3. 

f (x)  = x5 + l ox3  + 20x + 1, Gal ( f )  = F20 [MAPLE] 

C = 1 ,  D = O ,  E = 4 ,  F = l  

2 5  2 K = 7 ,  L = 5 5 ,  M = 4 ,  6 = 3 5 4 3  

6 = 1 ,  T = 0 .  

Theorem 2(b)(i) gives 
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Example 4. 

f ( x )  = x5 + l o x 3  + 30x - 38, G a l ( f )  = F2,, [MAPLE]  

C = 1 ,  D = O ,  E = 6 ,  F = - 3 8  

0 = 1 ,  T = 0 .  

Theorem 203)(ii) gives 

2 = 2  

ul = 2Y5, u, = 0, us = $/5, uq = -.23/5 

= W22/5 + @321/5 .- @423/5, 

Example 5. 

f ( x )  = x5 - 20x3 + 180x - 236, Gal(1) = FZ0 [h/IAPLE] 

C  = -2, D = 0, E = 36, F = -236 
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With T = 0 Theorem 2(b)(ii) gives 

z = -4 

u1 = 24fi, U2 = 0, = -2215, u4 = 2615 

x = w24/5 - 0322/5 + 0426/5. 

With T = 4 Theorem 2(a) (8 = -C) gives 

in agreement with the solutions given with T = 0. 

Example 6. 

f (x) = x5 + 10x2 + lox - 2, Gal(f) = F20 [MAPLE] 

C = 0 ,  D = 1 ,  E = 2 ,  F = - 2  

8 = 0. 

Theorem 3(ii) gives 

u1 = 2y5, u2 = 0, u3 = -21J5, uq = o 

x = 022/5 - w321/5. 

Example 7. 

96 
f (x) = x5 - 20x3 + 8x2 + 76x - - , Gal(f) = Fz0 [MAPLE] 

25 
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0 = 0 .  

Theorem 4 gives 

Example 8. 

f(x)  = x5 + 40x3 - 120x2 + 160x + 96, Gal(f) = D5 [MAPLE] 

C = 4, D = -12, E = 32, F = 96 

0 = 0 .  

Theorem 4 gives 

~ = 4 &  

R1 = 4-, R2 = -4- (by (2.49)) 
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8. Concluding Remarks 

We take this opportunity to note some corrections to [ I ] .  

On page 20 i n  the expression for A the terms 

should be replaced by 

- 20a3bef 3 ,  4080a2bd2e2f, - 180ab3e3f, - 3375b4e4. 

On page 24 i n  the second column S2 ,  S4 and S6 should be replaced 

by E2,  E4 and EG.  

On page 27 in the first column in  the equation given by MAPLE the 

term 3 ~ ~ 9 ~  - El3 should be replaced by c 3 D  - 3c2El  + 3 ~ 0 8 ~  - m3. 
On page 28 i n  Step 3 equation (7) should be replaced by (8).  
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