
I
BM Watson is a question-answering system that takes nat-

ural language questions as input and produces precise

answers along with accurate conWdences as output (Fer-

rucci et al. 2010). In 2011, in a modiWed version of the quiz

show Jeopardy!, Watson defeated two of the best human play-

ers.

Jeopardy! questions are usually factoid questions — the

answer and supporting evidence are usually stated explicitly

in some document in the corpus. While in practice we may

retrieve multiple redundant documents, in principle the

answer could be expressed succinctly in one. The main chal-

lenges for a factoid question-answering system are retrieving

the correct document, and then extracting the correct answer

from the document. At the core of Watson’s question answer-

ing is a suite of algorithms that match passages containing

candidate answers to the original question. These algorithms

have been described in a series of articles (Chu-Carroll et al.

2012; Ferrucci 2012; Gondek et al. 2012; Lally et al. 2012;

McCord, Murdock, and Boguraev 2012; Murdock et al.

2012a; 2012b). In some important applications, however,

questions do not have this “factoid” character. Consider the
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n We present WatsonPaths, a novel

system that can answer scenario-based

questions. These include medical ques-

tions that present a patient summary

and ask for the most likely diagnosis or

most appropriate treatment. Watson-

Paths builds on the IBM Watson ques-

tion-answering system. WatsonPaths

breaks down the input scenario into

individual pieces of information, asks

relevant subquestions of Watson to con-

clude new information, and represents

these results in a graphic model. Proba-

bilistic inference is performed over the

graph to conclude the answer. On a set

of medical test preparation questions,

WatsonPaths shows a signiDcant

improvement in accuracy over multiple

baselines.



following questions, one from medicine and one

from taxation: 

A 32-year-old woman with type 1 diabetes mellitus has

had progressive renal failure. Her hemoglobin con-

centration is 9 g/dL. A blood smear shows nor-

mochromic, normocytic cells. What is the problem?

I inherited real-estate from a relative who died 5 years

ago via a trust that was created before his death. The

property was sold this year after dissolution of the

trust, and the money was put in a Roth-IRA. Which

tax form(s) do I need to file?

We will call these types of questions scenario-based

questions. In these types of questions, it is not gener-

ally the case that the answer and supporting evidence

can be contained in one document. Rather, for many

scenario-based questions, information from multiple

documents and other sources must generally be

retrieved and then integrated to answer the questions

properly. Furthermore, we must often apply general

knowledge to a speciWc case, as in a medical scenario

about a patient.

Before beginning work on automated scenario-

based question answering, we investigated how

humans solve such questions. We asked domain

experts to describe their approach to solving a set of

scenario-based questions in the medical domain. An

example is shown in Wgure 1. Many drew a graph of

initial signs and symptoms leading to their most like-

ly possible causes and connecting them to a Wnal

conclusion. This motivated us to look into graph-

based methods as a way of answering scenario-based

questions automatically.

In this article, we describe WatsonPaths, a system

that builds on Watson to answer scenario-based ques-

tions. The core idea is to break the question down

into parts, over which we can ask and answer factoid

subquestions using Watson, then integrate these

answers into a graphic model that can be used to
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Figure 1. A Simple Diagnosis Graph for a Patient with Erythropoietin DeDciency.

“A 32-year-old woman with type 1 diabetes mellitus has had progressive renal failure... Her hemoglobin
concentration is 9 g/dL... A blood smear shows normochromic, normocytic cells. What is the problem?

Patient’s hemoglobin conc.
is 9 g/dL [low]

Patient’s blood smear
shows normocytic cells 

Patient is at risk for
Erythropoietin deficiency

Patient has anemia

Patient has renal failure 

Patient has normocytic anemia 

Most likely cause of low hemoglobin
conc. is Erythropoietin deficiency

Evidence: “Low hemoglobin
conc. indicates anemia.”

Evidence: “Normocytic
anemia is a type of anemia
with normal red blood
cells.”

Evidence: “Erythropoietin is
produced in the kidneys.”

Evidence: “Erythropoietin
deficiency is a cause of
normocytic anemia.”



Articles

Summer 2017   61

answer the larger scenario-based question. We show

that WatsonPaths not only outperforms a baseline

system that uses simple information retrieval, but

also outperforms its own subcomponent, Watson, in

answering a set of scenario-based questions from the

medical domain.

WatsonPaths Medical Use Case

Although WatsonPaths is intended as a domain-gen-

eral technology for scenario-based question answer-

ing, we decided to start by focusing our attention on

the medical domain. We focused on the problem of

patient scenario analysis, where the goal is typically

a diagnosis or a treatment recommendation.

To explore this kind of problem solving, we

obtained a set of medical test preparation questions.

These are multiple-choice medical questions based

on an unstructured or semistructured natural lan-

guage description of a patient. Although Watson-

Paths is not restricted to multiple-choice questions,

we saw multiple-choice questions as a good starting

point for development. Many of these questions

involve diagnosis, either as the entire question, as in

the previous medical example, or as an intermediate

step, as in the following example: 

A 63-year old patient is sent to the neurologist with a

clinical picture of resting tremor that began 2 years

ago. At first it was only on the left hand, but now it

compromises the whole arm. At physical exam, the

patient has an unexpressive face and difficulty in

walking, and a continuous movement of the tip of the

first digit over the tip of the second digit of the left

hand is seen at rest. What part of his nervous system

is most likely affected?

For this question, it is useful to diagnose that the

patient has Parkinson’s disease before determining

which part of his nervous system is most likely affect-

ed. These multistep inferences are a natural Wt for the

graphs that WatsonPaths constructs. In this example,

the diagnosis is the missing link on the way to the

Wnal answer.

Scenario-Based Question Answering

In scenario-based question answering, the system

receives a scenario description that ends with a

punch line question. For instance, the punch line

question in the Parkinson’s example is “What part of

his nervous system is most likely affected?” Instead of

treating the entire scenario as one monolithic ques-

tion as would Watson, WatsonPaths explores multi-

ple facts in the scenario in parallel and reasons with

the results of its exploration as a whole to arrive at

the most likely conclusion regarding the punch line

question. The architecture of WatsonPaths is shown

in Wgure 2. In this section, we brieXy outline each

step, while the bulk of the rest of the article goes into

more detail on important steps.

Scenario Analysis

The Wrst step in the pipeline is scenario analysis,
where we identify factors in the input scenario that
may be of importance. In the medical domain, the
factors may include demographics (“32-year old
woman”), preexisting conditions (“type 1 diabetes
mellitus”), signs and symptoms (“progressive renal
failure”), and test results (“hemoglobin concentra-
tion is 9 g/dL,” “normochromic cells,” “normocytic
cells”). The extracted factors become nodes in a
graph structure called the assertion graph, on which
the remaining steps of the process will operate.

Node Prioritization

The next step is node prioritization, where we decide
which nodes in the graph are most important for
solving the problem. In a small scenario like this
example, we may be able to explore everything, but
in general this will not be the case. Factors that affect
the priority of a node may include the system’s con-
Wdence in the node assertion or the system’s estima-
tion of how fruitful it would be to expand a node. For
example, normal test results and demographic infor-
mation are generally less useful for starting a diagno-
sis than symptoms and abnormal test results.

