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Abstract This paper investigates wave-by-wave control of

a single-mode wave energy converter driven to operate such

that the oscillation velocity closely matches the hydrody-

namically optimum velocity for best power absorption. Such

control typically requires prediction of the incident wave

profile, which, for realistic wave spectra may be obtained

using up-wave measurements over a duration and at a dis-

tance based on a deterministic propagation model and the

device dynamics. This work investigates how such control

may be attempted when the device inertia, viscous damping,

hydrostatic stiffness, frequency-dependent hydrodynamic

coefficients, and exciting force are quantified approximately.

In particular, this paper studies an implementation of adap-

tive trajectory-tracking control using on-line estimation of

the mechanical and hydrodynamic parameters (i.e. inertia,

viscous damping, hydrostatic stiffness, frequency-dependent

added mass, frequency-dependent radiation damping, and the

exciting force), where a hydrodynamically optimum velocity

variation based on approximate parameter estimates provides

the reference trajectory. In this study, the rest mass, infinite-

frequency added mass, hydrostatic stiffness, a linearized
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viscous damping coefficient, and two parameters repre-

senting the uncertainties in the radiation impulse-response

function and the exciting force impulse-response function are

estimated on line. The present method relies on feedback and

feedforward forces derived using a Lyapunov function com-

prised of a system Hamiltonian that combines the mechanical

and information exergy functions. Energy capture results

under oscillation constraints show that, while the present

implementation leaves significant room for improvement

relative to near-optimal wave-by-wave control with exact

parameters, considerable improvement is still observed rela-

tive to resistive control with exact parameters.

Keywords Wave energy conversion · Wave-by-wave

control · Irregular waves · Parameter uncertainty · Adaptive

control · Exergy

List of symbols

[Ŵ] Diagonal matrix of adaptation gains

�t Update rate for parameter estimates

η(xB; t) Incident wave surface elevation at buoy centroid

xB

λw Wave length

ρ Density of water

{φ} Parameter estimate error vector

A(ω) Wave amplitude

b(ω) Frequency dependent radiation damping in heave

bh(ω) Approximate frequency dependent radiation damp-

ing

cd Linearized viscous damping coefficient in heave

Dr Buoy draft

F f Exciting force on buoy in heave

FL Total actuator force applied on buoy
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Fr Feedforward force

F f b Feedback force

F f k Froude–Krylov approximation to the exciting force

in heave

g Acceleration of gravity

ha(t) Odd-function part of hr (t)

H f (iω) Frequency response function for exciting force F f

in heave

h f (t) Impulse-response function for the exciting force in

heave

hl(t) Impulse-response function describing the linear

uni-directional wave propagation process in deep

water

hr (t) Causal radiation impulse-response function

hb(t) Even function part of hr (t)

Hs Significant wave height

h f h(t) Approximate expression for the exciting force

impulse-response function

hrh(t) Approximate expression for the radiation impulse

response function

k Hydrostatic stiffness coefficient for the buoy heave

Ka Feedback gain attached to acceleration error

Kx Feedback gain attached to position error

m In-air mass of the buoy

Pw Incident wave power per unit crest length

Rs Buoy radius

Te Energy period

Tw Wave period

v Heave velocity

x Heave displacement

H System Hamiltonian, expressing the total exergy

Hi Information exergy

Hm Mechanical exergy

ĉd Approximate estimate for cd

F̂ Single multiplicative parameter assumed to relate

h f h and h f

k̂ Approximate estimate for k

M̂ Approximate estimate for m + a(∞)

R̂ Single multiplicative parameter assumed to relate

hrh and hr

a(∞) Infinite-frequency added mass for the buoy in

heave

a(ω) Frequency-dependent added mass inclusive of the

infinite-frequency added mass a(∞)

1 Introduction

Wave energy converters utilizing relative oscillation between

a wave-activated body and a reference have received consid-

erable attention in the literature for a long time now (see,

for instance, Falcão 2010). Floating bodies in heave, pitch,

or roll have distinct natural frequencies due to their inertia

and hydrostatic restoring force/moments. Hence, they tend to

perform efficiently when the peak-frequencies in the incom-

ing spectra are close to the body natural frequencies. For

single-mode devices without viscous damping or oscilla-

tion constraints, maximum conversion requires the body to

resonate, and in addition, the energy absorption rate must

match the frequency-dependent energy radiation rate from

body oscillation. Consequently, without hydrodynamic con-

trol, converters frequently may get bulky and the annually

averaged energy conversion rates may not be high enough

for cost effectiveness.

Early implementations of control in the 1970s involved

adjustable resonant tuning via reactive (negative spring

or positive inertia) loads (Salter 1978), and latching-type

switching control. Latching control used braking forces to

lock and release buoy oscillation so as to force the veloc-

ity (when unlocked) to be synchronous with exciting force

(Budal and Falnes 1980). Complex conjugate control gener-

alizes the control of Salter (1978), and consists of using the

power take-off (together with another actuator if required)

to apply a resistive load that matches the radiation damp-

ing for the floating body, and in addition, applying a reactive

load that cancels the reactive part of the converter impedance

(i.e. due to stiffness and inertia of the floating body). While

such impedance matching implies maximum power absorp-

tion in regular waves, extension of such control to irregular

waves presents fundamental challenges (Naito and Naka-

mura 1985; Falnes 1995). Non-real time ‘peak frequency

tuning’ type approaches have been attempted with success

in practice (Hansen and Kramer 2011), where simply match-

ing impedances at the peak frequency of incoming spectra at

regular intervals could lead to a three-fold improvement in

annual energy production. Such reactive control requires an

actuation system capable of exchanging reactive power with

the floating body, and of drawing on stored energy.

The challenges of implementing the frequency-domain

notion of complex-conjugate control on a wave-by-wave

basis for wave energy devices arise in part from the nature

of the radiation force produced on the body by the waves

generated by the body. This is because the radiation force

at any given instant includes not only the contribution of

waves created at that instant but also that of waves created

at prior instants. It is only the present and past oscilla-

tions that determine the radiation force, however, so the

impulse-response function hr describing it is causal. There-

fore, its Fourier transform is analytic in the upper half of the

complex half plane, which implies that the real and imag-

inary parts of its Fourier transform are constrained by the

Kramers–Kronig relations (Wehausen 1992). Complex con-

jugate control requires that the real part be matched and the

imaginary part be cancelled using actuator loads. Thus, the

odd function part ha and the negative of the even function
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part hb of hr = ha + hb need to be synthesized separately

in order to generate the real-time control force to be applied

(on the body from the reference). Because both ha and hb are

non-causal, velocity information from the future is required

for complete synthesis of the control force. This situation is

discussed in Naito and Nakamura (1985), and Falnes (1995).

In addition, because of the continuum nature of incident wave

action and the body’s geometric size, the body begins to

‘feel’ an exciting force somewhat before an incident wave

arrives at its centroid. Consequently, the impulse-response

function h f describing the exciting force (relative to the inci-

dent wave profile at the body centroid) in the time domain

is non-causal (Falnes 1995). Application of ‘complex conju-

gate control’ in real time therefore requires knowledge of the

incident wave profile (and device oscillation), typically, 20-

30 seconds in advance. Approximate approaches based on

time-series analysis of past oscillations have been attempted

(e.g. see Korde 1999, and more recent works such as, Fusco

and Ringwood 2010). A number of other approximate con-

trol approaches have been developed in recent years (see Hals

et al. 2011) for a comparative assessment). Direct use of inci-

dent wave profile measurement some distance up-wave for

generating the control forces at the current instant has also

been reported (Korde 2014). More recently, near-optimal

wave-by-wave control was investigated (Korde 2015), for

which a deterministic propagation model was used to predict

the wave surface elevation at the device up to the required

duration into the future. In that work, a wave measurement

made over a prescribed time duration and at a prescribed

distance in the up-wave direction was used in a convolution

integral whose kernel was the impulse-response function rep-

resenting the linear wave propagation model. The up-wave

distance and the time duration of measurement used in the

convolution were determined from the group-velocity range

associated with commonly encountered practical sea-states

and the device dynamics.

