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Abstract
It is well known that weak hydraulic jumps and bores develop a growing number
of surface oscillations behind the bore front. Defining the bore strength as the ratio
of the head of the undular bore to the undisturbed depth, it was found in the classic
work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar
flow is demarcated from the regime of partially turbulent flows by a sharply defined
value 0.281. This critical bore strength is characterized by the eventual breaking of
the leading wave of the bore front. Compared to the flow depth in the wave flume,
the waves developing behind the bore front are long and of small amplitude, and it
can be shown that the situation can be described approximately using the well known
Kortweg–de Vries equation. In the present contribution, it is shown that if a shear
flow is incorporated into the KdV equation, and a kinematic breaking criterion is used
to test whether the waves are spilling, then the critical bore strength can be found
theoretically within an error of less than ten percent.

Keywords Undular bore · Wave breaking · Shear flow · KdV equation

1 Introduction

A river bore is an upriver-propagating transition between different flow depths which
is generally caused by tidal forces. Similar flows can also be realized in controlled
environments such as wave flumes, and a number of studies have been conducted to
understand the main features of bores. In particular, in Favre’s work [21] a dedicated
series of laboratory experiments and matching theory based on the shallow-water
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Saint-Venant equations is described. Favre’s experimental results have been exam-
ined theoretically from a number of angles. For example, the initial formation of the
free-surface oscillations was explained from a physical perspective in [37,43], the
interaction of bores was considered in [9], and the breaking of the leading oscillations
in the bore was considered in [10,14,22,30]. Recent laboratory experiments revealing
intricate properties of undular bores are detailed in [34,35], and a numerical study of
the flow structure is given in [8].

Of particular interest in the present article is the critical bore strength dividing
the regime of laminar flow from the regime of partially turbulent flow. To explain
the situation, assume without loss of generality that the downstream flow depth is
the undisturbed depth in the wave flume, say h0, and the incident depth is a0 + h0.
Defining the bore strength by the ratio a0/h0, it was found in [21] that there are three
main bore types. If the bore strength is below 0.281, the flow is laminar, and since in
this case, none of the waves are breaking, this case is termed the purely undular bore.
If the ratio α = a0/h0 exceeds 0.281, then the leading wave behind the transition front
starts to break, and while the flow still features oscillations, there is some turbulence
associated with the breaking waves. If the ratio exceeds 0.75, a fully turbulent bore
appears.

The main purpose of the current paper is to demonstrate that the critical ratio found
by Favre [21] can also be predicted using fairly simple nonlinear model equations such
as the KdV equation in connection with a kinematic (or sometimes called convective)
breaking criterion which defines the onset of breaking as the point when the horizontal
component of the particle velocity exceeds the crest velocity. In effect, if we let the
fluid particle velocity at the leading wavecrest of the bore be U = U (x, η(x, t), t),
and the local phase velocity of the wavecrest be C , then the wave starts spilling when
U/C > 1. The kinematic wave breaking criterion is one of the simplest diagnostics
for predicting the onset of wave breaking (see [28,49] and the references therein), and
has been shown to work well in a number of situations [25,27,29].

To study an undular bore in the context of the KdV equation, one needs to be able
to pose a boundary-value problem where the incident-free surface level is imposed at,
say, the left end of the domain, and the undisturbed level is imposed at the right end
of the domain.1 (see Fig. 1, left panel). Such a model has been developed for instance
in [14,42]. One can then evaluate the free surface numerically, and reconstruct the
velocity field in the fluid column using the traditional asymptotic expansion of the
velocity potential as an asymptotic Taylor series in powers of the vertical coordinate
[51]. If the wave crest velocity is also evaluated numerically, then the convective
criterion can be tested as an indication of whether the wave starts breaking or not.

Previous studies using thiswave-breaking criterion in connectionwith aBoussinesq
system and the KdV equation gave good qualitative results, but were not quantitatively
convincing. In particular, the critical ratio was found to be a0/h0 ∼ 0.379 in [10] using
a Boussinesq system, and a0/h0 ∼ 0.353 in the context of the KdV equation [14].