Relation Generation

The relation-generation step builds the assertion
graph. We do this primarily by asking Watson ques-
tions about the factors. In medicine we want to know
the causes of the Wndings and abnormal test results
that are consistent with the patient’s demographic
information and normal test results. Given the sce-
nario in the Introduction, we could ask, “What does
type 1 diabetes mellitus cause?” We use a medical
ontology to guide the process of formulating sub-
questions to ask Watson. Relevant factors may also be
combined to form a single, more targeted question.
Because in this step we want to emphasize recall, we
take several of Watson’s highly ranked answers. The
exact number of answers taken, or the conWdence
threshold, are parameters that must be tuned. Given
a set of answers, we add them to the graph as nodes,
with edges from nodes that were used in questions to
nodes that were answers. The edge is labeled with the
predicate used to formulate the question (like causes
or indicates), and the strength of the edge is initially
set to Watson’s conWdence in the answer.

Although Watson is the primary way we add edges
to the graph, WatsonPaths allows for any number of
relation generator components to post edges to the
graph. For instance, we apply term matchers to pairs
of nodes, and post a relation between nodes that
match.

Belief Computation

Once the assertion graph has been expanded in this
way, we recompute the conWdences of nodes in the
graph based on new information. We do this using



probabilistic inference systems that take a holistic

view of the assertion graph and try to reconcile the

results of multiple paths of exploration.

Hypothesis IdentiWcation

As Wgure 2 shows, the process can go through multi-

ple iterations, during which the nodes that were the

answers to the previous round of questions can be

used to ask the next round of questions, producing

more nodes and edges in the graph.

After each iteration we may do hypothesis identi-

Wcation, where some nodes in the graph are identi-
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Figure 2. Scenario-Based Question-Answering Architecture.
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Wed as potential Wnal answers to the punch line ques-

tion (for example, the most likely diagnoses of a

patient’s problem). In some situations hypotheses

may be provided up front — a physician may have a

list of competing diagnoses and want to explore the

evidence for each. But in general the system needs to

identify these. Hypothesis nodes may be treated dif-

ferently in later iterations. For instance, we may

attempt to do backward chaining from the hypothe-

ses, asking Watson what things, if they were true of

the patient, would support or refute a hypothesis.

The process may terminate after a Wxed number of

iterations or based on some other criterion like con-

Wdence in the hypotheses.

While hypothesis identiWcation is part of Watson-

Paths, it is not described in detail in this article. In

the system that generates the results we present in

this article, no hypothesis identiWcation is necessary

because the multiple-choice answers are provided.

That system always does one iteration of expansion,

both forward from the identiWed factors and back-

ward from the hypotheses, before stopping.

Hypothesis ConWdence ReWnement

As described so far, WatsonPath’s conWdence in each

hypothesis depends on the strengths of the edges

leading to it, and since our primary relation (edge)

generator is Watson, the hypothesis conWdence

depends heavily on the conWdence of Watson’s

answers. Having good answer conWdence depends on

having a representative set of question/answer pairs

with which to train Watson. The following question

arises: What can we do if we do not have a represen-

tative set of question/answer pairs, but we do have

training examples for entire scenarios (for example,

correct diagnoses associated with patient scenarios)?

To leverage the available scenario-level ground truth,

we have built machine-learning techniques to learn

a reWnement of Watson’s conWdence estimation that

produces better results when applied to the entire

scenario. We describe our techniques in the Learning

over Assertion Graphs section.

Assertion Graphs

The core data structure used by WatsonPaths is the

assertion graph. Figure 3 explains this data structure,

along with the visualization that we commonly use

for it. Assertion graphs are deWned as follows.

A statement is something that can be true or false

(though its state may not be known). Often we deal

with unstructured statements, which are natural lan-

guage expressions like “A 63-year-old patient is sent

to the neurologist with a clinical picture of resting

tremor that began 2 years ago.” WatsonPaths also

allows for statements that are structured expressions,

namely, a predicate and arguments. Not all natural

language expressions can have a truth value. For

instance, the string “patient” cannot be true or false;

thus it does not Wt into the semantics of an assertion

graph. WatsonPaths is charitable in interpreting

strings as if they had a truth value. For instance, the

default semantics of the string “low hemoglobin” is

the same as “patient has low hemoglobin.”

A relation is a named association between state-

ments. Technically, relations are themselves state-

ments, and have a truth value. The relation has a

head, a tail, and predicate; for instance in medicine

we may say that “Parkinsons causes resting tremor”

or “Parkinson’s matches Parkinsonism.” Typically we

are concerned with relations that may provide evi-

dence for the truth of one statement given another.

Although some relations may have special meanings

in the probabilistic inference systems, a common

semantics for a relation is indicative in the following

way: “A indicates B” means that the truth of A pro-

vides an independent reason to believe that B is true.

An assertion is a claim that some agent makes

about the truth of a statement (including a relation).

The assertion records the name of the agent and a

conWdence value. Assertions may also record prove-

nance information that explains how the agent came

to its conclusion. For the Watson question-answering

agent, this includes natural language passages that

provide evidence for the answer.

In the assertion graph, each node represents exact-

ly one statement, and each edge represents exactly

one relation. Nodes and edges may have multiple

assertions attached to them, one for each agent that

has asserted that node or edge to be true.

We often visualize assertion graphs by using a

node’s border width to represent the conWdence of

the node, an edge’s width to represent the conWdence

of the edge, and an edge’s gray level as the amount of

“belief Xow” along that edge. Belief Xow is described

later, but essentially it is how much the value of the

head inXuences the value of the tail. This depends

mostly on the conWdences of the assertions on the

edge.

Scenario Analysis

The goal of scenario analysis is to identify informa-

tion in the natural language narrative of the problem

scenario that is potentially relevant to solving the

problem. When human experts read the problem

narrative, they are trained to extract concepts that

match a set of semantic types relevant for solving the

problem. In the medical domain, doctors and nurses

identify semantic types like chief complaints, past

medical history, demographics, family and social his-

tory, physical examination Wndings, labs, and current

medications (Bowen 2006). Experts also generalize

from speciWc observations in a particular problem

instance to more general terms used in the domain

corpus. An important aspect of this information

extraction is to identify the semantic qualiWers asso-

ciated with the clinical observations (Chang, Bor-
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dage, and Connell 1998). These qualiWers could be

temporal (for example, “pain started two days ago”),

spatial (“pain in the epigastric region”), or other asso-

ciations (“pain after eating fatty foods”). Implicit in

this task is the human’s ability to extract concepts

and their associated qualiWers from the natural lan-

guage narrative. For example, the above qualiWers

might have to be extracted from the sentence “The

patient reports pain, which started two days ago, in

the epigastric region especially after eating fatty

foods.”

The computer system needs to perform a similar

analysis of the narrative. We use the term factor to

denote the potentially relevant observations along
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Figure 3. Visualization of an Assertion Graph. 