Considerable room for improvement exists in at least two

areas: (1) increasing accuracy with alternative approaches to

utilize up-wave surface elevation or other measurements for

evaluating control forces, and/or (2) finding ways to deal with

uncertainties in the physical and hydrodynamic parameters

describing the converter dynamics. The work reported in this

paper is relevant to the second area, and is relevant for the

following reasons: Although most converter models assume

perfect knowledge of the in-air mass and moments of inertia,

viscous damping, and hydrostatic stiffness associated with

the floating body, these parameters may only be approxi-

mately known in practice. Actuator and load inertias, and

actuator dissipation effects are not considered in many device

models. Load inertias may change during device operation,

and actuator dissipation effects may only approximately be

known. For floating bodies where water-plane areas change

with displacement, the use of linearized stiffness coefficients

is at best approximate. It is also common to use linearized

viscous damping coefficients to approximate viscous fric-

tion. Such approximations have limited applicability when

oscillation (displacement and velocity) amplitudes are large.

Similarly, linearized actuator models may also lose applica-

bility in large oscillations. Recall that oscillation amplitudes

become large when impedance matching conditions are

approached. Further, the numerically evaluated hydrody-

namic quantities such as exciting force impulse-response

function, the radiation force impulse-response functions, and

the infinite-frequency added masses/inertias are also only

good approximations valid for small oscillations. Neverthe-

less, linear models and linear design techniques take less

effort and provide significant insight, to a level of generality

not possible with nonlinear models. For this reason, it may

be worthwhile to use a linear modeling and design frame-

work wherein the parameters are thought to be imprecisely

known, but wherein parameter estimates are updated on a

slower time-scale. It is relevant here to point out the use

of multiple-scale methods where higher order effects may

be thought to be varying at slower time scales (e.g see Mei

1992).

Recent approaches seeking control in the presence of

uncertainties in the dynamic model include the robust con-

troller approach investigated in Fusco and Ringwood (2014).

In another recent work, wave-by-wave control using a lin-

ear model was attempted in the presence of uncertainties

in the rest mass, stiffness, and linearized viscous damp-

ing, but it was assumed that the frequency variations of the

hydrodynamic coefficients and the exciting force would be

perfectly known (Korde et al. 2015). The present paper also

uses a linear model with uncertainly known coefficients for

rest mass, hydrostatic stiffness, and viscous friction damp-

ing but in addition also allows for the use of approximate

estimates for the frequency-dependent hydrodynamic coeffi-

cients and the exciting force. Uncertainties in wave prediction

are not considered in this paper. In order to allow a com-

parison between the present approach and wave-by-wave

control with perfectly known, unchanging device dynamics,

the exact rest mass, hydrostatic stiffness, and viscous damp-

ing coefficient were assumed to be available. Approximately

known starting estimates for these parameters were assumed

to be within ±20 %. As the ‘exact’ hydrodynamic coeffi-

cients and exciting force were numerically determined, the

hydrodynamic coefficients and exciting force as determined

based on a Froude–Frylov approximation (i.e. diffraction

effects ignored) were here used as starting estimates. It

should also be pointed out that, if the proposed approach

can be implemented successfully, for devices with complex

geometries, one could conceivably use the hydrodynamic

coefficients and exciting forces for a simpler representative

geometry in control design if exact numerical values are not

immediately available. Note, finally, that the exact physical
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parameters (i.e. mass, stiffness, etc.) and hydrodynamic para-

meters (hydrodynamic coefficients, and exciting force) will

generally not be available in a practical implementation. The

‘exact’ values are not needed for the present method, but are

here assumed to be available in order to allow comparison of

results.

As mentioned, this paper investigates a control strategy

that approximates wave-by-wave impedance matching con-

trol in the presence of parameter uncertainty. Wave-profile

prediction up to some time into the future is required, and the

control force includes both feedforward and feedback forces.

Also as mentioned, wave prediction based on the approach

of Korde (2015) was assumed to be available. Even though

the approach of Korde (2015) is limited to long-crested

waves, errors arising from this restriction and from the linear

deterministic model are considered outside the scope of the

present study (see, however, Korde et al. 2016). Note, how-

ever, that primarily uni-directional, long-crested waves may

be observed over entire days at some sites (e.g. NDBC 2016).

The overall procedure could be extended to incorporate inac-

curacies in wave prediction, although such an extension is not

considered here. The goal of the present overall formulation

is to enable trajectory tracking and on-line parameter esti-

mation, while using the improving parameter estimates in

determining the instantaneous control force. The trajectory

to be tracked is computed using an impulse-response function

based on the available approximate estimates for the exciting

force, radiation damping, and viscous damping (‘estimated

reference trajectory’).

This paper addresses uncertainties in (i) the rest mass,

(ii) linearized viscous damping coefficient, (iii) linearized

hydrostatic stiffness, (iv) frequency-dependent added mass,

(v) frequency-dependent radiation damping, and (vi) the

frequency-dependent exciting force. Note that the present

study uses impulse-response functions based on the uncer-

tainly known frequency-dependent parameters in (iv)–(vi).

The feedforward force at each instant is based on the current

estimates for the in-air mass, stiffness coefficient, linearized

viscous damping coefficient, infinite-frequency added mass,

frequency-variable added mass (defined here as in Korde

2015), the impulse-response function ha , and the impulse-

response function hb (where ha(t) + hb(t) = hr (t), the

radiation impulse-response function. Here ha is an odd func-

tion of t , while hb is an even function of t . hr (t) is a causal

function of t , i.e. hr (t) = 0, t < 0.), and the estimated

reference velocity (the evaluation of the feedforward force

therefore also requires wave-profile prediction). The feed-

back force is based on the difference between the estimated

reference trajectory and the actual trajectory (position, veloc-

ity, and acceleration signals are used). Feedback gains used

in this procedure are held constant over all simulation cases

studied here. Parameter estimates are specific to each run, and

are updated at periodic intervals according to an ‘adaptation

law’ that is derived to minimize error. The reference trajec-

tory is also updated as parameter estimates improve. Sections

2, 3, 4 describe the dynamic model and the overall wave-

by-wave control technique which combines the two goals

of trajectory tracking and parameter estimation. The over-

all combined trajectory-tracking and parameter estimation

approach has been tested in a number of situations outside

of wave energy conversion, namely, in flexible-robot control,

temperature control in buildings, ship-board power manage-

ment, etc. (Robinett et al. 2002; Robinett and Wilson 2011;

Slotine and Li 1991; Bryson and Ho 1975, etc).

Section 2 following this introduction summarizes wave-

by-wave near-optimal control based on wave prediction when

exact information on all parameters is available. Section 3

discusses the manner in which parameter approximations

are represented in this paper. Section 4 describes the over-

all adaptive estimation and control formulation. Calculations

and simulations carried out here are described in Sect. 5,

while the principal results of this work are discussed in

Sect. 6. The paper concludes with a review of the main con-

clusions in Sect. 7.

2 Wave-by-wave control with exact parameters

To allow focus on the investigation of the overall modeling

and control strategy, a cylindrical buoy in predominant heave

oscillation is considered. Oscillations relative to a deeply sub-

merged reaction mass (assumed stationary) are utilized for

power conversion using a linear actuator, which may be either

hydraulic (e.g. a double-acting hydraulic cylinder) or electric

(a permanent magnet linear generator/motor). As required,

additional actuators in parallel may be used to share in the

application of the overall control force. Stored energy enough

to support the required reactive power exchange in the form

of hydraulic accumulators or batteries is assumed to be avail-

able, and further, the actuators are assumed to be linear and

ideal in the implementation with exact parameters. Summa-

rized here is an overview of the approach followed in Korde

(2015), as applied to a single-body oscillator. Figure 1 shows

a schematic view of the device geometry.