A possible improvement on these results may be obtained from the inclusion of
vorticity into the description. Indeed, it is by now well known that vorticity can have a

1 While a river bore is generally propagating upstream, in the current work we use the convention that
upstream describes the end of the wave flume where the inflow if imposed, and that the bore is propagating
downstream.
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Fig. 1 Left panel: definition sketch for undular bore. The bore front propagates at velocity C . The arrows
indicate the vertical distribution of the horizontal velocity u(x, z, t) below the maximum surface displace-
ment. Right panel: the critical amplitude a0 dividing the purely undular case from the case where the
leading wave features wave breaking graphed against the undisturbed depth h0. The slope of the curves is
the non-dimensional critical bore strength. The value α = 0.281 was found in Favre’s experimental work
[21]. The value α = 0.379 was found in a previous work [10], the value α = 0.353 was found in [14], and
the value α = 0.307 is found in the present work

significant effect on the properties of surface waves (see for example [1,30,38,41,48]
and references therein). One simple configuration is the case of a linear shear flow
such as used in [48]. In particular in the case of long waves, this configuration is
expected to capture many features of more general flows (see [17]), and it is our aim
in the present work to determine whether the agreement with the experimental results
of Favre may be improved by incorporating a constant shear flow into the governing
equation. Indeed, the existence of vorticity in a similar situation was found in [26],
and a mathematical inquiry into Favre’s results also suggested that vorticity might
be present in such flows [30]. To get an idea of the strength of vorticity in Favre’s
experiments, we derive a KdV equation in the presence of a linear shear flow. We then
run a numerical simulation of an undular bore and try to match the wavelength of the
oscillations of the numerical approximation of theKdVequationwith the experimental
wavelengths reported by Favre. This procedure leads to an estimate for the vorticity
� which is then used in simulations aimed at finding the critical bore ratio by testing
the leading wave for incipient breaking. The approach outlined above yields a critical
bore strength a0/h0 ∼ 0.307 which is within 9% of the experimental ratio of 0.281.

The plan of the paper is as follows. In the next section, the experiments of Favre
are explained in some detail. Then in Sect. 3, the KdV equation with a shear flow
is explained. Section 4 contains some comments about the numerical approach, and
Sect. 5 describes the results of our numerical simulations. Finally, Sect. 6 contains
a brief discussion which puts our findings into context with respect to some recent
studies on breaking waves.

2 The Experiments of Favre

Favre (1935) conducted a series of experiments on undular bores in an open wave tank
at the Hydraulic Laboratory of Ecole Polytechnique Fédérale of Zurich. The wave
channel of rectangular cross section was 75.58 m long, 0.42 m wide and 0.40 m deep.
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Fig. 2 Definition sketch for the experimental setup of Favre

Some experiments were performed with a horizontal tank and some were performed
with a slightly inclined tank. Herein, we consider only experiments in the horizontal
wave tank. The tank was supplied by a water tower of constant water level through a
pipe C1. The water tower was supplied by fixed reservoirs located in the laboratory
attic through a pipeC2. A third pipeC3 was used to drain off the excess of water of the
tower. The water level of the tower remained constant as long as the flow from C2 was
larger than that of C1. The excess water was drained off via C3 to a reservoir located
in the laboratory basement, and then returned by pumps to the reservoirs located in
the attic. The water flow from C1 was adjusted by a valve operated by a servo-motor.
The pipe C2 included a device that allowed the determination of the flow from the
water tower. At the end of the tank was a sluice gate that allowed control of the water
discharge and full closing of the end of the tank. Beyond the sluice gate, the water
was discharged in the same reservoir in the basement as mentioned above. With this
setup, it was possible to tune the system so as to guarantee a constant inflow into the
wave tank and adjust the inflow to create bores of varying strength. A schematic of
the setup just described is shown in Fig. 2.

Three measuring and recording devices were used: (1) six vertical scales located
in the longitudinal axial plan of the tank and distributed along the tank every 12 m
were used for measuring the water level at rest or in motion. The accuracy was on the
order of one to two tenths of a millimeter. (2) To record the fluctuations of the free
surface at the six locations Favre used pressure head (Pitot) tubes whose meniscus
positions were recorded on sensitive paper exposed to light. An optical apparatus
consisting of a prism, a lens, an electric lamp and a mirror was used to record the
meniscus position. (3) The variations of the front of the undular bores were measured
differently. The measurements were based on photos taken with exposure time of
approximately 1/100 s.
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Preliminary experiments were conducted to calibrate the devices. Undular bores
were generated by a sudden variation of the flow at the upstream end of the tank. Favre
performed a series of 30 experiments on undular bores on still water, grouped in three
series corresponding to three different initial constant water depths (0.205 m, 0.155 m
and 0.1075 m). A spillway plate was placed at the downstream end of the tank whose
height was fixed to the desired depth, then the tank was filled through C1 until the
water overflowed the spillway plate. Water filling was stopped and 20 min later the
water level was stabilized at the height of the spillway plate.

