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Abstract. Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze

the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary

conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures

whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the

motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used

to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and

the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and

free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs

are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of

intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be

considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into

several cabins vibrating separately at their own natural frequencies.

Keywords: Wave based method, semi-analytical and semi-numerical method, cylindrical shell with intermediate large frame ribs,

free vibration analysis

1. Introduction

Ring stiffened cylindrical shells are widely used in many structure applications such as aeronautic, aerospace,

underwater vessel and so on. Cylindrical shells are usually divided into several short cabins by bulkheads, as model

M1 shown in Fig. 5, which is not conducive to overall and equipments layout especially the layout of large equipment

module. With advantages of high utilization of space and light structure weight, intermediate large frame ribs as

model M2 shown in Fig. 5, instead of bulkheads, are used to maintain the characteristics of strength and stability

which leads to changes of vibration characteristics.

The free vibration characteristics of cylindrical shells have received much attention, ranging from shear di-

aphragm – shear diaphragm boundary conditions to arbitrary boundary conditions, from cylindrical shells to ring

stiffened cylindrical shells, from cylindrical shells without bulkheads to those with bulkheads. Investigations about
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the free vibration characteristics of cylindrical shells have been summarized in [1,2] and those with arbitrary bound-

ary conditions have been investigated in [3–7]. With rings or stringers “smeared out”, cylindrical shells with stiff-

eners are treated as orthotropic cylindrical shells [8–12]. The stiffeners must be equally and closely distributed and

also with the same depth and width and large errors will be introduced if the stiffeners are large. And also this

method is not applicable at mid and high frequencies if the wavelength and the rib spacing are in the same order for

neglecting wave transmission and reflection at the discontinuities. Thein Wah [13] treats the stiffeners as discrete

members. While only even spaced stiffeners with small size for simply supported boundary conditions can be dealt

with for the reason that the motions of the stiffeners are described by the equations of motions of beams and the

displacements at the positions of stiffeners are expanded as trigonometric functions which satisfy simply supported

boundary conditions. All these research focus on free vibration characteristics of cylindrical shells without large

discontinuities such as bulkheads and large intermediate large frame ribs and so on.

Wave propagation through cylinder/plate junctions is presented in Tso [14] and equilibrium and compatibility

conditions between cylinder shell and circular plate are established. The free vibration characteristics of coupled

cylindrical-conical shells with bulkheads have been analyzed in [15] where the ring stiffened cylindrical shells are

treated as orthotropic cylindrical shells with rings “smeared out” which can only give an accuracy prediction of

natural frequencies for cylindrical shells with even spaced stiffeners of small sizes in low frequency.

Wave based method (WBM) is first proposed in [16] for prediction of the steady-state dynamics analysis of cou-

pled vibro-acoustic systems which enables accurate predictions in the mid-frequency range. WBM can be under-

stood as a semi-analytical and semi-numerical method which is computationally less demanding than corresponding

element based models. In contrast with the finite element method (FEM), in which the dynamic field variables within

each element are expanded in terms of local, non-exact shape functions, usually polynomial approximation, the dy-

namic field variables in each substructure in WBM are expressed as wave function expansions which exactly satisfy

the governing equations. Modeling of the vibro-acoustic coupling between the pressure field in an acoustic cavity

with arbitrary shape and the out-of-plane displacement of a flat plate with arbitrary shape was discussed in [17] and

the unbounded domain was discussed in [18].

In this paper, WBM model, which can deal with cylindrical shells with uneven spaced stiffeners with different

sizes, especially large frame ribs which can’t be described by the beam model, is developed to analyze free vi-

bration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs for arbitrary boundary

conditions. The first part reviews the work already done about the free vibration characteristics of cylindrical shells.

WBM models of ring stiffened cylindrical shells with intermediate large frames and bulkheads are described in the

second part. Numerical results are compared with finite element method to show the validity of WBM model and

free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are discussed in

the third part. Finally some conclusions are made in the last part.

2. Basic concept of wave based method

Wave based method (WBM) is developed for free vibration analysis of ring stiffened cylindrical shells with inter-

mediate large frame ribs and those with bulkheads. As a semi-analytical and semi-numerical method, WBM model

needs to be divided into different substructures according to the type of structures (beams, plates, shells, etc) which

is similar to “element” in the element based method. In contrast with the finite element method (FEM), in which the

dynamic field variables within each element are expanded in terms of local, non-exact shape functions, usually poly-

nomial approximation, the dynamic field variables within each substructure in WBM model are expressed as wave

function expansions, which are exact analytical solutions to the governing dynamic equations of the substructure.

Boundary conditions and continuity conditions between different substructures are used to form the final matrix to

calculate the natural frequencies. After natural frequencies have been located accurately, wave function contribution

factors can be determined to calculate the vibration mode shape of the structure.

Similar to the finite element method, several steps are needed to construct a WBM model as follows:

1. Divide the whole model into different substructures. Different governing equations are used for different types

of structure, such as beams, plates and shells. Also different physical properties and the positions of the dis-

continuities where coupling effects occur need to be considered.
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Fig. 1. Substructure divisions of cylindrical shells with intermediate large frame ribs.

2. Select suitable wave functions for each substructure. The dynamic field variables, such as the displacement,
the velocity and so on, can be expanded by the wave functions which are analytical solutions to the governing
equations of the substructures.

3. Form the final matrix to be solved according to boundary conditions and continuity conditions between dif-
ferent substructures. Eight specified boundary conditions and eight continuity conditions between different
substructures, including forces and displacements, are used to form the final matrix.

4. Solve the final matrix to get the natural frequencies and the wave function contribution factors. The size of
the matrix depends on the total number of substructures and the number of wave function expansions in each
substructure. Compared with FEM model, the final size of matrix formed by WBM model is much smaller
than FEM as the number of substructures is far more less than the number of elements.

5. Post-processing. The dynamic field variables can be obtained with the wave function contribution factors, such
as the displacement, stress, strain and so on.