In Eq. (1) below, m denotes the in-air mass of the buoy, Rs

the buoy radius, Dr = Rs/2 the buoy draft, a(∞) the infinite-

frequency added mass in heave, k = ρgπ R2
s the hydrostatic

stiffness coefficient for the buoy heave, cd the linearized vis-

cous damping coefficient in heave, v(t) the heave velocity

at time t , and F f (t) the exciting force in heave. The heave

oscillation of the buoy can be described using the relation,

[m + a(∞)]v̇(t) +

∫ ∞

0

hr (τ )v(t − τ)dτ + cdv(t)

+ k

∫ t

−∞

v(τ)dτ = F f (t) + FL(t) (1)
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Fig. 1 The cylindrical buoy device studied in this work. The buoy is

assumed to be in predominantly heave oscillation relative to the sea floor

or a deeply submerged reaction mass, and a linear actuator (hydraulic

cylinder or permanent magnet linear generator/motor) utilizes the buoy

heave oscillation for energy conversion

hr (t) =
2

π

∫ ∞

0

b(ω) cos ωtdω = −
2

π

∫ ∞

0

ωa(ω) sin ωtdω

(2)

Equation (1) is an integro-differential equation (often called

the ‘Cummins’ equation’) (Cummins 1962). b(ω) is the

frequency-dependent radiation damping in heave and a(ω)

is defined as

a(ω) = a(ω) − a(∞) (3)

a(ω), the frequency-dependent added mass in heave behaves

as,

lim
ω→∞

a(ω) → a(∞) (4)

a(ω) is thus the Fourier-transformable, frequency-variable

part of a(ω). Because hr (t) is real-valued and causal, ωa(ω)

and b(ω) are, respectively, odd and even functions of fre-

quency, and satisfy the Kramers–Kronig relations. Their full

inverse Fourier transforms can be defined as,

ha(t) =
1

2π

∫ ∞

−∞

ωa(ω)eiωt dω,

hb(t) =
1

2π

∫ ∞

−∞

b(ω)eiωt dω (5)

Note that ha(t) is an odd function of t and hb(t) is an even

function of t . Thus, hr (t) = ha(t) + hb((t) in the time

domain, and hence, both ha and hb are non-causal. There-

fore, their use in generating control forces on a wave-by-wave

basis requires prediction of velocity v.

The exciting force F f (t), as commonly expressed in terms

of the surface elevation at body centroid is,

F f (t) =

∫ ∞

−∞

h f (τ )η(xB; t − τ)dτ (6)

where τ is the dummy time variable over which the integra-

tion is performed, η(xB; t) is the wave surface elevation at

buoy centroid xB , and h f (t) is the impulse-response func-

tion defining the exciting force in heave. Because wave action

takes place over a continuum, and because it produces a pres-

sure over the buoy surface before the incident wave reaches

the centroid, h f (t) is also non-causal, and can be expressed

as,

h f (t) =
1

2π

∫ ∞

−∞

H f (iω)eiωt dω (7)

Here H f (iω) is the frequency response function describing

the exciting force frequency dependence for unit incident

wave amplitude, given by F f (iω)/A.

Note that the memory effect in hr can be approximated

as a finite time interval on the order of tr ∼10–20 s. Both

ha and hb therefore approximately only have support in the

±tr range. Similarly, the non-causal part of h f also extends

a finite duration t f ∼10–20 s. The integrals in Eqs. (5) and

(7) can therefore be evaluated using finite limits in simula-

tions. The approximate finiteness of tr and t f also results

in a finite prediction-time for the wave surface elevation η

at xB . However, as noted in Korde (2015), it is partly for

these approximations that practical implementations of the

wave-by-wave impedance matching control are at best near-

optimum.

For the buoy heave velocity to be at the hydrodynamic

optimum (maximizing power transfer from the incident wave

to the buoy), such that v(t) = vo(t) (Falnes 1995),

2cdvo(t) + 2

∫ ∞

−∞

hb(τ )vo(t − τ)dτ = F f (t) (8)

This condition can be achieved if the control force applied

on the buoy is of the form (Korde 2015),

FL(t) = [m + a(∞)]v̇o(t) + k

∫ t

−∞

vo(τ )dτ

+

∫ ∞

−∞

ha(τ )vo(t − τ)dτ − cdvo(t)

−

∫ ∞

−∞

hb(τ )vo(t − τ)dτ (9)
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FL(t) can be seen to be a feedforward force, based on the

desired velocity optimum vo(t). In practice, due to measure-

ment errors and disturbances, a feedback controller will be

required so that correct tracking is achieved, although the

approach reviewed here is open loop, and measurement errors

and disturbances were not accounted for. The hydrodynamic

optimum vo(t) can be evaluated using,

vo(t) =

∫ ∞

−∞

ho(τ )η(xB; t − τ)dτ (10)

where ho(t) is a non-causal impulse-response function given

by,

ho(t) =
1

2π

∫ ∞

−∞

H f (iω)

2[cd + b(ω)]
eiωt dω (11)

In the presence of an oscillation constraint that requires the

maximum excursion to be less than a specified limit, (e.g.

the draft or the freeboard to avoid full emergence or full sub-

mergence), the frequency-domain approach of Evans (1981)

may be used as implemented in Korde (2015). Briefly, this

corresponds to redefining the non-causal impulse-response

function ho in Eq. (11) as

hoc(t) =
1

2π

∫ ∞

−∞

H f (iω)

2[cd + �(ω) + b(ω)]
eiωt dω (12)

The constrained optimum velocity can then be expressed as,

voc(t) =

∫ ∞

−∞

hoc(τ )η(xB; t − τ)dτ (13)

Note that this approach for specifying the oscillation con-

straint limits the significant wave heights up to which the

constraint will be satisfied Korde (2015). �(ω) is a damping-

like parameter. The advantage with this approach is that the

oscillation constraint can be applied without resorting to

inequality relations or comparisons within or outside of the

control formulation. The memory effect of ho(t) requires the

surface elevation time history going back into the past, and

its non-causality requires surface elevation prediction up to

a duration into the future that equals the non-zero tail length

of ho(t) into t < 0 (note that ho(t) → 0 asymptotically

beyond some t < −t f , and t f is approximate). Because ha(t)

and hb(t) in Eq. (9) are also noncausal and both approach

zero asymptotically beyond t < −tp (tp is again approx-

imate), evaluation of FL(t) requires prediction of η(xB; t)

up to t f + tp into the future. In long-crested waves such a

prediction may be obtained using a wave-elevation measure-

ment made over a duration T and at an up-wave distance d

Korde (2015), determined according to the range of group

velocities vgmn ≤ vg ≤ vgmx encountered in practical wave

spectra. Thus, with d = xB − xA where xA is the point of

up-wave measurement, then η(xB; t + tp) can be predicted

using

η(xB; t + tp) =

∫ T

0

hl(τ )η(xA; t − τ)dτ

xB − xA = d = tPvgmx

T =
d

vgmn

−
d

vgmx

; t > T (14)

where deep-water conditions are assumed. T is the time win-

dow up to the current instant over which past wave profile

measurements at xA are needed. The lower and upper integra-

tion limits in Eq. (10) can in realistic situations be replaced

by −tp and the current time t , respectively.

If all physical parameters (m, k, cd ) are assumed perfectly

known and the exact hydrodynamic coefficients and exciting

force in heave are also perfectly known, then within linear

theory, the procedure above is expected to provide near-

optimal wave-by-wave control through impedance matching

in uni-directional, small-amplitude waves (near-optimal in

view of the approximate determination of t f , tp, the small

non-causality of the propagation impulse-response hl being

ignored, and the group-velocity range being defined based

on the frequency-range commonly observed with most wave

spectra). Note, however, that certain operating sites may

receive largely uni-directional waves over long periods, and

similarly, a study of available historical spectral data at that

site may also help to refine the spectral frequency and group-

velocity ranges [e.g. see NDBC (2016)].

3 Use of approximate parameters

The approach reviewed in Sect. 2 assumed perfect parameter

knowledge. As indicated earlier, it is perhaps more common

in practice to have only approximate knowledge of device

parameters. The question addressed in the present study is:

how wave-by-wave impedance matching control could be

approximated in the presence of approximate knowledge of

the physical parameters (m, k, cd ), the hydrodynamic coeffi-

cients a(ω), b(ω), and the exciting force H f (iω). It should be

noted here that uncertainties in the hydrodynamic parameters

will directly translate into uncertainties in the impulse-

response functions associated with them [see Eqs. (2) and

(5)]. In addition, a(ω) = a(∞) + a(ω), so that the effec-

tive inertia of the device as stated in Eq. (1) is m + a(∞).

In the treatment of Sect. 4, only approximate parameter esti-

mates are thought to be available for determining the control

force. Table 1 summarizes the uncertainties accounted for in

Sect. 4.

As mentioned in the introduction (Sect. 1), the estimates

M̂ , etc. were updated iteratively. The estimates were thought
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Table 1 Parameter approximations accounted for in the present study

Parameter/function Exact Approximate Estimates updated

Effective inertia/mass m + a(∞) M̂ M̂

Hydrostatic stiffness k k̂ k̂

Linearized viscous damping cd ĉd ĉd

Radiation impulse-response function hr (t) hrh(t) R̂, hr = R̂hrh

Exciting force impulse-response function h f (t) h f h(t) F̂ , h f = F̂h f h

Reference trajectory vo(t) [Eq. (13)] vr ≡ ẋr [Eq. (16)] vr (t)

to be slowly varying, and were updated every Nu iterations

[(Nu = 10), assuming that a 10 times slower rate of change].