The water flow was determined as a function of the valve displacement (see Figure
38 of Favre [21]). The water flowing into the tank generated an undular bore with a
front consisting of a series of undulations whose number increased with the distance of
propagation. To make the free surface easily visible, Favre sprinkled aluminum saw-
dust on the free surface and scattered confetti soaked with black ink. These measures
made the free surface clearly visible on photographs. Favre photographed 21 fronts
of undular bores: (1) 6 of the first series of experiments (nos. 2, 4, 6, 8, 10, 12; depth
0.205 m); (2) 6 of the third series of experiments (nos. 21, 22, 23, 24 , 26, 29; depth
0.1075 m); (3) 8 of the sixth series and one of the seventh series of experiments, which
correspond to inclined tank. In the present work, we consider two cases of the third
series of experiments, and the results of numerical simulations of experiments no. 22
and no. 23 are presented in Sect. 5.

The fronts of the undular bores were photographed when the crest of the first
undulation was located at 64.78 m and 64.60 m from the upstream end of the tank
for experiments no. 22 and no. 23, respectively. Recall that Favre introduced the bore
strength parameter a0/h0, where a0 was the mean height of the head of the undular
bore (see Figure 41 of Favre [21]) and h0 was the initial water depth where the first
crest of the undular bore was photographed. Bore strength values corresponding to
experiments no. 22 and no. 23 are given in Sect. 5. Favre found that for weak values
of bore strength the bore undulations were almost sinusoidal, whereas for high values
they became cnoidal (experiments nos. 22, 23, 24).

In experiments no. 22 and no. 23, no wave breaking was observed. In experiment
no. 24, the leading wave exhibited spilling breaking after traveling a considerable
distance. Experiments no. 26 and no. 29 featured wave breaking after the front of the
bore had traveled a shorter distance. Breaking and non-breaking cases can be clearly
identified by observing the maximum height of the leading wave. Experimental results
based on Favre’s data shown in Figure 49 of [21] are plotted in Fig. 3. It is apparent that
the maximum height of the leading wave increases with increasing bore strength, up to
a maximum of 2.06 times the incident depth a0. That maximum occurs in experiment
no. 24 which corresponds to a0/h0 = 0.281. As shown in these figures, experiments
with higher bore strength feature earlier breaking and much lower wave heights for
the leading wave.

As already stated above, the main purpose of the present work is to explore whether
the critical bore strength can be found using fairly simple wave models such as the
KdV equation. In the next section, the KdV equation will be derived in the presence
of a shear flow, and then numerical simulations will be presented which suggest that
the critical ratio can be found to within 9% error.
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Fig. 3 Wave height H1 of the leading wave—normalized by a0—as a function of the bore strength a0/h0.
The experimental data are taken from Figure 49 in [21]. Legend: o - undisturbed depth h0 = 0.205 m, � -
undisturbed depth h0 = 0.1075m

3 The KdV Equation in the Presence of Shear Flows

Consider a fluid contained in a long channel of unit width and depth h0. The surface
water-wave problem is generally described by the Euler equations with slip conditions
at the bottom, and kinematic and dynamic boundary conditions at the free surface. We
fix a coordinate system by aligning the x-axis with the undisturbed free surface, and
suppose the fluid domain extends along the entire x-axis. It is assumed that the fluid
is inviscid, incompressible and of unit density, the bottom of the channel is flat, and
the wave motion transverse to the x-axis can be neglected.