In this paper, WBM model is developed to analyze free vibration characteristics of ring stiffened cylindrical
shells with intermediate large frame ribs for arbitrary boundary conditions. The cylindrical shell, the motions of
which are described by the equations of Donnell-Mushtari theory, is divided into substructures according to the
positions of discontinuities. The ordinary ribs, the intermediate large frame ribs and the bulkheads are divided into
separate substructures the motions of which are described by the equations of circular plates. It is worth noting that
the equations of motions of annular circular plates are used to describe the motions of ordinary ribs which is more
accurate than beam model used in [13] especially for intermediate large frame ribs. The dynamic field variables in
the substructures of cylindrical shells are expanded by wave functions given in [13] and those in substructures of
ordinary ribs, large frame ribs and bulkheads are expanded by wave functions given in [14]. Then equilibrium and
compatibility conditions between cylinder shell and ordinary ribs, large frame ribs and bulkheads are established.
Combined with boundary conditions of the cylindrical shell and those of the free edges of large frame ribs, the final
matrix can be formed to solve the natural frequencies.

2.1. Substructure division of ring-stiffened cylindrical shells

Substructure divisions of ring-stiffened cylindrical shells with intermediate large frame ribs are shown in Fig. 1.
Cylindrical shells and annular circular plates are main types of structures composing the WBM model of ring-
stiffened cylindrical shell with intermediate large frame ribs. If there exists N b ordinary ribs and Na intermediate
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large frame ribs, the cylindrical shell is divided into (Nb + Na + 1) segments so the total number of substructure

in the WBM model is (2Nb + 2Na + 1) with (Nb + Na + 1) substructures describing the motions of cylindrical

shells, N b substructures describing the motions of ordinary ribs and Na substructures describing the motions of

intermediate large frame ribs. For ring-stiffened cylindrical shells with bulkheads, similar substructure division can

be obtained. The difference is that if N c bulkheads exist in the cylindrical shell, (2Nb + 2Nc + 1) substructures can

be obtained with Nc substructures describing the motions of bulkheads. In both cases, the total number of segments

of cylindrical shells is denoted as N in the following analysis.

Various equations of motions for cylinder shells have been derived and are summarized by Leissa [1]. In this

work, Donnell-Mushtari equations are used to describe the motions of cylindrical shells as follows:
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The radius of the cylindrical shell is designated by a, and the thickness by h. k = h2/12a2, u, v, w are the axial,

circumferential and outward normal displacements, the axial and circumferential coordinates are x, φ, x = x̄/a.

The mass density of the shell’s material is designated by ρ, Young’s modulus by E and Poisson’s ratio by v.

The ordinary ribs, intermediate large frame ribs and the bulkheads are all treated as separate substructures the

governing equations of which are the same, all described by the equations of circular plates whose bending and in-

plane motions are described in Eq. (2). Annular circular plate with inner radius a1 and outer radius a (also the radius

of the cylindrical shell) which is used to establish the mathematical model of ordinary rib and intermediate large

frame rib is shown in Fig. 2. The axial displacement wp,i, radial displacement up,i and circumferential displacement

vp,i of the plate in polar coordinates are also shown in Fig. 2. θp,i = ∂wp,i/∂r is the twist angle. The subscript

i = 1, 2 denotes the annular circular plates and the circular plates respectively. The difference between the annular

circular plates and the circular plates is that the there are no free edges at the inner radius of circular plate.
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hp,i is the plate thickness. Ep,i, ρp,i and νp,i are respectively the Young’s modulus, density and Poisson’s ratio.

Dp,i = Ep,ih
3
p,i/12(1− v2p,i) is the flexural rigidity.

2.2. Selection of wave functions

For a modal vibration, the axial, circumferential and outward normal displacements of the cylindrical shells, the

ordinary ribs, the intermediate large frame ribs and the bulkheads are all usually expanded as follows:

w =
ns
∑
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Fig. 2. Displacement of annular circular plate. Fig. 3. Displacement and force constraints of cylindrical shells.

For the cylindrical shell, Ψwi(x, φ), Ψvi(x, φ), Ψui(x, φ) are the structure wave functions which exactly satisfy
Eq. (1) for a specified circumferential wave number n, Ai, Bi, Ci are the wave contribution factors. ns is the number
of wave functions designating the wave propagation in the axial direction.

To insure the WBM model to converge towards the exact solution, the selection of suitable wave function is quite
important. According to analysis in [13], a set of wave functions describing the free vibration of cylindrical shell is
selected as follows:

Ψw1 = Ψv1 = Ψu1 = eλ1x,Ψw2 = Ψv2 = Ψu2 = e−λ1x

Ψw3 = Ψv3 = Ψu3 = cosλ2x,Ψw4 = Ψv4 = Ψu4 = sinλ2x

Ψw5 = Ψv5 = Ψu5 = eλ3x cosλ4x,Ψw6 = Ψv6 = Ψu6 = eλ3x sinλ4x

Ψw7 = Ψv7 = Ψu7 = e−λ3x cosλ4x,Ψw8 = Ψv8 = Ψu8 = e−λ3x sinλ4x

(4)

The wave contribution factors are as follows:

B1 = ξ1A1, B2 = ξ1A2, B3 = ξ2A3, B4 = ξ2A4

B5 = ξ3A5 + ξ4A6, B6 = −ξ4A5 + ξ3A6

B7 = ξ3A7 − ξ4A8, B8 = ξ4A7 + ξ3A8

(5)

C1 = η1A1, C2 = −η1A2, C3 = −η2A3, C4 = η2A4

C5 = η3A5 + η4A6, C6 = −η4A5 + η3A6

C7 = −η3A7 + η4A8, C8 = −η4A7 − η3A8

(6)

And ns = 8 is the number of wave functions. In Eqs (4)–(6), λ1, ±iλ2, ±(λ3 ± iλ4) are character roots to be
determined which are given in [13]. ξ1 ∼ ξ4 and η1 ∼ η4 are constant coefficients related to character roots which
are also given in [13].