In order to allow comparison with results with exact parame-

ters, the exact parameters were assumed to be known here,

even though they do not have to be known in practice for

the proposed method to work. The starting estimates for

M̂ , ĉd , and k̂ were assumed to be 0.8–1.2 times the exact

values, though in practice, the choice would be based on

the best available estimates or approximations. The numer-

ically determined hydrodynamic coefficients and exciting

force variations (and the impulse-response functions asso-

ciated with them) were thought to be exact for the purpose

of this work. The corresponding approximations as deter-

mined using the Froude–Krylov approximation (i.e. with the

diffraction effects ignored and forces determined using inci-

dent potentials only) were used as initial estimates. For ease

of implementation, a simplifying assumption was introduced,

that the approximate variations were related to the exact vari-

ations via a single multiplicative constant as shown in column

4 of Table 1. The estimation and control approach used here

is based on updating the multiplicative constants R̂ and F̂ in

addition to M̂ , k̂, and ĉd . Note that R̂ = F̂ = 1 indicates

exact match. The method used for determining the approx-

imate impulse-response functions h f h and hr h is discussed

in Appendix A.

The reference trajectory can be specified ahead of time if

prediction of the incident wave elevation is available suf-

ficiently far into the future. If perfect knowledge of the

impulse-response functions, wave elevation, and velocity

into the future were available, the reference trajectory would

be the hydrodynamic velocity optimum defined by Eq. (8).

vo(t) would then be found using Eq. (10). Knowing that

b(ω) = R̂bh(ω), if it is assumed that ĉd ≈ R̂cd , an esti-

mated reference trajectory vr (t) can be defined,

vr (iω) =
H f h(iω)

2[ĉd + bh(ω)]
A(ω) (15)

In the time domain, letting hoh(t) be the inverse Fourier trans-

form of the term attached to A(ω) in Eq. (15),

vr (t) =

∫ ∞

−∞

hoh(τ )η(xB; t − τ)dτ (16)

This is the desired rate of change of heave displacement ẋr =

vr . The desired displacement xr at each instant is determined

using numerical integration. Thus,

xr (t) = [vr (t) + vr (t − h)] h (17)

Here h denotes the length of a single time step at which the

actuator forces are updated. Recall that vr (t) is computed

using Eq. (16). Note that evaluation of vr (t) requires predic-

tion of η(xB; t) up to tth into the future, where tth is such that

hoh(t) → 0, t < −tth . In this paper, an accurate prediction

is assumed to be available, though extensions to the formu-

lation to relax these restrictions are expected to be reported

in a future paper.

When perfect knowledge is available, vr = vo. In the

procedure adopted in this work, as successive estimates for

F̂ and R̂ become available, the reference trajectory is updated

according to,

ẋr (t +�t) ≡ vr (t +�t) =

(

R̂

F̂

)

vr (t) ≡

(

R̂

F̂

)

ẋr (t) (18)

�t represents the update rate for the parameter estimates.

Parameter estimates and trajectory updating may be carried

out every Nu iterations.

�t = Nuh (19)

In the simulations reported on in this paper, estimates are

updated every 10 time steps (i.e. Nu = 10 in this paper).

With h = 5 × 10−3 s in most simulations, �t = 0.05 s in

most simulations reported on in this paper.

It is recalled that under an oscillation constraint

hoc(t) =
1

2π

∫ ∞

−∞

H f (iω)

2[cd + �(ω) + b(ω)]
eiωt dω (20)

where H f (iω) = F f (iω)/A(ω), i.e. exciting force in heave

per unit incident wave amplitude. The best knowledge avail-
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able here is thought to be in the form of H f h , bh(ω), and ĉd ,

however. Therefore, an approximate impulse-response func-

tion hoch is here defined as,

hoch(t) =
1

2

∫ ∞

−∞

H f h(iω)

2[ĉd + �(ω) + bh(ω)]
eiωt dω (21)

Note that H f (iω) = F̂ H f h(iω), where H f h(iω) =

F f k(iω)/A(ω). Note that �(ω) is typically specified by the

designer and is therefore known a priori. In the present sim-

ulations, a more approximate implementation was used for

convenience, where, a constant value � = αc (max [�(ω)])

was used for all ω, with αc = 0.6 in most simulations. Fur-

ther, the constrained reference velocity vrc based on hohc was

also updated using Eq. (18).

4 Adaptation and control formulation

As mentioned previously, the goal of this work is investigate

an approach that is designed to improve upon the avail-

able approximation to the mass, viscous damping coefficient,

hydrostatic stiffness, the radiation impulse-response func-

tion, and the exciting force impulse-response function for

heave oscillation of a cylindrical buoy, while attempting to

provide a close approximation to a desired velocity variation.

The control forces include both a feedforward component and

a feedback component. The feedforward component at each

time instant is derived using the available approximations to

each of the parameters just mentioned and the reference tra-

jectory defined by vr (t). The feedforward component Fr (t)

below therefore requires wave prediction. The actual velocity

and actual displacement are defined as v and x , respectively.

These quantities may be measured on line using velocity and

displacement sensors, and the feedback component F f b(t)

below can be designed to minimize the differences x − xr

and v − vr . The feedback gains in this work are chosen to

be constants independent of frequency or time, and hence

evaluation of the feedback component does not require wave

prediction.

As summarized in Table 1, in the formulation below, the

estimate for the sum of the in-air mass and the infinite-

frequency added mass m + a(∞) is defined as M̂ . Similarly,

the estimates for the stiffness constant k and the linearized

viscous damping constant are defined as k̂ and ĉd , respec-

tively. The estimates for the impulse-response functions

representing the exciting force and the radiation force are

found using hydrodynamic approximations (here, the small-

body Froude–Krylov force to represent the overall exciting

force). The exact functions hr = ha +hb, and h f are thought

to be related to the approximations via single multiplica-

tive estimates R̂, and F̂ , respectively, [see Eqs. (53) and

(60)]. As discussed in Sect. 3, the reference trajectory to

be tracked is the hydrodynamic velocity optimum based on

wave prediction. However, this trajectory here is based on

the best available current parameter estimates ĉd , R̂, and F̂ .

The control formulation must therefore enable tracking of

the best available estimate for the optimum velocity trajec-

tory, while providing corrections to the available estimates

for the parameters and the trajectory. The approach followed

here is based on a Lyapunov function, for which the condi-

tions for negative definiteness of the derivative are used to

update the parameter estimates, subject to the dynamic model

for the device response. The system Hamiltonian obtained by

adding exergy functions associated with the device dynamics

and estimate accuracy provides an effective candidate Lya-

punov function for the present problem (see also Robinett

et al. (2002), Robinett and Wilson (2011), etc. for applica-

tions in other fields). The term ‘exergy’ is here used in a more

general sense than the traditional thermodynamic exergy. We

note that the term exergy here extends the notion of ther-

modynamic exergy and represents the total energy available

in the system that can be converted into useful work. For a

mechanical system, this is the sum of the potential and kinetic

energy associated with position and velocity, respectively.

When parameters associated with the mechanical exergy are

only approximately known, the total exergy can be expressed

as a sum of the mechanical exergy and the information

exergy associated with parameter-estimate uncertainties. The

minimum-exergy solution is then expected to represent the

true motion of the uncertainly-known system. More details

can be found in Robinett and Wilson (2009, 2010b).

The total exergy for the present system is here the system

Hamiltonian, given by,

H = Hm + Hi > 0 (22)

where H is the system Hamiltonian, Hm is the mechanical

exergy, and Hi is the information exergy.

To enable application of (i) a feedforward control force

based on wave prediction that seeks wave-by-wave impedance

matching using the best available estimates, and (ii) a feed-

back force to provide closed-loop trajectory tracking, the

force FL(t) in Eq. (1) is expressed as (Fr denoting the feed-

forward force and F f b the feedback force),

FL(t) = Fr (t) + F f b(t) (23)

Note that Fr and F f b may be applied by different actua-

tors, connected in parallel. Further, parts of Fr and F f b may

also be applied by different actuators, depending on whether

they are resistive or reactive. Letting M = [m + a(∞)] for

convenience, the mechanical exergy Hm is defined as,
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Hm(t) =
1

2
M(v − vr )

2 +
1

2
k(x − xr )

2

+

∫ t

−∞

∫ ∞

−∞

ha(τ )[v(ξ − τ) − vr (ξ − τ)]dτ

[v(ξ) − vr (ξ)]dξ (24)

where the substitutions ẋ = v, and ẋr = vr may be used.