By convention, input factors are placed at the top and hypotheses at the bottom with levels of inference factors in between.
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with their associated semantic qualiWers. Reliably

identifying and typing these factors, however, is a dif-

Wcult task, because medical terms are far more com-

plex than the kind of named entities typically stud-

ied in natural language processing. Our scenario

analytics pipeline attempts to address this problem

with the following major processing steps: 

Step one: The analysis starts with syntactic parsing

of the natural language. This creates a dependency

tree of syntactically linked terms in a sentence and

helps to associate terms that are distant from each

other in the sentence.

Step two: The terms are mapped to a dictionary to

identify concepts and their semantic types. For the

medical domain, our dictionary is derived from the

UniDed Medical Language System (UMLS) Metathesaurus

(National Library of Medicine 2009), Wikipedia redi-

rects, and medical abbreviation resources. The con-

cepts identiWed by the dictionary are then typed

using the UMLS Semantic Network, which consists of

a taxonomy of biological and clinical semantic types

like Anatomy, SignOrSymptom, DiseaseOrSyndrome,

and TherapeuticOrPreventativeProcedure. In addi-

tion to mapping the sequence of tokens in a sentence

to the dictionary, the dependency parse is also used

to map syntactically linked terms. For example “…

stiffness and swelling in the arm and leg” can be

mapped to the four separate concepts contained in

that phrase.

Step three: The syntactic and semantic informa-

tion identiWed above is used by a set of predeWned

rules to identify important relations. Negation is

commonly used in clinical narratives and needs to be

accurately identiWed. Rules based on parse features

identify the negation trigger term and its scope in a

sentence. Factors found within the negated scope can

then be associated with a negated qualiWer. Another

example of rule-based annotation is lab value analy-

sis. This associates a quantitative measurement to the

substance measured and then looks up reference lab

value ranges to make a clinical assessment. For exam-

ple “hemoglobin concentration is 9 g/dL” is

processed by rules to extract the value, unit, and sub-

stance and then assessed to be “low hemoglobin” by

looking up a reference. Next, the clinical assessment

is mapped by the dictionary to the corresponding

clinical concept.

At this point, we should have all the information

to identify factors and their semantic qualiWers. We

have to contend, however, with language ambigui-

ties, errors in parsing, a noisy and noncomprehensive

dictionary, and a limited set of rules. If we were to

rely solely on a rule-based system, then the resulting

factor identiWcation would suffer from a compound-

ing of errors in these components. To address this

issue, we employ machine-learning methods to learn

clinical factors and their semantic qualiWers in the

problem narrative. We obtained the ground truth by

asking medical students to annotate clinical factor

spans and their semantic types. They also annotated

semantic qualiWer spans and linked them to factors as

attributive relations.

The machine-learning system comprises two

sequential steps: 

In step one, a conditional random Weld (CRF) mod-

el (Lafferty, McCallum, and Pereira 2001) learns the

spans of text that should be marked as one of the fol-

lowing factor types: Wnding, disease, test, treatment,

demographics, negation, or a semantic qualiWer. Fea-

tures used for training the CRF model are lexical

(lemmas, morphological information, part-of-speech

tags), semantic (UMLS semantic types and groups,

demographic and lab value annotations), and parse-

based (features associated with dependency links

from a given token). A token window size of Wve (two

tokens before and after) is used to associate features

for a given token. A BIO tagging scheme is used by

the CRF to identify entities in terms of their token

spans and types.

In step two, a maximum entropy model then

learns the relations between the entities identiWed by

the CRF model. For each pair of entities in a sentence,

this model uses lexical features (within and between

entities), entity type, and other semantic features

associated with both entities, and parse features in

the dependency path linking them. The relations

learned by this model are negation and attributeOf
relations linking negation triggers and semantic qual-

iWers (respectively) to factors.

The combined entity and relation identiWcation

models have a precision of 71 percent and recall of 65

percent on a blind evaluation set of patient scenarios

found in medical test preparation questions. We are

currently exploring joint inference models and iden-

tiWcation of relations that span multiple sentences

using coreference resolution.

Relation Generation

The scenario analysis component described in the

previous section extracts pertinent factors related to

the patient from the scenario description. At this

stage, the assertion graph consists of the full scenario,

individual scenario sentences, and the extracted fac-

tors. An indicates relation is posted from a source

node (for example, a scenario sentence node) to a tar-

get node whose assertion was derived from the asser-

tion in the source node (for example, a factor extract-

ed from that sentence). In addition, a set of

hypotheses, if given, is posted as the goal nodes in

the assertion graph.

The task of the relation generation component is

to (1) expand the graph by inferring new facts from

known facts in the graph and (2) identify relation-

ships between nodes in the graph (like matches and

contraindicates) to help with reasoning and conW-

dence estimation. We begin by discussing how we

infer new facts for graph expansion.
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Expanding the Graph with Watson

In medical problem solving, experts reason with
chief complaints, Wndings, medical history, demo-
graphic information, and so on, to identify the
underlying causes for the patient’s problems.
Depending on the situation, they may then proceed
to propose a test whose results will allow them to dis-
tinguish between multiple possible problem causes,
or identify the best treatment for the identiWed cause,
and so on.

Motivated by the medical problem-solving para-
digm, WatsonPaths Wrst attempts to make a diagnosis
based on factors extracted from the scenario. The
graph is expanded to include new assertions about
the patient by asking questions of a version of the
Watson question-answering system adapted for the
medical domain (Ferrucci et al. 2013). WatsonPaths
takes a two-pronged approach to medical problem
solving by expanding the graph forward from the sce-
nario in an attempt to make a diagnosis, and then
linking high-conWdence diagnoses with the hypothe-
ses. The latter step is typically done by identifying an
important relation expressed in the punch line ques-
tion (for example, “What is the most appropriate
treatment for this patient” or “What body part is most
likely affected?”). This approach is a logical extension
of the open-domain work of Prager, Chu-Carroll, and
Czuba (2004), where in order to build a proWle of an
entity, questions were asked of properties of the enti-
ty and constraints between the answers were enforced
to establish internal consistency.

The graph expansion process of WatsonPaths
begins with automatically formulating questions
related to high-conWdence assertions, which in our
graphs represent statements WatsonPaths believes to
be true to a certain degree of conWdence about the
patient. These statements may be factors, as extract-
ed and typed by our scenario analysis algorithm, or
combinations of those factors.

To determine what kinds of questions to ask, Wat-
sonPaths can use a domain model that tells us what
relations form paths between the semantic type of a
high-conWdence node and the semantic type of a
hypothesis like a diagnosis or treatment. For the
medical domain, we created a model that we called
the Emerald, which is shown in Wgure 4. (Notice the
resemblence to an emerald.) The Emerald is a small
model of entity types and relations that are crucial
for diagnosis and for formulating next steps.