According to [14], a set of wave functions describing the free vibration of annular circular plate are selected as
follows:

ψw1 = Jn (kpBr) , ψw2 = Yn (kpBr) , ψw3 = In (kpBr) , ψw4 = Kn (kpBr)

ψv1 = nJn (kpLr) /r, ψv2 = dJn (kpT r) /dr, ψv3 = nYn (kpLr) /r, ψv4 = dYn (kpT r) /dr

ψu1 = dJn (kpLr) /dr, ψu2 = nJn (kpT r) /r, ψu3 = dYn (kpLr) /dr, ψu4 = nYn (kpT r) /r

(7)

The wave contribution factors are as follows:

A1 = B1 = B1n, A2 = B2 = B2n, A3 = B3 = B3n, A4 = B4 = B4n

C1 = A1n, C2 = A2n, C3 = A3n, C4 = A4n

(8)

ns = 8 is the number of wave functions. Jn, Yn are Bessel functions of the first and the second kind respectively.
In, Kn are modified Bessel functions of the first and second kind respectively. kpB = (ρpω

2hp/Dp)
1/4 is the plate

bending wave number, kpL = ω[ρp(1−υ2
p)/Ep]

1/2, kpT = ω[2ρp(1+υp)/Ep]
1/2 are the wave numbers for in-plane

waves in the circular plate. The coefficients Ai,n, Bi,n(i = 1, 2, 3, 4) are determined from the boundary conditions
of the annular circular plates.

In contrast with the annular circular plates, the number of wave functions describing the motions of circular plates
ns = 4 for the reason that A3n = A4n = B3n = B4n = 0.
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2.3. Matrix formed for calculating natural frequencies

As shown in Fig. 3, the cylindrical shells with arbitrary boundary conditions have four displacement constraints
(u, v, w, θ) and four force or moment constraints (M , S, T , N ), ie:

u = 0
v = 0
w = 0
θ = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

and

M = 0
S = 0
T = 0
N = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9)

Where θ designates the twisting angle and M , S, T , N designates bending moment, transverse shear, tangential
shear and axial force per unit length of the cylindrical shell. Combination of these eight boundary conditions can
present arbitrary boundary conditions. For example:

For clamped boundary conditions

u = 0
v = 0
w = 0
θ = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(10)

For shear diaphragm boundary conditions

v = 0
w = 0
N = 0
M = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(11)

For free boundary conditions

M = 0
S = 0
T = 0
N = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(12)

The cylindrical shell is divided into two segments by the ordinary ribs or intermediate large frame ribs or bulk-

heads as shown in Fig. 4 where continuity equations must be satisfied. The displacements of the two adjacent ends
of the cylindrical shells must be equal, which can lead to the following relationship.

wL
Π = wR

Π , v
L
Π = vRΠ , u

L
Π = uR

Π, θ
L
Π = θRΠ (13)

The superscripts L and R denote regions of the cylindrical shell to the left and right of the discontinuities under
consideration.

The annular circular plate has one free edge at the inner radius where boundary conditions must be applied, ie:

Npx|r=a1

= 0 Npr|r=a1

= 0 Npθ|r=a1

= 0 Mp|r=a1

= 0 (14)

At the outer radius of the annular circular plate which is shown in Fig. 4, the continuity conditions of displacements
and forces between the cylindrical shells and the annular circular plates can be expressed as Eqs (15) and (16):

up|r=a = wR
Π , vp|r=a = vRΠ , wp|r=a = uR

Π, θp|r=a = −θRΠ (15)

⎧
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Fig. 4. Annular circular plate and interaction forces. Fig. 5. Ring stiffened cylindrical shells with bulkhead/
intermediate large frame rib/all ordinary ribs.

For circular plate, only continuity conditions Eqs (15) and (16) must be satisfied for no boundary condition at the

inner radius is applied because there are no free edges.

The above boundary conditions and the continuity conditions are arranged in matrix form for each circumferential

number n. With Ai,n, Bi,n(i = 1, 2, 3, 4) expressed by the coefficients A1 ∼ A8, the matrix is finally arranged as

follows:

[K]{A} = 0 (17)

{A} is the 8(Nb+Na+1) or 8(Nb+Nc+1) unknown coefficient vector describing the motions of cylindrical shell

and

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[B1(0)]
[D1(b1)] −[D2(0)]
[F1(b1)] −[F2(0)]

[D2(b2)] −[D3(0)]
[F2(b2)] −[F3(0)]

· · · · · ·
· · · · · ·

[DN (bN )] −[DN+1(0)]
[FN (bN )] −[FN+1(0)]

[BN+1(bN+1)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

The 4×8 matrix blocks [Dk(0)] and [Dk(bk)] can be obtained from Eq. (13). The 4×8 matrix blocks [Fk(0)]

and [Fk(bk)] can be obtained from Eqs (14)–(16) for the kth substructure of cylindrical shell and two steps

are needed to obtain [Fk(0)] and [Fk(bk)]. First, the relationship between the unknown vectors describing the

displacement of the annular circular plates or the bulkheads {Ak,1n, · · · , Ak,4n,Bk,1n, · · · , Bk,4n} and the un-

known vectors describing the displacement of cylindrical shell {Ak,1, · · · , Ak,8} is deduced using Eqs (14) and

(15). The 4×8 matrix blocks [Fk(0)] and [Fk(bk)] are then obtained by substituting the relationship between

{Ak,1n, · · · , Ak,4n, Bk,1n, · · · , Bk,4n} and {Ak,1, · · · , Ak,8} into Eq. (16) which designates the force continuity

conditions between the cylindrical shells and the outer radius of annular plates.