Note that the last term represents an integral from −∞ to the

present time t of a reactive force times velocity. The integral

of reactive power over a time interval is zero for lossless

(ideal) linear actuators, so that Hm(t) as a whole is positive

definite.

The information exergy Hi is a function of the parameter-

estimate uncertainty, and is defined as,

Hi (t) =
1

2
{φ}T [Ŵ]−1 {φ}+

1

2
Kx (x − xr )

2+
1

2
Ka (v̇ − v̇r )

2

(25)

For estimates M̂ , k̂, ĉd , R̂, and F̂ , the vector φ is here defined

as

{φ}T = [M̂−M, k̂−k, ĉd+cd , 1/2−F̂, 1−R̂, −R̂, 2ĉd ]

(26)

Kx and Ka are the feedback gains associated with position

and acceleration errors, respectively, relative to the reference

trajectory.

The elements of {φ} are thus seen to be related to the

parameter estimates.

Further,

[Ŵ] = diag[γ1, γ2, . . . γ7] (27)

[Ŵ] is a diagonal matrix whose elements represent the

‘adaptation gains’ associated with each parameter estimate

that is being updated.

The analysis below summarizes the steps leading to the

conditions under which H is a Lyapunov function. Recall

that a function associated with the trajectory of a dynamic

system is a Lyapunov function if it is positive definite and if

its time derivative evaluated over that trajectory is negative

definite. The trajectory in motion space over which H and

dH/dt are examined here is the ‘reference trajectory’ given

by (xr , vr ). The conditions for H to be a Lyapunov function

also represent the minimum exergy solution where the sum

of the mechanical and information exergy is minimized.

The following analysis uses the substitutions ha = R̂hah ,

hr = R̂hrh , and F f = F̂ F f h into Eqs. (24) and (1). In

addition, Eq. (23) is also substituted into Eq. (1). Differenti-

ation of the total Hamiltonian H with respect to t leads to an

expression for the time derivative dH/dt ,

dH(t)

dt
=

[

M v̇ + kx − M v̇r − kxr

+

∫ ∞

−∞

ha(τ )[v(t − τ) − vr (t − τ)]dτ

]

(v − vr )

+ [Kx (x − xr ) + Ka(v̇ − v̇r )] (v − vr )

+ {φ̇}T [Ŵ]−1{φ} (28)

The dynamic model for heave oscillations can be expressed

as [from Eq. (1)],

M v̇ + kx = −cdv −

∫ ∞

0

hr (τ )v(t − τ)dτ

+

∫ ∞

−∞

h f (τ )η(xB; t − τ)dτ + Fr + F f b

(29)

Note that x and v, respectively, denote the actual heave dis-

placement and velocity of the buoy. The feedforward force Fr

is specified based on the best available parameter estimates

and the best available estimate for the reference trajectory.

Thus,

Fr (t) = M̂ v̇r + k̂xr − ĉdvr −

∫ ∞

−∞

hbh(τ )vr (t − τ)dτ

+

∫ ∞

−∞

hah(τ )vr (t − τ)dτ (30)

The feedback force F f b is specified as,

F f b(t) = −Kx (x − xr ) − Kb(v − vr ) − Ka(v̇ − v̇r ) (31)

where additional velocity feedback is also introduced along

with the associated gain Kb. An additional integral term (i.e.

integral of the displacement error up to the present time) may

also be used in feedback. In the presence of an oscillation

constraint, hrh in Eq. (29) needs to be replaced by a modified

impulse-response function where

hrhc(t) =
2

π

∫ ∞

0

[bh(ω) + �(ω)] cos ωtdω (32)

It should be noted that the oscillation constraint as specified

through Eqs. (13), (20), and (21) is applied on the reference

velocity. Unless effective tracking performance is achieved,

the actual velocity may exceed the specified constraint. For

this reason, in this work, an additional term may be intro-

duced into Fr as,

Fr = M̂ v̇r + k̂xr − [ĉd + αc�m]vr

−

∫ ∞

−∞

hbh(τ )vr (t − τ)dτ

+

∫ ∞

−∞

hah(τ )vr (t − τ)dτ (33)
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where �m = max[�(ω)], and αc is a constant (αc = 0.6 is

used in the present simulations).

Substituting Eq. (29), and Eqs. (30), and (31) into Eq. (28),

and further, adding and subtracting cdvr on the right side, the

following expression is obtained. Note that the substitution

of Eq. (29) ensures that the device dynamics are satisfied. The

time derivative of the Hamiltonian H can now be written as,

dH(t)

dt
=

[

−cdv −

∫ ∞

0

hr (τ )v(t − τ)dτ

+

∫ ∞

−∞

h f (τ )η(xB; t − τ)dτ

]

(v − vr )

+
[

M̂ v̇r + k̂xr − ĉdvr

−

∫ ∞

−∞

hbh(τ )vr (t − τ)dτ

]

(v − vr )

+

[∫ ∞

−∞

hah(τ )vr (t − τ)dτ

]

(v − vr )

− [Kx (x − xr ) − Ka(v̇ − v̇r ) − Kb(v − vr )

− M v̇r − kxr ] (v − vr )

+

[∫ ∞

−∞

ha(τ )[v(t − τ) − vr (t − τ)]dτ

]

(v − vr )

+ [Kx (x − xr ) + Ka(v̇ − v̇r )] (v − vr )

+ {φ̇}T [Ŵ]−1{φ} (34)

Some simplification leads to,

dH

dt
=

[

−cd(v − vr ) +
(

M̂ − M
)

v̇r +
(

k̂ − k
)

xr

−
(

cd + ĉd

)

vr

−

∫ ∞

−∞

ha(τ )v(t − τ)dτ

]

(v − vr )

+

[

−

∫ ∞

−∞

hb(τ )v(t − τ)dτ

+

∫ ∞

−∞

h f (τ )η(xB; t − τ)dτ

−

∫ ∞

−∞

hbh(τ )vr (t − τ)dτ

]

(v − vr )

+

[∫ ∞

−∞

hah(τ )vr (t − τ)dτ − Kb(v − vr )

+

∫ ∞

−∞

ha(τ )[v(t − τ) − vr (t − τ)]dτ

]

(v − vr )

+ {φ̇}T [Ŵ]−1{φ} (35)

Next using Eqs. (53), (60), and the relationship,

2

∫ ∞

−∞

hbh(τ )vr (t − τ)dτ + ĉdvr

=

∫ ∞

−∞

h f h(τ )η(xB; t − τ)dτ (36)

dH

dt
=

[

−cd(v − vr ) +
(

M̂ − M
)

v̇r +
(

k̂ − k
)

xr

−
(

cd + ĉd

)

vr − Kb(v − vr )
]

(v − vr )

+

[

−R̂

∫ ∞

−∞

hah(τ )[v(t − τ) − vr (t − τ)]dτ

−

(

1

2
− F̂

)

×

∫ ∞

−∞

h f h(τ )η(xB; t − τ)dτ

]

(v − vr )

+

[∫ ∞

−∞

hah(τ )vr (t − τ)dτ

− R̂

∫ ∞

0

hrh(τ )vr (t − τ)dτ + ĉdvr

]

(v − vr )

+ {φ̇}T [Ŵ]−1{φ}. (37)

With {φ} defined as shown in Eq. (26), [Ŵ] expressed as in

Eq. (27), and some algebra, it can be shown that

dH

dt
= −cd(v − vr )

2 − Kb(v − vr )
2−

∫ ∞

−∞

hb(τ )[v(t−τ)

−vr (t − τ)]dτ [v(t) − vr (t)] (38)

if the parameter estimates are updated according to,

˙̂
M = −γ1v̇r (v − vr )

˙̂cd = −γ2vr (v − vr )

˙̂
k = −γ3xr (v − vr )

˙̂
F = 2γ4

(∫ ∞

−∞

h f h(τ )η(xB; t − τ)dτ

)

(v − vr )