We select from the Emerald all relations that link
the semantic type of a high-conWdence source node
to a semantic type of interest. The relations and the
high-conWdence nodes then form the basis of instan-
tiating the target nodes, thereby expanding the asser-
tion graph. To instantiate the target nodes, we issue
WatsonPaths subquestions to Watson. All answers
returned by Watson that score above a predeter-
mined threshold are posted as target nodes in the
inference graph. A relation edge is posted from the

source node to each new target node where the con-

Wdence of the relation is Watson’s conWdence in the

answer in the target node.

In addition to asking questions from scenario fac-

tors, WatsonPaths may also expand backwards from

hypotheses. The premise for this approach is to

explore how a hypothesis Wts in with the rest of the

inference graph. If one hypothesis is found to have a

strong relationship with an existing node in the

assertion graph, then our probabilistic inference

mechanisms allow belief to Xow from known factors

to that hypothesis, thus increasing the system’s con-

Wdence in that hypothesis.

Figure 5 illustrates the WatsonPaths graph expan-

sion process. The top two rows of nodes and the

edges between them show a subset of the Watson-

Paths assertion graph after scenario analysis, with the

second row of nodes representing some clinical fac-

tors extracted from the scenario sentences.

The graph expansion process identiWes the most

conWdent assertions in the graph, which include the

four clinical factor nodes extracted from the scenario.

These four nodes are all typed as Wndings, so they are

aggregated into a single Dnding node for the purpose

of graph expansion. For a Dnding node, the Emerald

proposes a single DndingOf relation that links it to a

disease. This results in the formulation of the sub-

question “What disease causes resting tremor that

began 2 years ago, compromises the whole arm,

unexpressive face, and difWculty in walking?” whose

answers include Parkinson’s disease, Huntington’s

disease, cerebellar disease, and so on. These answer

nodes are added to the graph and some of them are

shown in the third row of nodes in Wgure 5.

In the reverse direction, WatsonPaths explores rela-

tionships between hypotheses to nodes in the exist-

ing graph based on the punch line question in the

scenario, which in this case is “What part of his nerv-

ous system is mostly likely affected?” Assuming each

hypothesis to be true, the system formulates sub-

questions to link it to the assertion graph. Consider

the hypothesis, substantia nigra. WatsonPaths can ask

“In what disease is substantia nigra most likely affect-

ed?” A subset of the answers to this question, includ-

ing Parkinson’s disease and diffuse Lewy body disease

are shown in the fourth row of nodes in Wgure 5.

Matching Graph Nodes

When a new node is added to the WatsonPaths asser-

tion graph, we compare the assertion in the new

node to those in existing nodes to ensure that equiv-

alence relations between nodes are properly identi-

Wed. This is done by comparing the statements in

those assertions: for unstructured statements,

whether the statements are lexically equivalent, and

for structured statements, whether the predicates and

their arguments are the same. A more complex oper-

ation is to identify when nodes contain assertions

that may be equivalent to the new assertion.
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We employ an aggregate of term matchers (Mur-
dock et al. 2012a) to match pairs of assertions. Each
term matcher posts a conWdence value on the degree
of match between two assertions based on its own
resource for determining equivalence. For example, a
WordNet-based term matcher considers terms in the
same synset to be equivalent, and a Wikipedia-redi-
rect-based term matcher considers terms with a redi-
rect link between them in Wikipedia to be a match.
The dotted line between Parkinson disease and Parkin-
son’s disease in Wgure 5 is posted by the UMLS-based
term matcher, which considers variants for the same
concept to be equivalent.

ConWdence and Belief

Once the assertion graph is constructed, and some
questions and answers are posted, there remains the
problem of conWdence estimation. We develop mul-
tiple models of inference to address this step.

Belief Engine

One approach to the problem of inferring the correct

hypothesis from the assertion graph is probabilistic

inference over a graphic model (Pearl 1988). We refer

to the component that does this as the belief engine.

Although the primary goal of the belief engine is to

infer conWdences in hypotheses, it also has the sec-

ondary goal to infer belief in unknown nodes that are

not hypotheses. These intermediate nodes may be

important intermediate steps toward an answer; by

assigning high conWdences to them in the main loop,

we know to assign them high priority for subques-

tion asking. Therefore, the belief engine needs to

assign a conWdence to each node, not just hypothe-

ses.

To execute the belief engine, we Wrst make a work-

ing copy of the assertion graph that we call the infer-

ence graph. A separate graph is used so that we can

make changes without losing information that might
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Figure 4. The Emerald.
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be useful in later steps of inference. For instance, we

might choose to merge nodes or reorient edges. Once

the inference graph has been built, we run a proba-

bilistic inference engine over the graph to generate

new conWdences. Each node represents an assertion,

so it can be in one of two states: true or false (“on” or

“off”). Thus a graph with k nodes can be in 2k possi-

ble states. The inference graph speciWes the likeli-

hoods of each of these states. The belief engine uses

these likelihoods to calculate the marginal probabili-

ty, for each node, of it being in the true state. This

marginal probability is treated as a conWdence. Final-

ly, we read conWdences and other data from the infer-

ence graph back into the assertion graph.

There are some challenges in applying probabilis-

tic inference to an assertion graph. Most tools in the

inference literature were designed to solve a different

problem, which we will call the classical inference

problem. In this problem, we are given a training set

and a test set that can be seen as samples from a com-

mon joint distribution. The task is to construct a

model that captures the training set (for instance, by

maximizing the likelihood of the training set), and

then apply the model to predict unknown values in

the test set. Arguably the greatest problem in the clas-

sical inference task is that the structure of the graph-

ic model is underdetermined; a large space of possi-

ble structures needs to be explored. Once a structure
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Figure 5. WatsonPaths Graph Expansion Process.
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is found, adjusting the strengths is relatively easier,

because we know that samples from the training set

are sampled from a consistent joint distribution.

In WatsonPaths, we face a different set of prob-

lems. The challenge is not to construct a model from

training data, but to use a very noisy, already con-

structed model to do inference. Training data in the

classical sense is absent or very sparse; all we have are

correct answers to some scenario-level questions. An

advantage is that a graph structure is given. A disad-

vantage is that the graph is noisy. Furthermore, it is

not known that the conWdences on the edges neces-

sarily correspond to the optimal edge strengths. (In

the next section, we address the problem of learning

edge strengths.) Thus we have the problem of select-

ing a semantics — a way to convert the assertion

graph into a graph over which we can do optimal

probabilistic inference to meet our goals.

After much experimentation, the primary seman-

tics used by the belief engine is the indicative seman-

tics: If there is a directed relation from node A to

node B with strength x, then A provides an inde-

pendent reason to believe that B is true with proba-

bility x. Some edges are classiWed as contraindicative;

for these edges, A provides an independent reason to

believe that B is false with probability x. The inde-

pendence means that multiple parents R can easily

be combined using a noisy-OR function. For

instance, if the node resting tremor indicates Parkin-

son disease with strength 0.8, and the node difDculty

in walking indicates Parkinson disease with power 0.4,

then the probability of Parkinson disease will be (1 –

(1 – 0.8)(1 – 0.4)) = 0.88. If so, then the edge with

strength 0.9 to Parkinson’s disease will Wre with prob-

ability 0.88 · 0.9 = 0.792. In this way, probabilities

can often multiply down simple chains. Inference

must be more sophisticated to handle the graphs we

see in practice, but the intuition is the same.