The initial and final blocks [B1] and [BN+1] are expressed in terms of displacement and/or forces, depending on

the boundary conditions at each end of the cylindrical shell. Combination of eight boundary conditions in Eq. (9)

can present arbitrary boundary conditions. Clamped, shear-diaphragm and free boundary conditions are considered

here and are given by
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Table 1

Geometry dimensions and material properties of computation models

Characteristic Symbol Geometry and material properties

Radius a (m) 4.8

Length l (m) 30

Thickness of cylindrical shell h (m) 0.036

Density ρ (kg/m3) 7800

Young’s modulus E (Pa) 2.1× 1011

Poission’s ratio ν 0.3
Width of rectangular ordinary ribs bR (m) 0.039

Depth of rectangular ordinary ribs dR (m) 0.3

Spacing ratio of ribs lb (m) 0.6

Width of frame rib bf (m) 0.054

Depth of frame rib df (m) 0.99

Thickness of bulkhead hp (m) 0.018

Table 2

FEM models with different meshes and substructure divisions of WBM models

Number of elements of model 1 Number of elements of model 2 Number of
substructures
of model 1

Number of
substructures
of model 2

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

Cylindrical shell 112×100 160×150 216×200 112×100 160×150 216×200 50 50

Stiffeners 112×1 ×48 160×2×48 216×2×48 112×1×48 160×2×48 216×2×48 48 48

Frame ribs/bulkheads 1000 2329 3733 672 960 1728 1 1

Total number 17576 41689 67669 17248 40320 65664 99 99

Clamped end (C):

[Bk(x)]4×8 =

⎡

⎢

⎢

⎣

wk,1(x) · · ·wk,8(x)
vk,1(x) · · · vk,8(x)
uk,1(x) · · · uk,8(x)
θk,1(x) · · · θk,8(x)

⎤

⎥

⎥

⎦

, k = 1, N + 1 (19)

Shear-diaphragm (SD):

[Bk(x)]4×8 =

⎡

⎢

⎢

⎣

wk,1(x) · · ·wk,8(x)
vk,1(x) · · · vk,8(x)
Nk,1(x) · · ·Nk,8(x)
Mk,1(x) · · ·Mk,8(x)

⎤

⎥

⎥

⎦

, k = 1, N + 1 (20)

Free end (F):

[Bk(x)]4×8 =

⎡

⎢

⎢

⎣

Sk,1(x) · · ·Sk,8(x)
Tk,1(x) · · · Tk,8(x)
Nk,1(x) · · ·Nk,8(x)
Mk,1(x) · · ·Mk,8(x)

⎤

⎥

⎥

⎦

, k = 1, N + 1 (21)

Φk,i(x) (Φ = u, v, w, θ,M, S, T,N, i = 1, 2, · · · , 8) designates the values of field variables at the position x of the
kth segment of cylindrical shell. Ak,i(i = 1, 2, · · · , 8) designates the wave contribution factors of the kth segment
of cylindrical shell and Ak,in, Bk,in (i = 1, 2, 3, 4) designates the wave contribution factors of the kth circular
annular plate. bk designates the length of the kth segment of the cylindrical shell.

2.4. Solution of the matrix and post-processing

When analyzing the free vibration characteristics of ring-stiffened cylindrical shells with intermediate frame ribs
and bulkheads, the value of the determinant of [K] is calculated for a sequence of trial values of frequency until a
sign change is met, then the zero of the determinant is located by iterative interpolation. After a natural frequency
has been accurately located, the solution of the homogeneous Eq. (17), normalized by taking the last wave function
factor equals 1, can be obtained which is used to calculate the vibration mode shape.



M. Chen et al. / Wave based method for free vibration analysis of ring stiffened cylindrical shell with intermediate large frame ribs 467

Table 3

Comparison of natural frequencies calculated by FEM with different meshes (Hz)

Mode
Model 1 Model 2

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

n=1 m=1 18.986 18.987 18.986 18.935 18.936 18.935

n=1 m=2(a) 51.923 51.925 91.921 51.923 51.925 51.92

n=2 m=2(a) 26.560 26.544 26.540 26.559 26.544 26.54

m=2(b) 25.010 25.055 25.077 – – –

n=3 m=2(a) 28.999 28.909 28.893 29.002 28.911 28.895

m=2(b) 29.954 29.885 29.876 29.901 29.816 29.8

n=4 m=2(a) 48.626 48.390 48.340 48.614 48.381 48.331

m=2(b) 48.921 48.692 48.643 48.957 48.726 48.676

n=5 m=2(a) 76.189 75.704 75.623 76.193 75.705 75.586

m=2(b) 76.262 75.777 75.658 76.272 75.786 75.667

(a) (b)

Fig. 6. FEM models of the two computation models with mesh 2 (a) Model M1 (b) Model M2.

3. Results and discussions

3.1. Validity of WBM model for cylindrical shells with intermediate large frame ribs or bulkheads

The WBM model is first developed to calculate the natural frequencies of ring-stiffened cylindrical shells with

intermediate large frame ribs and bulkheads for C-C, SD-SD, F-F boundary conditions. Numerical results are com-

pared with FEM results to show the validity of WBM model. Two computation models are considered here as shown

in Fig. 5, one is with single bulkhead which is denoted as model M1 and the other is with single intermediate frame

rib which is denoted as model M2. Both models are even spaced ring-stiffened cylindrical shells whose geometry

and material properties are listed in Table 1. The cylindrical shells, the ordinary ribs, the intermediate large frame

rib and the bulkhead have the same material. Both the frame rib and the bulkhead are in the middle section of the

cylindrical shell.

The finite element package ANSYS is used to calculate natural frequencies of model M1 and M2. In order to

ensure the convergence of results calculated by FEM, three different kinds of meshes shown in Table 2 are used

to calculate natural frequencies of model M1 and M2 for SD-SD boundary conditions with the results shown in

Table 3. Shell63 element is adopted to model the cylindrical shells, the ordinary ribs, the frame rib and the bulkhead.