˙̂
R = γ5

(∫ ∞

−∞

hah(τ )vr (t − τ)dτ

)

(v − vr ) (39)

The equalities in Eq. (39) are obtained by collecting like

terms associated with estimate uncertainties (e.g. (M̂ − M),

(k̂ − k), etc). Note further that the estimates M̂ , K̂ , R̂, etc

are slowly varying with time, while the exact quantities M ,

k, R, etc. are not functions of time. Two other equations are

obtained, which for the purpose of estimate updating can be

considered redundant without affecting Eq. (38). Of partic-

ular note is that the update equations for F̂ and R̂ require

wave and/or oscillation prediction, since both h f h and hah

are non-causal, as discussed in Sect. 3.

cd > 0, Kb can be chosen to be > 0, and hb(t) is an

even function of t . Although the position coordinate does not

appear in Eq. (38), the negative definiteness of dH/dt can be

shown following the general analysis steps in Robinett and

Wilson (2010a). Since H > 0 by definition, with dH/dt <

0, the trajectory tracking errors and the parameter estimate

errors lie on a stable manifold and convergence is achieved

as t → ∞. Nevertheless, it would be helpful to carry out

a closer study of the rate of convergence and the associated

stability bounds in further work on the present technique.
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The feedback gains would typically be designed to maxi-

mize trajectory tracking performance in test trajectories such

as unit steps or pure sinusoids [Robinett and Wilson (2007)].

Standard transient response or frequency-response design

techniques may be used, and during this design process, per-

fect knowledge of the model parameters may be assumed.

A more ad hoc procedure is followed in this work, since

the equation of motion is a second-order integro-differential

equation and since it was desired to maintain that structure

(rather than use a state-space approximation for the radi-

ation force convolution term) for a full implementation of

wave-by-wave impedance match. The adaptation gains γi

are prescribed so as to avoid sudden changes in parameter

estimates, and adjustments are made iteratively so that the

mean converted power is maximized.

The instantaneous absorbed power is defined as the prod-

uct of the total instantaneous force applied by the actuator and

the actual instantaneous velocity. The applied force FL(t) is,

FL(t) = Fr (t) + F f b(t) (40)

The net time-averaged absorbed power Pw over the inter-

val [0, T ] can be found using,

Pw =
1

T

∫ T

0

[FL(t)v(t)] dt (41)

The wave power (in kW) incident over the device diameter

2R is given by,

Pinc = 0.49H2
s Te(2R) (42)

where Hs is the significant wave height and Te is the energy

period representing the incident irregular wave record. With

Pw and Pinc expressed in consistent units, the power capture

width ratio (or capture factor) was computed using

ℓ =
Pw

Pinc

(43)

5 Calculations and results

Calculations and control simulations were carried out for the

cylindrical buoy shown in Fig. 1. The radius Rs was chosen

to be 4 m, leading to a draft Dr = 2 m. The freeboard was

assumed to be 2 m in these calculations. As mentioned, heave

motion was assumed to be predominant, and actuators with

linear response and ideal or lossless behavior were assumed

for the results with perfect knowledge.

Note that two or more actuators could be used here so

long as the required force variations in Sect. 4 are applied on

the buoy. In particular, the reactive force component could

be applied by an actuator especially designed to match the

instantaneous power requirements, while the resistive part of

the load could be applied by a different actuator.

In these simulations, the actual device behavior (as

opposed to the estimated model) was modeled by an integro-

differential equation using exact parameter values. The exact

hydrodynamic coefficients and exciting force amplitude

and phase here were computed using the numerical code

HYDRAN (HYDRAN (2012)), and were drawn from Korde

and Ertekin (2015). The exact linearized viscous damping

coefficient was computed using an assumed constant form-

friction coefficient over the the entire immersed surface area.

The procedure was programmed in the software environ-

ment Matlab. Wave prediction for the given wave conditions

(i.e. energy period and significant wave height) for the

required duration was obtained using a separate script and

read into the adaptive control simulation routine. However,

given the close match between the prediction and computed

values in Korde (2015) in most simulations, it was decided to

use the computed wave records for convenience and speed of

execution. Unidirectional sea-states were assumed. Pierson–

Moskowitz type 2-parameter spectra representing the chosen

Hs and Te were used, as defined by [e.g. see Falcao (2008)]

as,

S(ω) = 131.5
H2

s

T 4
e ω5

exp
[

−1054/(Teω)4
]

(44)

where S(ω) represents the power spectral density for a wave

frequency ω.

η(xA; t) =

N
∑

n=1

ℜ {A(ωn)exp [−i (k(ωn)xA − ωn t + θn)]}

(45)

where,

A(ωn) =
√

2S(ωn)�ω (46)

The phase of the nth frequency component, θn , is a random

number between [0, 2π ].

Results are arranged as follows: Fig. 2 shows the impulse-

response functions for the exciting force (numerical com-

putation compared with analytical approximation). Figure 3

compares the approximate radiation impulse-response func-

tion (59) with the ‘exact’ function based on numerical

computation. The next few results are shown for a sea state

with Hs = 1 m, and Te = 9 s. Figure 4 plots the reference

heave velocity found using the approximate parameter esti-

mates and Eq. (16) alongside the actual velocity in heave.

Figures 7, 8, and 9 plot the parameter-estimate updates

through the simulation. The estimates for the parameters F̂
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Fig. 2 Exciting force impulse-response function for the buoy in heave.

The dashed line in the figure represents an approximation based on the

assumption that scattering is negligible and so the Froude–Krylov force

component dominates. The solid line shows the more exact variation

with the scattering effects included, and is based on results obtained

using a Boundary Element computational code
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Fig. 3 The radiation impulse-response function for the buoy in heave.

The dashed line in the figure represents an approximation based on

the assumption that scattering is negligible and so the Froude–Krylov

force component dominates. The Haskind–Hanaoka relation is applied

on this approximation to obtain radiation damping variation in the fre-

quency domain. The time-domain impulse-response function is found

via inverse cosine transformation of the radiation damping. The solid

line shows the more exact variation with the scattering effects included,

and requires a Boundary Element computational code

and R̂ are shown in Figs. 10 and 11, respectively. Fig. 13

compares the forces Fb and Fr with F f . Figure 14 plots

the power absorbed by the actuator during the simulation

interval. Finally, Fig. 15 plots the capture width ratio vari-

ation with energy period based on these simulations. Also

provided for comparison are the capture width ratio vari-

ations under near-optimal control with perfect knowledge,

with imperfect M̂ , ĉd , and k̂ but exact hr and h f , and with

pure resistive loading, where the damping is set to a constant

value approximately exceeding the radiation damping at the

peak frequency and no real-time control is attempted.
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Fig. 4 Reference velocity signal based on approximate parameters

compared with the actual velocity. The reference velocity is computed

using wave prediction, and is the hydrodynamic velocity optimum under

a specified oscillation constraint. The best available estimates for the

exciting force impulse-response function, the radiation force impulse-

response function, and the linearized viscous damping are used in this

calculation. The actual velocity is the instantaneous heave velocity of

the buoy as determined by Eq. (1). The irregular wave input here is

generated for Hs = 1 m and Te = 9 s

6 Discussion of results

This work studies wave-by-wave impedance matching con-

trol in irregular waves based on wave prediction, where the

wave prediction is based on an up-wave measurement and

uses a deterministic model that accounts for a realistic group-

velocity range and assumes linear propagation. Such control

was discussed, for instance, in Korde (2015), where all para-

meters involved in the device dynamic response are assumed

to be perfectly known. In practice, however, device para-

meters may be imperfectly known, affecting the accuracy

of the control forces. The goal of the present paper is to

develop a strategy that will approximate the desired control

while minimizing the detrimental effect of imperfect para-

meter knowledge. The method relies on feedforward and

feedback forces to enable close tracking of the hydrodynamic

velocity optimum and parameter estimate updating. Oscil-

lation constraints are applied within the formulation using

an approximate procedure based on the frequency-domain

approach of Evans (1981) [a more direct form of the approach

was used in Korde (2015)]. Both optimum trajectory and

feedforward force are evaluated using the best available cur-

rent estimates for the parameters, and are updated each time

the estimates are updated. Figure 2 compares the approximate

exciting force impulse-response function used in the simula-

tions with the exact exciting force impulse-response function

based on a numerical code. The approximate function based

on the small-body Froude–Krylov force approximation over-

predicts the impulse-response function, but has a shorter

oscillatory signature (than the more exact function) in the

t < 0 range. Figure 3 compares the approximate and more

exact radiation impulse-response functions. The approxi-
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Fig. 5 Plot showing the instantaneous racking error for velocity; i.e.

the difference between actual velocity and the reference velocity. This

plot shows the difference between the actual and reference velocities

appearing in Fig. 4. The irregular wave input here is generated for Hs =

1 m and Te = 9 s

mate function is again found to have a greater magnitude,

and there is greater oscillation in the approximate func-

tion. These differences could potentially cause inaccuracies

in the estimated reference trajectory. The two observations

are understandable, however, in that for the floating verti-

cal cylinder geometry the diffraction force subtracts from

the Froude–Krylov force in the low-frequency range, and

becomes comparable at higher frequencies. Truncation time

for both is seen to be in the 20–30 s range.