With the assumption of irrotational flow and using the incompressibility of the fluid,
the two-dimensional Euler equations can be written in terms of the Laplace equation
for a velocity potential φ, and the boundary conditions at the free surface are given in
terms of φ and the surface excursion η(x, t) by

ηt + φxηx − φz = 0, on z = η(x, t) ,

φt + 1
2

(
φ2
x + φ2

z

) + gη = 0, on z = η(x, t) ,

where g is the gravitational acceleration.
As is well known, this problem is difficult to treat both mathematically and numer-

ically, and in practical situations, an asymptotic approximation of the Euler equations
is often used. In the case at hand, we have long waves of small to moderate ampli-
tude on a shallow fluid, and it appears that theses waves fall approximately into the
Boussinesq scaling regime. Moreover, the waves travel only in one direction down the
length of the wave flume, so that an appropriate asymptotic model to be used is the
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KdV equation, given in dimensional form by

ηt + c0 ηx + 3
2
c0
h0

η ηx + 1
6c0h

2
0 ηxxx = 0.

Here, c0 = √
gh0 is the limiting long-wave speed, whereas already mentioned, where

g is the gravitational acceleration and h0 is the undisturbed depth.
The KdV equation features both nonlinearity and dispersion, and the balance of

these two effects gives rise to both solitary-wave solutions and periodic traveling
waves [31]. The equation is known to give a good description of the evolution of
unidirectional surface water waves in the case when the waves are long compared to
the undisturbed depth h0 of the fluid, the average amplitude of the waves is small when
compared to h0 and transverse effects are negligible [12,16,32]. In the derivation of
the KdV equation, the potential is written asymptotically as

φ = f − z2
2 fxx , (1)

where f (x, t) represents an approximation to the velocity potential evaluated at the
bottom. In addition, the assumption of wave propagation in the direction of increasing
x values (to the right) leads to the relation

fx = g
c0

{
η − 1

4h0
η2 + h20

3 ηxx

}
. (2)

Using (1) and (2) shows that the horizontal velocity can be expressed to second order
as

u(x, z, t) = φx (x, z, t) = g

c0

{
η − 1

4h0
η2 + h20

(
1

3
− z2

2

)
ηxx

}
.

That means if a solution η of the KdV equation is given either in closed form or
numerically, the horizontal particle velocity can always be found at any point in the
fluid column. For more details, the reader may consult [2,51]. In the case at hand, the
velocity is evaluated at the free surface so that the breaking criterion can be tested.
Using this approach, the authors of [14] found that the critical bore strength was
α = 0.353, improving earlier work where a Boussinesq model was used [10]. In the
present work, we will incorporate a background shear flow to further improve the
comparison.
In the presence of background vorticity, the horizontal velocity field may be defined
as U (x, z, t) = u(x, z, t) − (z + h0)� (see Fig. 4). Model equations of KdV and
Boussinesq type for surface waves in the presence of background shear can be derived
in a similar fashion as in the irrotational case. The reader may consult for example
[15,40,46,54]. Except for a minor modification, the equation to be used in the present
studywas derived in [40]. For background shear such as shown inFig. 4, the appropriate
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Fig. 4 Uniform shear flow with horizontal velocity U = u − (z + h0)� = ∂φ
∂x − (z + h0)�. In the figure,

� is negative

KdV equation is

ηt + C+
0

√
gh0ηx + C+

0 (3+�̃2)

1+(
C+
0

)2

√
gh0
h0

ηηx + C+
0 +�̃

3
(
1+(

C+
0

)2)h
2
0

√
gh0ηxxx = 0.

This equation is given in dimensional form,with the non-dimensional parameterC+
0 =

−�̃
2 +

√
�̃2

4 + 1 quantifying the strength of the background shear, and �̃ being the non-

dimensional vorticity scaled with �̃ = �√
g
h0

. The horizontal perturbation velocity field

can be found in a similar way as for the irrotational case, and is given by

u =
√
gh0
h0

{

−C−
0 η + C−

0 +�̃

2
(
1+(

C+
0

)2)
η2

h0
+ C+

0 +�̃

3
(
1+(

C+
0

)2)h
2
0ηxx

−C−
0
6 h20ηxx + C−

0
2 h20

(
1 + z

h0

)2
ηxx

}
,

where we have used C−
0 = −�̃

2 −
√

�̃2

4 + 1.