The two numbers in each cell in the third row of Table 2 denote the number of elements in the circumferential and

axial direction respectively and the three numbers in each cell in the fourth row denote the number of elements in

the circumferential, radial and axial direction respectively. Due to the symmetry about the middle longitudinal cross

section, half parts of the two FEM models are shown in Fig. 6. m, n in Table 3 denote the axial half wave number and

the circumferential wave number respectively. m = 2(a) and m = 2(b) denote two different vibration modes which

are shown in Figs 7–12. Some frequencies are missing in Table 3 for the reason that there are no corresponding

vibration modes. Mesh 2 which can achieve both high computation efficiency and adequate converged results is

used in the following analysis.
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Fig. 7. Comparison of vibration mode shapes of model M1 calculated

by FEM and WBM for C-C boundary condition.

Fig. 8. Comparison of vibration mode shapes of model M1 calculated

by FEM and WBM for SD-SD boundary condition.
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Fig. 9. Comparison of vibration mode shapes of model M1 calculated

by FEM and WBM for F-F boundary condition.

Fig. 10. Comparison of vibration mode shapes of model M2 calcu-

lated by FEM and WBM for C-C boundary condition.
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Fig. 11. Comparison of vibration mode shapes of model M2 calcu-

lated by FEM and WBM for SD-SD boundary condition.

Fig. 12. Comparison of vibration mode shapes of model M2 calcu-

lated by FEM and WBM for F-F boundary condition.
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Table 4

Comparison of natural frequencies of model M1 calculated by FEM and WBM

Mode
C-C(Hz) SD-SD(Hz) F-F(Hz)

FEM WBM Difference FEM WBM Difference FEM WBM Difference

n=1 m=1 26.514 26.513 0.00% 18.987 18.989 0.01% 38.397 38.399 0.01%

n=1 m=2(a) 53.773 53.769 0.01% 51.925 51.922 0.01% 66.785 66.782 0.00%

n=2 m=2(a) 30.516 30.518 0.01% 26.544 26.549 0.02% 37.668 37.673 0.01%

m=2(b) 28.734 28.800 0.23% 25.055 25.119 0.26% 31.272 31.361 0.28%

n=3 m=2(a) 30.560 30.535 0.08% 28.909 28.883 0.09% 32.114 32.100 0.04%

m=2(b) 31.507 31.503 0.01% 29.885 29.876 0.03% 32.615 32.631 0.05%

n=4 m=2(a) 48.787 48.648 0.28% 48.390 48.251 0.29% 48.849 48.716 0.27%

m=2(b) 49.132 49.000 0.27% 48.692 48.557 0.28% 49.225 49.100 0.25%

n=5 m=2(a) 75.804 75.442 0.48% 75.704 75.342 0.48% 75.782 75.420 0.48%

m=2(b) 75.889 75.535 0.47% 75.777 75.422 0.47% 75.868 75.515 0.47%

Table 5

Comparison of natural frequencies of model M2 calculated by FEM and WBM

Mode
C-C(Hz) SD-SD(Hz) F-F(Hz)

FEM WBM Difference FEM WBM Difference FEM WBM Difference

n=1 m=1 26.444 26.443 0.00% 18.936 18.938 0.01% 38.333 38.335 0.01%

n=1 m=2(a) 53.784 53.780 0.01% 51.925 51.921 0.01% 66.803 66.800 0.00%

n=2 m=2(a) 30.511 30.513 0.01% 26.544 26.549 0.02% 37.662 37.668 0.02%

n=3 m=2(a) 30.537 30.537 0.00% 28.911 28.886 0.09% 32.116 32.103 0.04%

m=2(b) 31.422 31.396 0.08% 29.816 29.789 0.09% 32.518 32.501 0.05%

n=4 m=2(a) 48.771 48.634 0.28% 48.381 48.243 0.29% 48.829 48.698 0.27%

m=2(b) 49.179 49.044 0.27% 48.726 48.588 0.28% 49.284 49.155 0.26%

n=5 m=2(a) 75.807 75.452 0.47% 75.705 75.349 0.47% 75.785 75.430 0.47%

m=2(b) 75.900 75.546 0.47% 75.786 75.431 0.47% 75.880 75.526 0.47%

The WBM model is divided into different substructures which are also shown in Table 2, the vibration field of

which is expanded by analytical solutions of corresponding structure type. From Table 2 we can see that the number

of substructures in WBM model is much less than the number of substructures used in FEM models.

Tables 4 and 5 show the comparison of natural frequencies of model M1 and model M2 between WBM results

and FEM results. As we can see from the tables, the results are in good agreement which show the validity of WBM

model. Figures 7–12 shows the comparison of radial displacements along the axial direction of the cylindrical

shell with the maximum displacement scaled to unit for C-C, SD-SD and F-F boundary conditions and also good

agreement has been achieved. From above figures we can see that the cylindrical shell vibrates as a whole for

m = 2(a) with the radial displacement along the axial direction of the cylindrical shell showing a standard sine

curve form, or from another point of view, we can assume that the cylindrical shell is divided into two cabins

by the intermediate large frame rib/bulkhead with each part vibrating separately as m = 1 with opposite phases.

This pattern of vibration is called “no cabin subdivision vibration modes” in the following analysis. Apparently for

m = 2(b), the cylindrical shell is divided into two cabins by the intermediate frame rib/bulkhead with each part

vibrating separately as m = 1 in the same phase and this pattern of vibration is called “cabin subdivision vibration

modes” in the following analysis.

3.2. Free vibration characteristics of ring stiffened cylindrical shells with intermediate frame ribs

Numerical calculations have been performed here to study the effects of the size, number and distributions of

intermediate frame ribs on the free vibration characteristics of ring stiffened cylindrical shells with C-C, SD-SD and

F-F boundary conditions.