As an example of a problem that requires addi-

tional sophistication, the assertion graphs in Wat-

sonPaths contain many directed and undirected

cycles, which are not allowed in many inference

algorithms. We have developed a novel inference

algorithm to deal with the directed cycles, which

shows an improvement over existing methods.

Another example is an “exactly one” constraint that

can be optionally added to multiple-choice ques-

tions. This constraint assigns a higher likelihood to

assignments in which exactly one multiple-choice

answer is true. Because of these kinds of constraints,

we cannot simply calculate the probabilities in a

feed-forward manner. To perform inference we use

Metropolis-Hastings sampling over a factor graph

representation of the inference graph. This has the

advantage of being a very general approach — the

inference engine can easily be adapted to a new

semantics — and also allows an arbitrary level of pre-

cision given enough processing time.

Formally, the indicative semantics instantiates a

version of a noisy-logical Bayesian network (Yuille

and Lu 2007). The strength of each edge can be inter-

preted as an indicative power, a concept related to

causal power (Cheng 1997), with the difference that

we are semantically agnostic as to the true direction

of the causal relation.

In experiments, the indicative semantics performs

at least as well as other semantics. We outline a few

simple alternatives here. One of the Wrst semantics

we tried was undirected pairwise Markov random

Welds. In this semantics, we take the maximum con-

Wdence connecting two nodes to be their compati-

bility: how likely they are to take the same truth val-

ue. This performed poorly in practice. We

hypothesize that this is because important informa-

tion is contained in the direction of the edges that

Watson returns: asking about A and getting B as an

answer is different from asking about B and getting A
as an answer. An undirected model loses this infor-

mation.

The indicative semantics is a default, basic seman-

tics. The ability to reason over arbitrary relations

makes the indicative semantics robust, but it is easy

to construct examples in which the indicative

semantics is not strictly correct. For instance, “fever

is a Wnding of Lyme disease” may be correctly true

with high conWdence, but this does not mean that

fever provides an independent reason to believe that

Lyme disease is present, with high probability. Fever

is caused by many things, each of which could

explain it. We are currently working on adding a

causal semantics in which we use a noisy-logical

Bayesian network, but belief Xows from causes to

effects, rather than from factors to hypotheses. Edges

are oriented according to the types of the nodes: Dis-

eases cause Wndings but not vice versa. Currently this

does not lead to detectable improvement in accuracy.

We expect that we need to improve the precision of

the rest of the system before it will show impact.

Learning over Assertion Graphs

The belief engine described in the previous section

uses conWdences directly as strengths. These conW-

dences include the output of multiple relation gener-

ators (for instance, matching algorithms) but most

importantly the conWdences of Watson’s subquestion

answering. For instance, if we ask a question about

resting tremor, and get Parkinson’s disease as an

answer with 73 per cent conWdence, then the belief

engine will treat this as a directed relation from rest-

ing tremor to parkinson’s disease with an indicative

power of 0.73. When multiple relations exist in one

direction, the belief engine takes the maximum of all

the conWdences in that direction. Watson combines

subquestion features using a model that was trained

on medical trivia questions (see the evaluation sec-

tion for details). This raises the question of whether

we can also use the training set of scenario-based
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questions to better learn how to map features more

optimally to edge strengths. This section describes

our attempts to do so.

There are two main ways that we use the scenario-

based training set. First, we create a set of closed-form

inference methods, most of which are approxima-

tions of methods described in the previous section,

but are more straightforward to optimize. We use

these methods to create equations that express can-

didate conWdences in terms of the model, and then

optimize the model to maximize certain objectives

such as accuracy. Second, we combine all the infer-

ence methods, including the belief engine, into an

ensemble and use the scenario-based train set to opti-

mize the weights of the ensemble.

Closed-Form Inference Methods

This section describes a series of closed-form infer-

ence methods. Note that none of these methods by

themselves have been shown to give higher accuracy

than the belief engine method described earlier.

However, they are more amenable to optimization,

and the ensemble of methods may perform better.

The noisy-OR model is most similar to the indica-

tive semantics used in the belief engine, with some

differences. While the belief engine allows a graph

with directed cycles, the noisy-OR model requires a

directed acyclic graph (DAG). As mentioned above,

the assertion graph is not, in general, free of cycles.

Additionally, the assertion graph contains matching

relations, which are undirected. To form a DAG, the

nodes in the assertion graph are Wrst clustered by

these matching relations, and then cycles are broken

by applying heuristics to reorient edges to point from

factors to hypotheses. ConWdence is computed in a

feed-forward manner. The conWdence in factors

extracted by scenario analysis is 1.0. For all other

nodes the conWdence is deWned recursively in terms

of the conWdences of the parents and the conWdence

of the edges produced by the question-answering sys-

tem. This generates an equation for each candidate,

expressing its conWdence interms of the parameters.

The edge type variant of the noisy-OR model con-

siders the type of the edge when propagating conW-

dence from parents to children. The strength of the

edge according to the question-answering model is

multiplied by a per-edge-type learned weight, then a

sigmoid function is applied. In this model, different

types of subquestions may have different inXuence

on conWdences, even when the question-answering

model produces similar features for them.

The matching model estimates the conWdence in a

hypothesis according to how well each factor in the

scenario, plus the answers to forward questions asked

about it, match against either the hypothesis or the

answers to the backward questions asked from it. We

estimate this degree of match using the term match-

ers described earlier in the Matching Graph Nodes

section.

The feature addition model uses the same DAG as

the noisy-OR model, but conWdence in the interme-

diate nodes is computed by adding the feature values

for the questions that lead to it and then applying

the logistic model to the resulting vector. An effect is

that the conWdence for a node does not increase

monotonically with the number of parents. Instead,

if features that are negatively associated with correct-

ness are present in one edge, it can lower the conW-

dence of the node below the conWdence given by

another edge.

The causal model attempts to capture causal seman-

tics by expressing the conWdence for each candidate

as the product over every clinical factor of the prob-

ability that either the diagnosis could explain the fac-

tor (as estimated from Watson/question-answering

features), or the factor “leaked” — it is an unex-

plained observation or is not actually relevant.

In the closed-form inference systems described,

there is no constraint that the answer conWdences

sum to one. We implement a Wnal stage where fea-

tures based on the raw conWdence from the inference

model are transformed into a proper probability dis-

tribution over the candidate answers.

Direct Learning

The methods described in the previous section per-

mit expressing the conWdence in the correct answer

as a closed-form expression. Summing the log of the

conWdence in the correct hypothesis across the train-

ing set T, we construct a learning problem with log-

likelihood in the correct Wnal answer as our objective

function. The result is a function that is nonconvex,

and in some cases (due to max) not differentiable in

the parameters.

To limit overWtting and encourage a sparse, inter-

pretable parameter weighting we use L1-regulariza-

tion. The absolute value of all learned weights is sub-

tracted from the objective function.