4 Non-Dimensionalization and Numerical Discretization

To prepare for the numerical discretization, it is convenient to scale the variables
appearing in the equation above as follows: x → x

h0
, z → z

h0
, t → t√

h0
g

, η →
η
h0

, u → u√
gh0

, � → �√
g
h0

. Using this scaling, the non-dimensional KdV equation

can be expressed as

ηt + C+
0 ηx + C+

0 (3+�2)

1+(
C+
0

)2 ηηx + C+
0 +�

3
(
1+(

C+
0

)2)ηxxx = 0. (3)



Wave Breaking in Undular Bores with Shear Flows 481

The coefficients C+
0 and C−

0 are defined in the same way as in the last section. In the
scaled variables, the horizontal velocity field appears as

U (x, z, t) = −C−
0 η + C−

0 +�

2
(
1+(

C+
0

)2)η2 + C+
0 +�

3
(
1+(

C+
0

)2)ηxx

− C−
0
6 ηxx + C−

0
2 (1 + z)2ηxx − (z + 1)�.

It is well known that the KdV equation features exact solitary-wave solutions. If the
coefficients of the KdV equation are defined such as in (3), the solitary wave has the
form

η = η0 sech
2
(√

C+
0 (3+�2)η0

4
(
C+
0 +�

) (x − x0 − ct)

)
, (4)

with the phase speed c given in terms of the amplitude η0 by c = C+
0 + C+

0 (3+�2)η0

3(1+(C+
0 )2)

.

This exact solution will be used later to validate the implementation of the numerical
algorithm.

The numerical approximation of the solutions η(x, t) and U (x, η(x), t) is based
on a finite-difference method for the spatial derivatives and a hybrid Adam–
Bashforth/Crank–Nicolson time integration scheme, such as previously used in
[14,42]. The local phase velocity C of the leading wavecrest is computed approxi-
mately by following the crest evolution and using a second-order central difference
formula.

To define an appropriate numerical discretization, boundary conditions need to be
imposed. In the far field upstream and downstream of the bore, the surface elevation η

approaches the stipulated values α and 0, respectively. These boundary conditions are
exact up tomachine precision as long as the spatial domain is large enough. In addition,
a Neumann boundary condition needs to be specified in the far field downstream
(see for example [13]). Using a homogeneous Neumann boundary condition and the
Dirichlet conditions as indicated above yields the initial-boundary-value problem

ηt + C+
0 ηx + C+

0 (3+�2)

1+(
C+
0

)2 ηηx + C+
0 +�

3
(
1+(C+

0 )2
)ηxxx = 0, x ∈ [−l, l], t ≥ 0,

η(x, 0) = η0(x),

η(−l, t) = α,

η(l, t) = 0,

ηx (l, t) = 0.

The initial data are given by η0(x) = 1
2a0

[
1−tanh(kx)

]
,where k is amodel parameter

denoting the steepness of the initial bore slope. In an idealized setting, one may take
the limit as k approaches infinity, leading to the so-called dispersive shock problem
[20,23]. However in the present case, we take the finite value k = 1.

It will be expedient to rewrite the problem to obtain homogeneous boundary con-
ditions, and we define an auxiliary function ζ(x, t) ≡ η(x, t) − η0(x). Using ζ , the
problem can be reformulated as an inhomogeneous equation with a forcing given in
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terms of ζ andη0, butwith homogeneous boundary and initial conditions. The equation
for ζ can then be written as

ζt + C+
0 ζx + C+

0 (3+�2)

1+(C+
0 )2

(
1
2ζ

2 + η0ζ
)

x
+ C+

0 +�

3(1+(C+
0 )2)

ζxxx = −F, x ∈ [−l, l], t ≥ 0,

where

F ≡ C+
0 η′

0 + C+
0 (3+�2)

1+(C+
0 )2

η0η
′
0 + C+

0 +�

3(1+(C+
0 )2)

η′′′
0 ,

and homogeneous boundary and initial conditions are imposed. We discretize the
spatial domain [−l, l] using a finite set of points, {x j }Nj=0 ⊂ [−l, l], where x0 = −l
and xN = l, and δx = 2l/N is the distance between two neighboring grid points. The
time domain is also discretized uniformly by defining tn = nδt , where t0 is equal to
zero. With this notation, the approximate function value at time tn and grid point x j
is defined to be vnj ≈ ζ(x j , tn).