Table 6 shows comparison of natural frequencies of ring stiffened cylindrical shells with single bulkhead/ inter-

mediate frame rib/all ordinary ribs which are shown in Fig. 5 denoted as model M1∼M3. We can see from Table 6

that the three models have nearly the same natural frequencies of “no cabin subdivision vibration modes” for m = 2
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Table 6

Comparison of natural frequencies of model M1, M2 and M3

Mode
C-C(Hz) SD-SD(Hz) F-F(Hz)

M1 M2 M3 M1 M2 M3 M1 M2 M3

n=1 m=1 26.513 26.443 27.061 18.989 18.938 19.340 38.399 38.335 38.908

n=1 m=2(a) 53.769 53.780 53.768 51.922 51.921 51.919 66.782 66.800 66.768

n=2 m=2(a) 30.518 30.513 30.514 26.549 26.549 26.548 37.673 37.668 37.673

m=2(b) 28.800 – – 25.119 – – 31.361 – –

n=3 m=2(a) 30.535 30.537 30.534 28.883 28.886 28.883 32.100 32.103 32.100

m=2(b) 31.503 31.396 – 29.876 29.789 – 32.631 32.501 –

n=4 m=2(a) 48.648 48.634 48.647 48.251 48.243 48.250 48.716 48.698 48.716

m=2(b) 49.000 49.044 – 48.557 48.588 – 49.100 49.155 –
n=5 m=2(a) 75.442 75.452 75.444 75.342 75.349 75.343 75.420 75.430 75.423

m=2(b) 75.535 75.546 – 75.422 75.431 – 75.515 75.526 –

from which we can make a conclusion that the intermediate frame rib and the bulkhead have little effect on natural

frequencies of “no cabin subdivision vibration modes”. Compared with model M3, “cabin subdivision vibration

modes” appear in model M1 and model M2, and natural frequencies of “cabin subdivision vibration modes” are a

little larger than corresponding “no cabin subdivision vibration mode” frequencies except n = 2, m = 2 of model

M1. The difference between model M1 and M2 is that “cabin subdivision vibration modes” don’t appear until n = 3,

m = 2 for model M2 while they always exist for model M1.

For n = 1, m = 1, which is beam mode, the natural frequencies of model M3 is a little larger than model M1

and model M2 while the beam mode frequencies of M1 and M2 are nearly the same. This phenomenon can be

explained by energy theory which has been presented in [19]. In beam mode, the shape of stiffeners, bulkheads and

intermediate frame ribs remain circular and their strain energy does not affect the total energy of the system and

only their kinetic energy contributes in the total energy, therefore decrement of mass distribution in the midsection

of the shell reduces the kinetic energy and raises the beam mode natural frequency.

From the above analysis we can see that not all the intermediate frame ribs have “cabin subdivision” effects. What

is the critical size of intermediate frame ribs in order to achieve “cabin subdivision vibration modes”? In order to

answer this question, natural frequencies and vibration mode shapes of cylindrical shells with intermediate frame ribs

with different widths and depths are calculated. The depth of the frame rib increase from df = 0.3 m to df = 3m and
the width of frame rib increase from bf = 0.018 m to bf = 0.078 m. Both “no cabin subdivision vibration mode”

frequencies and “cabin subdivision vibration mode” frequencies are calculated. The “cabin subdivision vibration

mode” shapes are also calculated shown in Fig. 13.

The variation of beam mode frequencies and “no cabin subdivision vibration mode” frequencies with the size

of intermediate frame rib can be observed from the numerical results that increment of the width or the depth of

intermediate frame rib both leads to decrement of the beam mode frequencies which is mainly due to increment of

mass distribution in the midsection as explained above. “No cabin subdivision vibration mode” frequencies are all

nearly the same for different sizes of intermediate frame rib from which a conclusion can be made that the size of

intermediate frame rib has little effect on “no cabin subdivision vibration mode” frequencies.

The variation of “cabin subdivision vibration mode” frequencies with the size of intermediate frame rib can also

be observed. For C-C boundary conditions, the critical sizes of the frame rib are respectively: (1) df = 1.5 m,

bf = 0.018 m for n = 2, m = 2(b); (2) df = 0.5 m, bf = 0.038 m for n = 3, m = 2(b); (3) df = 0.4 m,

bf = 0.038m for n = 4, m = 2(b); (4) df = 0.3m, bf = 0.048m for n = 5, m = 2(b). The critical depth is larger at

lower circumferential wave number which means that it is harder for “cabin subdivision vibration modes” to appear

at lower circumferential wave number and larger size of intermediate frame rib is required. Increment of the depth

or the width of the frame rib both can lead to increment of “cabin subdivision vibration mode” frequencies. “Cabin
subdivision vibration mode” frequencies are not always larger than corresponding “no cabin subdivision vibration

mode” frequencies especially for n = 2, m = 2(b) for which case only when the intermediate frame rib gets quite

a large depth and width can the “cabin subdivision vibration mode” frequencies be larger than corresponding “no

cabin subdivision vibration mode” frequencies. For higher wave number n = 5, most of the “cabin subdivision

vibration mode” frequencies are larger than corresponding “no cabin subdivision vibration mode” frequencies even

at a smaller size of frame rib.
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Fig. 13. Variation of “cabin subdivision vibration mode” shapes

of n=3, m=2(b) with the depth of the intermediate frame rib for

bf=0.018 m.

Fig. 14. Variation of vibration mode shapes with positions of the in-

termediate frame ribs.
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Table 7

Natural frequencies of cylindrical shells with different positions of frame rib

B.C

Position Natural frequencies (Hz)

13# 15# 17# 19# 21# 23# 25# 25#(b)

n=1 C-C 26.75 26.67 26.60 26.53 26.48 26.45 26.44

m=1 SD-SD 19.11 19.07 19.02 18.99 18.96 18.94 18.94

F-F 39.18 39.05 38.86 38.67 38.50 38.38 38.33

n=3 C-C 27.15 27.51 27.94 28.47 29.11 29.88 30.54 31.40

SD-SD 26.45 26.71 27.02 27.40 27.87 28.44 28.89 29.79

F-F 27.59 27.92 28.41 29.06 29.89 30.94 32.10 32.50

B.C: boundary condition.