Figure 4 shows that differences in the reference velocity

and actual velocity persist throughout the simulation interval.

Given the approximations embedded in the impulse-response

functions ha and hb as well as the other parameters M̂ , ĉd ,

and k̂, an exact match probably cannot be expected. However,

since the reference velocity itself is based on the approximate

impulse-response function hoh , it is perhaps not desirable to

seek too precise a match relative to this approximate refer-

ence velocity. Figure 5 plots the instantaneous tracking error

for velocity. Tracking errors are seen to be comparable in

magnitude to the actual velocities for the case shown. Greater

deviations are observed between the reference oscillation and

the actual oscillation of Fig. 6. It should be noted that, the ref-

erence oscillation in this work is computed using numerical

integration of the reference velocity signal with a first-order

trapezoidal integration procedure. Therefore, any small error

in the velocity determination can potentially increasingly add

to errors in the oscillation signals. Further, both reference and

actual oscillations are seen to be within the specified oscil-

lation constrains xr (t), x(t) ≤ Dr . Dr = 2 m here. It is

recalled that the oscillation constraint is not a ‘hard’ con-

straint and is here imposed through addition of damping. In

a practical implementation, real-time measurements of the

actual velocity and displacement would be shown in the plots

in Figs. 4 and 6 and used in generating the feedback force
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Fig. 6 Reference oscillation displacement based on numerical inte-

gration of reference velocity signal, compared with actual oscillation.

The reference velocity is based on approximate parameters. The refer-

ence velocity ‘estimate’ is computed using wave prediction, and is the

hydrodynamic velocity optimum ‘estimate’ under a specified oscillation

constraint. The best available estimates for the exciting force impulse-

response function, the radiation force impulse-response function, and

the linearized viscous damping are used in this calculation. In practice,

the actual velocity and displacement would be measured, but here they

are found through simulation. The irregular wave input here is generated

for Hs = 1 m and Te = 9 s
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Fig. 7 Plot showing how the estimates M̂ for M evolve through the

procedure. The evolution is given by the first of Eq. (39). The irregular

wave input is generated for Hs = 1 m, and Te = 9 s

F f b. As already mentioned, in this work, the actual velocity

and displacement are obtained via simulation.

Note that parameters M̂ , ĉd , and k̂ are updated at intervals

of Nu time steps, and in the simulations here, Nu = 10

was chosen, corresponding to a 10-times slower estimate

variation. Shown in the following figures are the succes-

sive estimates through the simulation interval and the exact

values (which are known here but likely unavailable in prac-

tice). Figure 7 shows the evolution of the estimate M̂ for

m + a(∞). The change in M̂ with respect to time is neg-

ative throughout, and becomes smaller beyond t = 300,

showing that gradual convergence is achieved, albeit with

greater error than for the ĉd and k̂ estimates. ĉd and k̂ con-

verge to their desired values more closely, as seen in Figs. 8

and 9, respectively. The initial estimates for the parameters
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Fig. 8 Plot showing how the estimates ĉd for cd evolve through the

procedure. This evolution is given by the second of Eqs. (39). The

irregular wave input is generated for Hs = 1 m, and Te = 9 s
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Fig. 9 Plot showing how the estimates k̂ for k evolve through the pro-

cedure. This evolution is given by the third of Eq. (39). The irregular

wave input is generated for Hs = 1 m, and Te = 9 s

are assumed to be about 80−120 % of their known exact val-

ues, although convergence is also observed in simulations for

different combinations of initial estimates. However, some

a priori knowledge as to whether the initial estimates are

smaller or greater than the exact values may be desirable in

practice, and could be utilized in choosing the signs of the

adaptation gains. Note that the update relations for M̂ , ĉd ,

and K̂ are all first-order differential equations. Further, esti-

mates are updated at intervals of 10 time increments, so that

considerable ‘averaging’ of the trajectory errors is allowed.

Therefore, a largely monotonic behavior is what would be

expected for these estimates. Note, however, that the adapta-

tion procedure attempts to optimize the overall performance

index H without separately penalizing errors in evolving

parameter estimates of particular parameters. Figures 10 and

11 show a less monotonic variation for F̂ and R̂. Moreover,

these variations appear to be more sensitive to the adapta-

tion gain values used in update procedure of Eq. (39). The

overall procedure is particularly sensitive to the estimates F̂

and R̂, which determine the estimated reference trajectory. R̂

additionally also determines the feedforward force Fr . The
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Fig. 10 Plot showing how the estimates F̂ for F evolve through the

procedure. This evolution is given by the fourth of Eq. (39). Note that

exact match would imply F̂ = 1. The irregular wave input is generated

for Hs = 1 m, and Te = 9 s
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Fig. 11 Plot showing how the estimates R̂ for R evolve through the

procedure. This evolution is given by the last of Eq. (39). Note that

exact match implies R̂ = 1. The irregular wave input is generated for

Hs = 1 m, and Te = 9 s

‘steady-state errors’ seen in the case of R̂ and F̂ are much

greater than for M̂ , ĉd , and k̂, which is a possible indica-

tion that one-parameter, multiplicative uncertainty models

are perhaps insufficient for the impulse-response variations

at hand. It should also be noted that the presence of the

ratio R̂/F̂ in the update relation for the reference trajec-

tory [Eq. (18)] makes the trajectory update oversensitive to

small changes in F̂ . Further work on two or three parameter

representations (additive and multiplicative) for the impulse-

response functions and trajectory update relations may be

warranted, and may provide better results. The stability mar-

gin indicated by Eq. (38) also needs to be examined further

in a more formal treatment.

Figure 12 plots the total instantaneous applied force

FL(“Fcl”) together with the instantaneous heave velocity of

the buoy. FL represents the total load applied on the heave

oscillation. The phase difference between FL shows the pres-

ence of a reactive component in FL .

Figure 13 plots the variation of the forces that need to

be applied by the actuators to provide the control under dis-
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Fig. 12 The instantaneous total applied force on the buoy along with

the instantaneous velocity. This force represents the load applied on the

buoy. The irregular wave input is generated for Hs = 1 m, and Te = 9
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Fig. 13 Plot comparing the instantaneous forces to be applied by the

actuators with the instantaneous exciting force during the simulation

interval. Note that the feedforward force Fr appears to be significant,

exceeding the exciting force at some instants. Even though the oscil-

lations are constrained in this work, forces are not. The irregular wave

input is generated for Hs = 1 m, and Te = 9 s

cussion. Both the feedback force Fb and the feedforward

force Fr are plotted, and shown alongside for comparison

is the exciting force F f . Note that this is the exact excit-

ing force variation computed using the exact h f . It is seen

that the feedback force Fb is here smaller than the feedfor-

ward force Fr . However, the mean-square Fr here appears

to exceed the mean-square F f . The large feedforward force

requirement can be understood in relation to buoy size and

needs to be weighed against the power conversion gains avail-

able with this approach. In particular, here, a relatively small

buoy (R = 4 m) is to be forced to oscillate close to the

desired optimum velocity in much longer waves. Device size

selection must therefore be informed by available actuator

technology. Further, the force magnitudes observed in plots

such as Fig. 13 need to be taken into account in actuator

selection/design. It appears that sharing this force over mul-

tiple low-dissipation actuators may be an alternative worth

considering further. Additionally, once the actuators are cho-

sen, suitable force constraints (in addition to oscillation

constraints) should be incorporated into the procedure (e.g.

Bacelli and Ringwood 2013).