Regarding the spatial discretization, the first and third derivatives at a point x j are
approximated by the central difference formulas

ζx (x j , t) ≈ v j+1 − v j−1

2δx
(5)

and

ζxxx (x j , t) ≈ v j+2 − 2v j+1 + 2v j−1 − v j−2

2δx3
. (6)

Since we impose the Dirichlet conditions v0 = 0 and vN = 0, the equation can be
solved for the grid points {x j }N−1

j=1 , and that leaves us with just two points for which
the third derivative approximation is not valid. Given the Neumann condition and the
central difference approximation, we have (vN+1 − vN−1)/2δx = 0 which implies
vN+1 = vN−1. This enables us to use the third derivative approximation at the grid
point xN−1 in the form

ζxxx (xN−1, t) ≈ vN+1 − 2vN + 2vN−2 − vN−3

2δx3
= vN−1 + 2vN−2 − vN−3

2δx3
. (7)

As there is noNeumann condition on the left boundary,we employ a forward difference
formula to approximate the third derivative at the grid point x1 as follows:

ζxxx (x1, t) ≈ −v4 + 6v3 − 12v2 + 10v1 − 3v0
2δx3

. (8)
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Table 1 Discretization errors
and error ratios for numerical
approximations of the time
evolution of a solitary wave of
the KdV equation (3) with
� = −0.2 and η0 = 0.5

δt L2-error Ratio

0.100000 0.003953

0.050000 0.000975 4.052

0.025000 0.000242 4.031

0.012500 0.000059 4.052

0.006250 0.000019 3.235

0.003125 0.000014 1.318

These computations were run up to final time T = 1, and with a spatial
grid size of δx = 0.01

The difference formulas (5), (6), (7) and (8) applied at all grid points give rise to the
discrete differentiation matrices D1 and D3 as follows:

D1 = 1

2δx

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 1 0 · · · 0
−1 0 1 0

...

0 −1 0 1 0
...

. . .

0 · · · 0 1
0 · · · −1 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, D3 = 1

2δx3

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

10 −12 6 −1 0 · · · 0
2 0 −2 1 0 · · · 0

−1 2 0 −2 1 0

0 −1 2
. . .

...
. . .

. . . 1
. . . 0 −2

0 · · · −1 2 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Applying a Crank–Nicolson method to the linear terms on the right-hand side of
the equation, and an Adams–Bashforth method to the nonlinear terms, the difference
equation for determining the vector vn+1 is given by

vn+1 − vn

δt
= − C+

0 (3+�2)

2(1+(C+
0 )2)

D1

[
3
(
1
2

(
vn

)2 + vn0
)

−
(
1
2

(
vn−1)2 + vn−1

0

) ]

− C+
0 +�

3(1+(C+
0 )2)

D3

(
vn+1 + vn

)
− 1

2C
+
0 D1

(
vn+1 + vn

)
− F,

where vn = (vn1 , v
n
2 , ..., v

n
N−1)

T , 0 = (η0(x1), η0(x2), ..., η0(xN−1))
T and F =

(F(x1), F(x2), ..., F(xN−1))
T . This n × n-system of equations can easily be solved

for vn+1, and then to advance the numerical approximation by one time step, only
three multiplications by sparse matrices are required.

The implementation is verified by using the well-known exact solitary-wave solu-
tion of the KdV equation which is given in the form (4). In Tables 1 and 2, the equation
is solved in the case � = −0.2 and with the amplitude η0 = 0.5 on the time interval
t ∈ [0, 1]. It can be clearly seen that the second-order convergence is achieved in the
spatial and the time discretization.
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Table 2 Discretization errors
and error ratios for numerical
approximations of the time
evolution of a solitary wave of
the KdV equation (3) with
� = −0.2 and η0 = 0.5

δx L2-error Ratio

0.800000 0.0971178

0.400000 0.0234826 4.136

0.020000 0.0057898 4.056

0.010000 0.0014419 4.015

0.005000 0.0003601 4.005

0.002500 0.0000899 4.004

0.001250 0.0000224 4.012

0.000625 0.0000055 4.042

These computations were run up to final time T = 1, and with a time
step of of δt = 0.001
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Fig. 5 Numerical approximation of the first five waves behind the borefront. The wave height and the
wavelength of the leading wave are denoted by H1 and λ1, respectively. For the second wave, the wave
height and wavelength are denoted by H2 and λ2, and so on