To learn the parameters for the inference models

we apply a “black-box” optimization method:

greedy-stochastic local search. Learning explores the

parameter space, tending to search in regions of high

value while never becoming stuck in a local maxi-

mum.

We also experimented with the Nelder-Mead sim-

plex method (Nelder and Mead 1965) and the multi-

directional search method of Torczon (1989) but

found weaker performance from these methods.

Ensemble Learning

We have multiple inference methods, each approach-

ing the problem of combining the subquestion con-

Wdences from a different intuition and formalizing it

in a different way. To combine all these different

approaches we train an ensemble.

This is a Wnal, convex, conWdence estimation over

the multiple-choice answers using the predictions of

the inference models as features.
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The ensemble learning uses the same training set

that the individual closed-form inference models use.

To avoid giving excess weight to inference models

that have overWt the training set, we use a common

technique from stacking ensembles (Breiman 1996).

The training set is split into Wve folds, each leaving

out 20 percent of the training data, as though for

cross validation. Each closed-form inference model is

trained on each fold. When the ensemble gathers an

inference model’s conWdence as a feature for an

instance, the inference model uses the learned

parameters from the fold that excludes that instance.

In this way, each inference model’s performance is

testlike, and the ensemble model does not overly

trust overWt models.

The ensemble is a binary logistic regression per

answer hypothesis using three features from each

inference model. The features used are: the probabil-

ity of the hypothesis, the logit of the probability, and

the rank of the answer among the multiple-choice

answers. Using the logit of the probability ensures

that selecting a single inference model is in the

ensemble’s hypothesis space, achieved by simply set-

ting the weight for that model’s logit feature to one

and all other weights to zero.

Each closed-form inference model is also trained

on the full training set. These versions are applied at

test time to generate the features for the ensemble.

Evaluation

For the automatic evaluation of WatsonPaths, we

used a set of medical test preparation questions from

Exam Master and McGraw-Hill, which are analogous

to the examples we have used throughout this article.

These questions consist of a paragraph-sized natural

language scenario description of a patient case,

optionally accompanied by a semistructured tabular

structure. The paragraph description typically ends

with a punch line question and a set of multiple-

choice answers (average 5.2 answer choices per ques-

tion). We excluded from consideration questions that

require image analysis or whose answers are not text

segments.

The punch line questions may simply be seeking

the most likely disease that caused the patient’s

symptoms (for example,  “What is the most likely

diagnosis in this patient?”), in which case the ques-

tion is classiWed as a diagnosis question. The diagno-

sis question set reported in this evaluation was iden-

tiWed by independent annotators. Nondiagnosis

punch line questions may include appropriate treat-

ments, the organism causing the disease, and so on

(for example,  “What is the most appropriate treat-

ment?” and “Which organism is the most likely

cause of his meningitis?” respectively). We observed

that most questions that did not directly ask for a

diagnosis nonetheless required a diagnosis as an

intermediate step. For this reason, we decided that

focusing initially on diagnosis questions was a good

strategy.

We split our data set of 2190 questions into a train-

ing set of 1000 questions, a development set of 690

questions, and a blind test set of 500 questions. The

development set was used to iteratively drive the

development of the scenario analysis, relation gener-

ation, and belief engine components, and for param-

eter tuning. The training set was used to build mod-

els used by the learning component.

As noted earlier, our learning process requires sub-

question training data to consolidate groups of ques-

tion-answering features into smaller, more manage-

able sets of features. We do not have robust and

comprehensive ground truth for a sufWciently large

set of our automatically generated subquestions.

Instead, we use a preexisting set of simple factoid

medical questions as subquestion training data: the

Doctor’s Dilemma (DD) question set.1 DD is an estab-

lished benchmark used to assess performance in fac-

toid medical question answering. We use 1039 DD

questions (with a known answer key) as our sub-

question training data. Although the Doctor’s Dilem-

ma questions do have some basic similarity to the

subquestions we ask in assertion graphs, there are

some important differences: (1) In an assertion graph

subquestion, there is usually one known entity and

one relation that is being asked about. For DD, the

question may constrain the answer by multiple enti-

ties and relations. (2) An assertion graph subquestion

like “What causes hypertension?” has many correct

answers, whereas DD questions have a single best

answer. (3) There may be a mismatch between how

conWdence for DD is trained and how subquestion

conWdence is used in an inference method. The DD

conWdence model is trained to maximize log-likeli-

hood on a correct/incorrect binary classiWcation task.

In contrast, many probabilistic inference methods

use conWdence as something like strength of indica-

tion or relevance.

For all these reasons, DD data might seem poorly

suited to training a complete model for judging edge-

strength for subquestion edges in WatsonPaths. In

practice, however, we have found that DD data is use-

ful as subquestion training data because it is easier to

obtain than subquestion ground truth, and so far

shows improved performance over the limited sub-

question ground truth we have constructed.2 In our

hybrid learning approach, we use 1039 DD questions

for consolidating question-answering features and

then use the smaller, consolidated set of features as

inputs to the inference models that are trained on the

1000 medical test preparation questions.

Metrics and Baseline

As a baseline, we attempted to answer questions from

our tests set using a simple information-retrieval

strategy. It used as much as possible the same corpus

and starting point used by WatsonPaths. In this base-
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line, we took each sentence in the question and gen-
erated an Indri query by removing stop words. We
then ran this query over our medical corpus, return-
ing a set of 100 passages. (We also tried different
numbers of passages on our development set; 100
passages appeared to show the best results.) The score
for each candidate was simply the number of times
that the candidate text appeared in any of these pas-
sages. ConWdence in each answer was generated by
normalizing the scores. For instance, if answer A
appeared 4 times in the passages, and answer B
appeared 1 time, the conWdence in answer A would
be 80 per cent.

We also evaluated the performance of the Watson
question-answering system adapted for the medical
domain (Ferrucci et al. 2013). We ran this factoid-
based pipeline on our scenario-based questions in
order to evaluate the value added by our scenario-
based approach. Watson takes the entire scenario as
input and evaluates each multiple-choice answer
based on its likelihood of being the correct answer to
the punch line question. This one-shot approach to
answering medical scenario questions contrasts with
the WatsonPaths approach of decomposing the sce-
nario, asking questions of atomic factors, and per-
forming probabilistic inference over the resulting
graphic model. Note that Watson is the same system
that WatsonPaths uses as a subcomponent. It has
been developed and improved along with Watson-
Paths.

We tuned various parameters in the WatsonPaths
system on the development set to balance speed and
performance. The system performs one iteration each
of forward and backward relation generation. The
minimum conWdence threshold for expanding a
node is 0.25, and the maximum number of nodes
expanded per iteration is 40. In the relation genera-
tion component, the Watson medical question-
answering system returns all answers with a conW-
dence of above 0.01.