Similar conclusions can be made for SD-SD and F-F boundary conditions as those of C-C boundary conditions.

All “cabin subdivision vibration mode” frequencies of n = 2, m = 2(b) are lower than corresponding “no cabin sub-

division vibration mode” frequencies for F-F boundary conditions. As the circumferential wave number increases,

the results of the three different kinds of boundary conditions become consistent gradually which means that the

effects of boundary conditions become smaller at high circumferential wave number.

Figure 13 shows the variation of “cabin subdivision vibration mode” shapes of n = 3, m = 2(b) with the depth of

the intermediate frame rib for given width bf = 0.018 m for three different kinds of boundary conditions. For other

given width of intermediate frame rib, similar results can be obtained. From Fig. 13 we can see that the vibration

mode shapes are always symmetry about the midsection of the cylindrical shell while the displacement of the mid-

section approaches zero with the increment of the depth of the frame rib from which a conclusion can be made that

the effects of the frame rib can be divided into three cases. The first case is that when the size of intermediate frame

rib is smaller than the critical size, the frame rib vibrates with the whole cylindrical shell and no “cabin subdivision

vibration modes” appear and the natural frequencies of “no cabin subdivision vibration modes” are nearly the same

with cylindrical shells with all ordinary ribs. The second case is that when the size of intermediate frame rib is much

larger than the critical size, “cabin subdivision vibration modes” appear with the natural frequencies a little larger

than corresponding “no cabin subdivision vibration modes” and the whole structure can be considered as two sepa-

rate cabins of the same length both vibrating at their own natural frequencies which are nearly the same because of

the symmetry of the structure. The third case is that when the size of intermediate frame rib is a little larger than the

critical size, coupling effects between the two cabins occur because of the existence of the frame rib. The frame rib

vibrates with the cylindrical shell but increment of the stiffness of the midsection makes the displacement become

smaller. Thus in this case the cylindrical shell neither can be considered vibrating as a whole nor can be considered

vibrating as two separate cabins but shows both characteristics.

In the above analysis the frame ribs are all in the midsection of the cylindrical shell which leads to symmetry in

the structure. The effects of the number and distributions of the frame ribs are investigated in the following analysis.

Firstly the effects of the distributions of the frame ribs have been investigated. In order to make the conclusions

more clearly explained, the computation models considered here are ring stiffened cylindrical shells with only one

frame rib with the position changing from 13# to 25# which are shown in Fig. 5. The width and the depth of the

frame rib are given by bf = 0.054 m, df = 0.99 m. The variation of natural frequencies and vibration mode shapes

with positions of the frame rib for different boundary conditions is shown in Table 7 and Fig. 14. “25#(b)” in Table 7

denotes “cabin subdivision vibration modes”.

We can see from Table 7 that the lowest beam mode frequency occurs when the frame rib is in the midsection of

the cylindrical shell and increment of the distance between the frame rib and the midsection leads to increment of

beam mode frequency which proves the conclusions in the previous analysis again: the more mass distributed in the

midsection, the lower the beam mode frequency is. “Cabin subdivision vibration modes” and “no cabin subdivision

vibration modes” appears only when the frame rib is in the midsection of the cylindrical shell. For other cases

both “cabin subdivision vibration modes” and “no cabin subdivision vibration modes” disappear. From the vibration

mode shapes shown in Fig. 14 we can see that the cylindrical shell can be considered being divided into two cabins

with the longer cabin vibrating with n = 3, m = 1 whose natural frequencies are lower than the shorter cabin. In

another word, the large frame rib divides the cylindrical shell into two cabins and each cabin vibrates separately in

its own way. When the two cabins are with the same length, they are always vibrating simultaneously at the same
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Fig. 15. Cylindrical shells with two frame ribs and separate cabins divided by frame ribs.

natural frequencies with the same vibration mode either vibrating in the same phase or vibrating in opposite phases,

so both “cabin subdivision vibration modes” and “no cabin subdivision vibration modes” appear. When the cabins

are not with the same length, the natural frequencies of the two cabins with the same vibration mode are different

and the cabin with lower natural frequencies begins to vibrate firstly while the other cabin does not vibrate.

Secondly the effects of the number and the distributions of frame ribs are investigated simultaneously. Three

computational models are considered here as shown in Fig. 15 which are denoted as model M4, model M5 and

model M6 respectively. Frame ribs are approximately evenly distributed in model M4 and are unevenly distributed

in model M5 and model M6. The middle cabin is one rib spacing shorter than the two cabins with the same length

at the two ends for model M4. The difference between model M5 and model M6 is that for model M5 the length of

the two cabins at the two ends are the same while not for model M6. Natural frequencies and vibration mode shapes

of n = 4 with different boundary conditions are calculated for the reason that the first “cabin subdivision vibration

modes” appear as n = 4. The results are shown in Table 8 and Figs 16–18.

From Fig. 16 we can see that both “cabin subdivision vibration modes” and “no cabin subdivision vibration

modes” appear. For mode 1 and mode 3 the cylindrical shell vibrates as a whole with n = 4, m = 3, especially for

C-C boundary condition, or in another word, the cylindrical shell can be considered being divided into three separate

cabins with each cabin vibrating with n = 4, m = 1. The difference between mode 1 and mode 3 is that for mode

1 the two cabins at the two ends vibrate in the same phase and in opposite phases with the middle cabin while for

mode 3 the three cabins vibrate in the same phase. For mode 2, only the two cabins at the two ends vibrate with

n = 4, m = 1 in opposite phases while the middle cabin does not vibrate. This vibration mode appears mainly due

to not exactly equally distribution of the frame ribs.