5 Simulations

To determine the critical bore ratio, the experiments of Favre are analyzed with regard
to the strength of vorticity in the flow. We focus on Favre’s experiments no. 22, no. 23
and no. 24 with bore strengths of a0

h0
= 0.1395, a0

h0
= 0.2307 and a0

h0
= 0.281,

respectively. A numerical domain [−610, 610] was used, and some experiments were
double checked on a larger domain to make sure that there was no detrimental effect of
numerical instabilities due to the treatment of the boundary conditions. A comparison
of the first five waves is made at a propagation distance of about 600 depths, similar
to the analysis in [30]. A plot of the surface elevation is shown in Fig. 5. Tables 3 and
4 show the wave heights and wavelengths of the five waves behind the bore front for
several values of the vorticity �. The experiments were generally checked by making
runs with smaller spatial and temporal grid sizes to make sure that numerical errors
did not contribute to the results.

With the numerical measurements of wavelengths and wave heights of the five
leading waves in hand, a comparison with the measurements from Favre’s experiment
can be conducted. For each value of� in Tables 3 and 4, an estimate of the relative error
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Table 3 Comparison of simulations with Favre’s experiment no. 22

� −0.10 −0.15 −0.20 −0.25 −0.30 −0.35 −0.40 Favre no. 22

H1 (mm) 29.4 29.4 29.4 29.4 29.5 29.5 29.5 28

H2 (mm) 28.6 28.6 28.6 28.6 28.7 28.7 28.7 27

H3 (mm) 27.8 27.8 27.8 27.9 27.9 27.7 28.0 28.5

H4 (mm) 27.0 27.0 27.0 27.1 27.1 27.2 27.2 27

H5 (mm) 26.3 26.3 26.3 26.3 26.4 26.4 26.5 26

λ1 (m) 1.24 1.21 1.19 1.15 1.12 1.09 1.06 1.10

λ2 (m) 1.12 1.09 1.06 1.03 1.00 0.98 0.95 1.04

λ3 (m) 1.04 1.01 0.99 0.97 0.95 0.91 0.90 0.94

λ4 (m) 1.00 0.97 0.94 0.91 0.90 0.87 0.84 0.92

The seven columns in the center display the simulated wave heights and wavelengths of the first five waves
behind the bore front for seven values of the vorticity �. The last column displays the corresponding
measurements in Favre’s experiment no. 22. Measurements were made at 600 depths

Table 4 Comparison of simulations with Favre’s experiment no. 23

� −0.10 −0.15 −0.20 −0.25 −0.30 −0.35 −0.40 Favre no. 23

H1 (mm) 49.4 49.4 49.5 49.6 49.7 49.8 50.0 49.5

H2 (mm) 48.7 48.7 48.8 48.9 49.0 49.1 49.2 47

H3 (mm) 48.0 48.0 48.0 48.1 48.2 48.3 48.5 47

H4 (mm) 47.2 47.3 47.4 47.5 47.6 47.7 47.8 44.5

H5 (mm) 46.6 46.6 46.7 46.8 46.9 47.7 47.1 42

λ1 (m) 1.09 1.06 1.03 1.01 0.98 0.96 0.94 0.94

λ2 (m) 0.98 0.96 0.92 0.90 0.89 0.87 0.85 0.92

λ3 (m) 0.92 0.89 0.88 0.86 0.83 0.81 0.78 0.91

λ4 (m) 0.87 0.85 0.83 0.81 0.80 0.77 0.75 0.84

The seven columns in the center display the simulated wave heights and wavelengths of the first five waves
behind the bore front for seven values of the vorticity �. The last column displays the corresponding
measurements in Favre’s experiment no. 23. Measurements were made at 600 depths

is calculated using the least-square method. The relative error for both the wavelength
and the wave height are first calculated separately and then added together. In this way,
for every value of �, the corresponding value of the relative error can be plotted as
shown in Fig. 6.With polynomial curve fitting, the best approximate values of� for the
experiments no. 22 and no. 23 are found to be �22 = −0.2749 and �23 = −0.2316,
respectively. An estimate of � in Favre’s experiment no. 24 with bore strength a0

h0
=

0.281 was also made to obtain an overall better estimate of � in the critical case. In
Fig. 7, the strength of vorticity is given in terms of the bore strength from Favre’s
experiments no. 22, no. 23 and no. 24. Using a straightforward regression analysis,
an estimate of the strength of vorticity in Favre’s experiment with a bore strength of
0.281 is found to be � = −0.2213.