We evaluate system performance both on the full
test set as well as on the diagnosis subset only. The
reason for evaluating the diagnosis subset separately
is because most questions that do not directly seek a

diagnosis in the punch line depend on a correct diag-
nosis along the way. Thus progress on the diagnosis
subset may be a step toward better performance on
multistep questions. We use the full 1000 questions
in the training set to learn the models for both the
baseline system and the WatsonPaths system. As not-
ed earlier, Doctor’s Dilemma training data is used to
consolidate question-answering features in the Wat-
sonPaths system. In the Watson system that was not
part of WatsonPaths, we did not use Doctor’s Dilem-
ma training data for any purpose.

Results

Table 1 shows the results of our evaluation on a set of
500 blind questions of which a subset of 156 ques-
tions were identiWed as diagnosis questions by anno-
tators.

We report results on our blind evaluation data,
using two metrics. Accuracy simply measures the per-
centage of questions for which a system ranks the
correct answer in top position. ConDdence weighted
score is a metric that takes into account both the
accuracy of the system and its conWdence in produc-
ing the top answer (Voorhees 2003). We sort all
<question, top answer> pairs in an evaluation set in
decreasing order of the system’s conWdence in the top
answer and compute the conWdence weighted score
as

where n is the number of questions in the evaluation
set. This metric rewards systems for more accurately
assigning high conWdences to correct answers, an
important consideration for real-world question-
answering and medical diagnosis systems.

Because most questions have Wve or six multiple-
choice answers, chance performance on our test set
was approximately 19.8 per cent.

Results show that in terms of accuracy, Watson-
Paths outperforms both the baseline system and Wat-
son on both the full set and the diagnosis subset. We
used a signiWcance level of p < 0.05. In terms of con-
Wdence weighted score, WatsonPaths signiWcantly
outperforms the baseline system on both sets, and
signiWcantly outperforms Watson on the full set. For
the diagnosis subset, the difference between Watson
and WatsonPaths on conWdence weighted score was
not statistically signiWcant, despite a 6+ percent score
increase. This is likely due to the small diagnosis sub-
set, which contains only 156 questions.

Overall, these results suggest that WatsonPaths
adds signiWcant value to scenario-based question
answering, over and above a simple information-
retrieval baseline, and also over and above a factoid-
type question-answering approach. This is true even
when comparing WatsonPaths to the same Watson
system that was developed as a subcomponent for
WatsonPaths. These results suggest that the graphic

CWS =
1

n

number correct in first i ranks

i
i=1

n
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Table 1. WatsonPaths Performance Results.

  Full Diagnosis 

Accuracy Baseline 30.6% 41.0% 

Watson 42.0% 53.8% 

WatsonPaths 48.0% 64.1% 

Confidence Weighted Score Baseline 42.9% 52.1% 

Watson 59.8% 75.3% 

WatsonPaths 67.5% 81.8% 



model, subquestion strategy, and probabilistic infer-

ence engines, such as the ones used in WatsonPaths,

can add signiWcant value to scenario-based question

answering.

Discussion

WatsonPaths has some key features that drive the

performance improvement over Watson. The Wrst

and most important is that WatsonPaths has the abil-

ity to engage in inference. Watson does well on short

diagnostic questions where one phrase is strongly

associated with the correct diagnosis. WatsonPaths

does better than Watson when there is another factor

that rules out a diagnosis that would otherwise be

likely, or a second symptom that is not explained by

that diagnosis. Holistically performing inference over

the information contained in the question is often

necessary to answer such questions well.

Development of the inference capabilities of Wat-

sonPaths has been driven by empirical results: We

continued to add sophistication to inference as long

as we detected a statistically signiWcant improvement

in accuracy in the development set. The framework

supports many more kinds of inference. Some types

of inference (for instance, causal inference) already

have implementations, but have not yet shown a sta-

tistically signiWcant impact. For some of these types

of inference, we suspect that improvements in the

underlying Watson question answering will be nec-

essary before this impact will emerge. For some oth-

er kinds of inference, such as reasoning about events

in time, we are not convinced that such inference

will be necessary to do well on the United States Med-

ical Licensing Examination (USMLE) test set. Finally,

some kinds of inference are not well supported by

WatsonPaths. For instance, as we mentioned, state-

ments in WatsonPaths must be either true or false.

Thus explicit reasoning about entities and events,

and the relations between them, would require a

major extension to WatsonPaths. Overall, because

the primary impact of WatsonPaths appears to be its

more advanced inference, and further advancing

inference depends on the quality of Watson’s results,

we believe that the biggest gains in the performance

of WatsonPaths will come from improvements in

Watson.

Another factor contributing to the impact of Wat-

sonPaths, is that WatsonPaths seems less likely than

Watson to get overwhelmed by irrelevant details in

long questions. While Watson tries to weight the rel-

evance of various phrases in the question, its baseline

assumption is that all the text is potentially impor-

tant. Thus irrelevant text can water down the score of

a candidate hypothesis that would otherwise get a

high score. In WatsonPaths, we ask many subques-

tions using different ways of breaking down the sce-

nario. For instance, we ask questions about sen-

tences, factors, and combinations of factors. This

increases the chances that some set of words will pro-

duce a strong inference chain that connects to a

hypothesis. In contrast, irrelevant text will be unlike-

ly to produce inference chains to the hypotheses.

This property is important as many real-world appli-

cations are not as concise as trivia questions. For

instance, medical records often contain large

amounts of detail, much of which is irrelevant to a

particular question.

Related Work

Clinical decision support systems (CDSSs) have had a

long history of development starting from the early

days of artiWcial intelligence. These systems use a

variety of knowledge representations, reasoning

processes, system architectures, scope of medical

domain, and types of decision (Musen, Middleton,

and Greenes 2014). Although several studies have

reported on the success of CDSS implementations in

improving clinical outcomes (Kawamoto et al. 2005;

Roshanov et al. 2013), widespread adoption and rou-

tine use is still lacking (Osheroff et al. 2007).

The pioneering Leeds abdominal pain system (De

Dombal et al. 1972) used structured knowledge in the

form of conditional probabilities for diseases and

their symptoms. Its success at using Bayesian reason-

ing was comparable to experienced clinicians at the

Leeds hospital where it was developed. But it did not

adapt successfully to other hospitals or regions, indi-

cating the brittleness of some systems when they are

separated from their original developers. A recent sys-

temic review of 162 CDSS implementations shows

that success at clinical trials is signiWcantly associat-

ed with systems that were evaluated by their own

developers (Roshanov et al. 2013). MYCIN (Shortliffe

1976) was another early system that used structured

representation in the form of production rules. Its

scope was limited to the treatment of infectious dis-

eases and, as with other systems with structured

knowledge bases, required expert humans to develop

and maintain these production rules. This manual

process can prove to be infeasible in many medical

specialties where active research produces new diag-

nosis and treatment guidelines and phases out older

ones. Many CDSS implementations mitigate this lim-

itation by focusing their manual decision logic devel-

opment effort on clinical guidelines for speciWc dis-

eases or treatments, for example, hypertension

management (Goldstein et al. 2001). But such sys-

tems lack the ability to handle patient comorbidities

and concurrent treatment plans (Sittig et al. 2008).