From Figs 17 and 18 we can see that both “cabin subdivision vibration modes” and “no cabin subdivision vibration

modes” disappear for model M5 and M6. The cylindrical shell is obviously divided into three cabins by the large

frame ribs which can be considered playing a role in imposing displacement or force constraints on the cylindrical

shell. For mode 1, only the middle cabin vibrates with n = 4, m = 1 and the two cabins at the two ends don’t

vibrate. For mode 2 and mode 3 of model M5 the two cabins at the two ends vibrate simultaneously with n = 4,

m = 1 either in the same phase or in opposite phases and the middle cabin doesn’t vibrate while for mode 2 and

mode 3 of model M6 the two cabins at the two ends also vibrate separately. The reason is that the two cabins of

M5 at the two ends have the same length and the same boundary conditions leading them to have the same natural

frequencies with the same vibration modes and thus vibrate simultaneously.

In order to explain the results of the above analysis more clearly, natural frequencies of separate cabins divided by

large frame ribs are calculated with the results shown in Table 9. Separate cabins denoted as M7∼M12 are shown

in Fig. 15. The large frame ribs are considered approximately imposing a simply supported constraint or clamped
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Fig. 16. Vibration mode shapes of model M4 when n = 4 with dif-

ferent boundary conditions.

Fig. 17. Vibration mode shapes of model M5 when n = 4 with dif-

ferent boundary conditions.
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Table 8

Natural frequencies of model M4,model M5 and model M6

Boundary

condition

Model M4 Model M5 Model M6

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

C-C 51.59 51.81 52.19 47.86 64.16 64.25 48.74 51.82 64.19

SD-SD 51.82 52.85 52.96 47.86 62.28 62.34 48.72 51.11 62.30

F-F 50.29 50.55 51.11 47.95 72.62 72.00 48.82 52.86 72.44

Fig. 18. Vibration mode shapes of model M6 when n = 4 with different boundary conditions.

constraint on the cylindrical shell and thus five kinds of boundary conditions are used. We can see that natural

frequencies close to corresponding natural frequencies appearing in Table 8 always can be found in Table 9. For

example, the natural frequencies of separate cabins of M7 with C-C and C-SD boundary conditions are 52.33 Hz

and 51.26 Hz which are quite close to the natural frequency of mode 1 of model M4 with C-C boundary condition

which is 51.59 Hz. In this case, the frame ribs can be considered imposing either clamped constraints or simply

supported constraints on the cylindrical shell. For other cases, similar phenomenon also can be observed.

From the above analysis a conclusion can be made that existence of intermediate large frame rib divides the

cylindrical shell into several cabins vibrating separately no matter the vibration mode shapes are “cabin subdivision

vibration modes” or “no cabin subdivision vibration modes” or neither of them. Natural frequencies of the whole

structure can also be approximately calculated by free vibrations of corresponding separate cabins with the frame

rib imposing simply supported or clamped constraints on one end.
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Table 9

Natural frequencies of separate cabin with different boundary conditions

Model

B.C Natural frequencies (Hz)

C-C SD-SD C-SD C-F SD-F

M7 52.33 50.29 51.26 53.56 52.39

M8 51.27 49.31 53.59 54.70 53.45

M9 66.40 62.60 64.35 74.97 74.21
M10 48.02 47.57 47.77 48.00 47.44

M11 49.26 48.29 48.73 49.44 48.84

4. Conclusions

Wave Based Method (WBM) which can be recognized as a semi-analytical and semi-numerical method is devel-

oped to analyze the free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame

ribs for arbitrary boundary conditions. The cylindrical shell is divided into different substructures according to the
structure type and the position of discontinuities in WBM model. The motion of each segment of cylindrical shell

is described by the equation of Donnel-Mushtari theory and the motions of the ordinary ribs and the frame ribs are

both described by the equations of motions of annular circular plates. In contrast with the finite element method, in

which the dynamic field variables within each element are expanded in terms of local, non-exact shape functions,
usually polynomial approximation, the dynamic field variables in each substructure in WBM are expressed as wave

function expansions, which are analytical solutions to the governing dynamic equations of the substructure. Bound-

ary conditions and continuity conditions between different substructures are used to form the final matrix whose
size is much smaller than the matrix formed in finite element method. Numerical calculations of WBM model show

good agreement with the results calculated by finite element method.

Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are studied
by WBM. Results of cylindrical shells with single intermediate frame rib show that “cabin subdivision vibration

modes” and “no cabin subdivision vibration modes” both appear only when the frame rib is large enough and also in

the midsection of the cylindrical shell which leads to symmetry in the structure. The width and the depth of frame rib

have little effect on natural frequencies of “no cabin subdivision vibration modes”. As the width and the depth of the
frame rib increase, “cabin subdivision vibration modes” begin appearing gradually and getting more and more close

to those of the cylindrical shells with bulkhead. Natural frequencies of “cabin subdivision vibration modes” increase

with the increment of the size of intermediate large frame rib. When the position of the frame rib changes from the
midsection to the two ends which destroys the symmetry in the structure, both “cabin subdivision vibration modes”

and “no cabin subdivision vibration modes” disappear. The cylindrical shell can be considered being divided into

two separate cabins with the same boundary conditions but with different lengths. Each cabin vibrates separately at
their own natural frequencies.

If more frame ribs are distributed in the cylindrical shell, both “cabin subdivision vibration modes” and “no

cabin subdivision vibration modes” appear when the intermediate frame ribs are equally distributed and disappear

when the intermediate frame ribs are not equally distributed. In fact in all cases discussed, the cylindrical shell can
be considered being divided into separate cabins with each cabin vibrating at their own natural frequencies. The

difference is that when the cabins are with the same length and boundary conditions, their own natural frequencies

are the same which leads them to vibrating simultaneously either in the same phase or in opposite phases, while
when the cabins are with different lengths and boundary conditions, their own natural frequencies are different

which leads each cabin to vibrate separately at their own natural frequencies.

As for beam mode frequencies which always appear, existence of intermediate large frame ribs have little effect

on the vibration mode shape, while more mass distributed in the midsection, the lower the beam mode frequencies
are.
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