By implementing this value in the numerical scheme, together with a range of
values of a0 around the critical ratio, and letting the waves travel a distance close to
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Fig. 6 Relative errors for different strengths of vorticity in Favre’s experiments no. 22 (left panel) and no. 23
(right panel)
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Fig. 7 This figure shows the relation between the bore strength a0/h0 and the strength of vorticity �. A
straight line fit is made using data from experiments no. 22, no. 23 and no. 24

600 depths, we could observe whether the waves will break or not. In Fig. 8, the crest
speed C and the horizontal velocity component at the free surface are plotted base on
a computation with � = −0.2213 and a0 = 0.307. The ratio between the crest speed
and the horizontal particle velocity reaches U/C ≥ 1 at about 600 depths, and this
means that the leading wave is starting to spill which limits the further growth of the
wave. Thus, with the inclusion of a background shear flow with constant vorticity the
critical ratio is found to be 0.307.

6 Discussion

As mentioned in the introduction, the kinematic wave breaking criterion is one of the
most commonly used criteria for the prediction of the onset of wave breaking. The
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Fig. 8 The solid curve represents the phase speed and the dashed curve represents the horizontal particle
velocity. The constant vorticity is � = −0.2213 and the bore strength is 0.307

criterion has been shown to pinpoint the commencement of wave breaking in various
situations. In particular, the criterion was shown to perform well in deep water in
[29,49], and in shallow water both on flat bathymetry [25] and on a sloping beach
[27,50]. In some situations where the kinematic breaking criterion performs poorly,
the problem can be ascribed to the difficulty of accurately finding the phase velocity
of the waves from measurements [45], and the directionality of the waves in three-
dimensional situations [53].

Some authors have attempted to use the kinematic criterion in connection with
numerical codes to determine whether to switch from a dispersive Boussinesq-type
scheme to a shallow-water scheme with numerical dissipation to capture energy loss
in breaking waves. It was suggested in [5] that this approach works best for wave
shoaling if the criterion is tightened by introducing a positive constant κ < 1, and to
define breaking onset as the first time thatU/C > κ . However, this approach requires
the determination of the constant κ . If an appropriate value for κ can be found, then
this breaking criterion can give excellent results [6,11,39].

Sharpening the kinematic criterion if used as a numerical switch makes sense as
the numerical dissipation needs time to have an effect on the waves. In fact, tightening
the kinematic criterion was already suggested earlier based on experimental evidence
[45], and more recently based on studies of wave breaking in large and intermediate
depth [7,18]. In these works, a new parameter B based on crest speed and local energy
flux and density was put forward as a diagnostic for the initiation of wave breaking.
In particular, as shown in [7], using this parameter reduces to a sharpened convective
criterionwhen evaluated at the free surface. In a nutshell, the sharpened criterion based
on the parameter B predicts wave breaking when B ∼ 0.87, though breaking may not
commence until B is actually close to 1. As already alluded to, the new criterion based
on the parameter B is based on a dynamic or energetic criterion based on evaluation
of energy flux and density, such as put forward for example in [44].
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To complete this brief review, one may add that geometric breaking criteria are
popular in some quarters. Geometric criteria are based on the shape and in particular
the steepness of the waves close to breaking, such as reviewed in [4]. Among them
the most used is the limiting wave steepness parameter s ≈ akmax, which can be
transformed into the kinematic limit u ≈ c. For a detailed review on geometric,
kinematic and dynamic criteria for breaking onset one can refer to [3].

To further improve comparison with experiments using the simple kinematic crite-
rion used in the current work, one might use fully nonlinear Boussinesq systems, such
as the Serre or Green–Naghdi equations [19,33] or higher-order KdV-type equations,
such as the higher-order regularized long wave equation used in [55]. One possible
obstacle with this approach is that the boundary-value problem must be shown to be
stable to small perturbations.
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