Another notable system that used structured knowl-

edge was Internist-1. The knowledge base contained

disease-to-Wnding mappings represented as condi-

tional probabilities (of disease given Wnding, and of

Wnding given disease) mapped to a 1–5 scale. Despite

initial success as a diagnostic tool, its design as an

expert consultant was not considered to meet the

information needs of most physicians. Eventually, its
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beyond the medical domain. For med-

ical applications, it might have been

easier to design Watson with certain

medical aspects hard coded into the

Xow of execution. Instead we designed

the overall Xow as well as each compo-

nent to be general across domains.

Note that the Emerald could be

replaced by a structure from a different

domain, and the basic semantics we

have explored: matching, indicative

and causal, have no requirement that

the graph structure come from medi-

cine. Even the causal aspect of the

belief engine could apply to any

domain that involves diagnostic infer-

ence (for example, automotive repair).

Most importantly, the way that sub-

questions are answered is completely

general. By asking the right subques-

tions and using the right corpus, we

can apply WatsonPaths to any sce-

nario-based question-answering prob-

lem. We hope to develop a toolbox of

expansion strategies, relation genera-

tors, and inference mechanisms that

can be reused as we apply WatsonPaths

to new domains.

The most important area for further

work is on a collaborative user applica-

tion. Question answering is not always

just about returning the correct answer

— often we must also explain to the

user why the answer is correct. This is

particularly important in domains like

medicine, where users are justWed in

challenging and validating answers

because of the life-and-death nature of

decisions. Question-answering systems

that rely heavily on machine learning

are often criticized for being too

opaque to allow clear explanations. We

have designed WatsonPaths with

explanatory power in mind. For

instance, we modeled the graphic

model after the hand-drawn graphs

that domain experts used to explain

their answers. At the same time, we are

able to use machine learning to

improve our accuracy and other met-

rics, without losing the ability to

explain our answers.

In addition to explaining our

answers, a collaborative application

gives us the opportunity to have

humans assist WatsonPaths in tasks

that are still difWcult for machines. For

instance, factor identiWcation and sup-

porting passage evaluation may beneWt

underlying knowledge base helped its

evolution into an electronic reference

that can provide physicians with cus-

tomized information (Miller et al.

1986). A similar system, DXplain (Bar-

nett et al. 1987), continues to be com-

mercially successful and extensively

used. Rather than focus on a deWnitive

diagnosis, it provides the physician

with a list of differential diagnoses

along with descriptive information

and bibliographic references.

Other systems in commercial use

have adopted the unstructured med-

ical text reference approach directly,

using search technology to provide

decision support. Isabel provides diag-

nostic support using natural language

processing of medical textbooks and

journals. Other commercial systems

like UpToDate and ClinicalKey forgo

the diagnostic support and provide a

search capability to their medical text-

books and other unstructured refer-

ences. Although search over unstruc-

tured content makes it easier to

incorporate new knowledge, it shifts

the reasoning load from the system

back to the physician.

In comparison to the aforemen-

tioned systems, WatsonPaths uses a

hybrid approach. It uses question-

answering technology over unstruc-

tured medical content to obtain

answers to speciWc subquestions gener-

ated by WatsonPaths. For this task, it

builds on the search functionality by

extracting answer entities from the

search results and seeking supporting

evidence for them in order to estimate

answer conWdences. These answers are

then treated as inferences by Watson-

Paths over which it can perform prob-

abilistic reasoning without requiring a

probabilistic knowledge base.

Another major area of difference

between CDSS implementations is the

extent of their integration to the

health information system and work-

Xow used by the physicians. Studies

have shown that CDSSs are most effec-

tive when they are integrated within

the workXow (Kawamoto et al. 2005;

Roshanov et al. 2013). Many of the

guideline-based CDSS implementa-

tions are integrated with the health

information system and workXow,

having access to the data being entered

and providing timely decision support

in the form of alerts. But this integra-
tion is limited to the structured data
contained in a patient’s electronic
medical record. When a CDSS requires
information like Wndings, assessments,
or plans in clinical notes written by a
health-care provider, existing systems
are unable to extract them. As a result,
search-based CDSSs remain a separate
consultative tool. The scenario analy-
sis capability of WatsonPaths provides
the means to analyze these unstruc-
tured clinical notes and serves as a
means for integration into the health
information system.

Conclusions 
and Further Work

WatsonPaths is a system for scenario-
based question answering that has a
graphic model at its core. We have
developed WatsonPaths on a set of
multiple-choice questions from the
medical domain. On this test set, Wat-
sonPaths shows a signiWcant improve-
ment over our baselines, even outper-
forming its own subquestion-
answering system, Watson. Although
the test preparation question set has
been important for the early develop-
ment of the system, we have designed
WatsonPaths to function well beyond
it. In future work, we plan to extend
WatsonPaths in several ways.

The present set of questions are all
multiple-choice questions. This means
that hypotheses have already been
identiWed, and it is also known that
exactly one of the hypotheses is the
correct answer. Although they have
made the early development of sce-
nario-based question answering more
straightforward, the overall Watson-
Paths architecture does not rely on
these constraints. For instance, we can
easily remove the conWdence reestima-
tion phase for the closed-form infer-
ence systems and the “exactly one”
constraint from the belief engine. Also,
it will be straightforward to add a sim-
ple hypothesis identiWcation step to
the main loop. One way to do this is to
Wnd nodes whose type corresponds to
the type being asked about in the
punch line question. We already Wnd
such correspondences in the base Wat-
son system (Chu-Carroll et al. 2012).

We also plan to extend WatsonPaths

Articles

74 AI MAGAZINE



from human input. In a fully automat-

ic system, the user receives an answer

using little or no time or cognitive

effort. In a collaborative system, the

user spends some time and effort, and

potentially gets a better answer. We

suspect that, in many applications of

scenario-based question answering,

this will be an attractive trade-off for

the user, because of the complexity of

the scenario and the importance of the

answer. Our objective is to minimize

the time and effort required of users

and to maximize the beneWt they

receive. The combination of the user

and WatsonPaths should be able to

handle more difWcult problems more

quickly than either could alone.

Acknowledgements

We would like to acknowledge the fol-

lowing colleagues at IBM who helped

to create WatsonPaths: Ken Barker, Eric

Brown, James Fan, Bhavani Iyer, Ben-

jamin Segal, Parthasarathy Surya-

narayanan, and Chris Welty. We would

also like to acknowledge the Cleveland

Clinic Lerner College of Medicine of

Case Western Reserve University, with

whom we are working to show positive

impact of WatsonPaths on educational

outcomes. This work was conducted at

IBM Research and IBM Watson Group,

Thomas J. Watson Research Center,

P.O. Box 218, Yorktown Heights, NY

10598.

Notes
1. See the American College of Physicians

2014 Doctor’s Dilemma competition,

www.acponline.org/residents fellows/com-

petitions/doctors dilemma.

2. Building a comprehensive answer key for

such questions is very time consuming, and

an incomplete answer key can be less effec-

tive. Although this approach has not yet

succeeded, it may still succeed if we invest

much more in building a bigger, better

answer key for actual WatsonPaths sub-

questions. 
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