Figure 14 shows the instantaneous net absorbed power

variation over the simulation interval. Some intervals of ‘neg-

ative power absorption’ are observed in the plot, suggesting

considerable deviations relative to the exact hydrodynamic

velocity optimum and the corresponding load. Not surpris-

ingly, therefore, the use of approximate parameter estimates

has resulted in a noticeable loss of power capture.

Figure 15 compares the power capture factor for a range

of wave conditions. Two-parameter spectra for a range of Te

values but with Hs = 1 m were used to generate the irreg-

ular wave inputs to these simulations. It should be pointed
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Fig. 14 The variation of instantaneous net absorbed power under the

present adaptive control scheme, as given by PwL (t) − Pw f (t). Note

that power is returned at some instants, and perfect absorption is not

possible through the simulation period owing to the mismatch between

parameter estimates and the exact values. The irregular wave input is

that generated for Hs = 1 m, and Te = 9 s
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Fig. 15 Power capture factor (‘capture width ratio’) for a range of

irregular wave conditions, defined by spectral energy period values Te.

Shown for comparison are capture factor ratios when perfect knowledge

of parameters is available, when perfect knowledge of the hydrodynamic

impulse-response functions is assumed, and also when resistive control

alone is present. Oscillations are constrained to be ≤ Dr (i.e. the buoy

draft)
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out that the capture width ratios with approximate parame-

ters and adaptive estimation are noticeably smaller than those

available with near-optimal control where exact knowledge

to all parameters and hydrodynamic impulse-response func-

tions was available. Note that capture width ratios greater

than 1 imply that more energy than directly incident over

the buoy diameter is being converted. This situation is made

possible by the so-called ‘antenna effect’ associated with

small axisymmetric heaving body converters, where cap-

ture width ratios approaching λ/(2π D) may be achieved

with a heaving buoy of diameter D, with λ representing

the wave length (providing this can be achieved without

exceeding the swept-volume constraint). Also interesting to

note is the small difference between the two cases when

the hydrodynamic impulse-response functions are approx-

imately known and updated in the procedure, and when

the hydrodynamic impulse-response functions are known

exactly and not updated. In some sea-states, the full adaptive

procedure performs slightly better. It is likely that having a

greater number of parameters to ‘adapt on’ allows the adap-

tation procedure to optimize the performance index better.

However, this conjecture needs to be verified with further

work. The time-averaged capture width ratio here is seen to

decrease as the long-wave content in the wave input grows

(increasing Te). Near-optimum power capture requires large

oscillations for the given device size (R = 4) m in swell-

dominated wave fields. The swept volume constraint restricts

the maximum oscillations to the device draft Dr , which,

given the relatively small radiation damping for small k R

(k R ∼ 0.11 for Te = 12 s) for the present, vertical cylinder,

geometry, limits the achievable power capture. Note that the

power capture width ratios are still appreciably greater than

those found for the case with constant damping.

There is considerable room for optimization available in

the choice of the feedback gains and the adaptation gains, and

further improvements in power capture should follow, as a

design strategy for gain selection evolves. In addition, it may

be worth examining approaches to incorporate reference-

trajectory determination into the overall formulation, by

adding an absorbed-power type performance function to

the system Hamiltonian in Eq. (22). Note that a number

of recently discussed approaches in the literature determine

the ‘optimal’ trajectory based on an absorbed-energy type

performance criterion rather than a priori specifying the

hydrodynamic velocity optimum as the optimal trajectory

[see for instance, Cretel et al. (2011), Fusco and Ringwood

(2014)]. In the absence of oscillation constraints, the two

approaches should lead to equivalent results. In the pres-

ence of oscillation constraints, the performance-index based

approach may allow a better use of the available ‘oscilla-

tion space’ under constraints. In addition, such an approach

would also enable a more seamless integration of trajectory

updates within the procedure. Finally, it should be pointed

out that improvement may also be desirable in the integra-

tion approach used in the present simulations. It is likely that

better accuracy will reduce the build-up of ‘phase errors’ in

the calculation of instantaneous displacement and velocity,

affecting the ‘phase matches’ between the load component

FL(t) and velocity v(t). Although the performance is mod-

est when compared against the performance available with

exact parameter knowledge, the present work constitutes a

first-step effort, and it appears worth proposing that, fur-

ther performance improvements would be possible for the

case with approximate knowledge of device parameters and

hydrodynamic impulse-response functions, if an improved

adaptive estimation and control strategy derived from the

present exergy-based approach were to be adopted in a prac-

tical implementation.

7 Conclusion

Prior results on wave-by-wave impedance matching control

based on deterministic wave prediction have assumed exact

knowledge of device parameters such as in-air mass, hydro-

static stiffness, viscous damping, and the hydrodynamic force

kernels (i.e. radiation impulse-response function and exciting

force impulse-response function). Since exact knowledge of

these quantities is frequently unavailable, this work examined

an approach to reducing the loss of performance arising from

uncertainties in parameter knowledge. This was attempted

by seeking to track the best estimated reference trajectory

(representing the hydrodynamic velocity optimum under pre-

scribed oscillation constraints) while improving the available

parameter estimates. The overall formulation for trajectory

tracking and parameter estimation was derived using a Lya-

punov function based on the system Hamiltonian formed

by combining the mechanical exergy and the information

exergy. The instantaneous mechanical exergy was formed

by adding the kinetic and potential energies for the device,

while the information exergy was expressed in terms of the

parameter estimate errors and trajectory tracking error. Since

the overall Hamiltonian for the system was positive defi-

nite, negative definiteness of its time derivative was required

for the trajectory tracking and parameter estimate errors

asymptotically to be driven to zero. Both feedforward and

feedback forces were used. Oscillations were constrained

to be less than the device draft via a ‘soft’ constraint (i.e.

not involving end-stops or other hardware-imposed inequal-

ities). A predominantly heaving cylindrical buoy was used.

Draft was assumed to equal freeboard for constraint applica-

tion. Power absorption was relative to a deeply submerged

reaction mass assumed stationary relative to the sea floor.

The computation of the feedforward force and the parameter

estimate update conditions required wave prediction. In this

work, uni-directional waves were assumed, and determinis-
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tic prediction was assumed to be available [for instance, as

illustrated in Korde (2015)].

Simulations were carried out in irregular wave conditions

derived from 2-parameter spectra over a range of energy

periods. Simulation results examined trajectory tracking and

parameter estimate update performance as well as power cap-

ture. The present work represents a first step towards a fuller

implementation. It was observed that the present procedure

did lead to capture width ratios greater than those avail-

able with resistive control under ‘swept volume’ oscillation

constraints. The present results appear to suggest that the

present single-parameter, multiplicative uncertainty model

for radiation and exciting force impulse-response functions

may not be sufficient, and a better approach may be worth

considering. Since perfect knowledge of mechanical parame-

ters and device hydrodynamics is rarely available (e.g. often

assumptions are implicit in the determination of hydrostatic

stiffness, linearized viscous damping, and the radiation and

diffraction forces), a procedure such as examined here would

be desirable in practical implementations. The present work

considered a single-mode vertical cylinder buoy. However,

the method studied here may be applied to other single-mode

devices as well. Further work to examine improvement of any

wave prediction inaccuracies and incorporation of measure-

ment errors would also be beneficial. In addition, extensions

to other geometries and multiple mode oscillations could be

worth considering in future work.
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Appendix

The steps leading to the approximate impulse-response func-

tions for the exciting force and radiation force are discussed

below.

For a heaving cylinder with Rs = 4 m, here, Dr =

Rs/2 = 2 m, so that k Dr ≈ 0.21 or k R ≈ 0.4 for a wave-

length λw = 60 m, for which the deep-water wave period

Tw = 6.2 s. For this and longer wave periods, diffraction

effects for the present geometry may be small enough to be

ignored, so that a Froude–Krylov assumption may be rea-

sonable (see Mavrakos and McIver 1997). Given the interest

here in seeking approximations, the Froude–Krylov force is

further approximated here to ignore the wave profile variation

over the buoy diameter, letting e−kr ≈ 1.

F f (iω) ≈ F f k(iω) = ρgπ R2
s e−k(ω)Dr A(ω) (47)

The frequency-response function corresponding to F f (iω)

above can simply be expressed as,

H f (iω) = F f (iω)/A(ω) (48)

In deep water, the dispersion relation gives, k(ω) = ω2/g.

Thus, under the Froude–Krylov approximation, the impulse-

response function corresponding to H f (iω) can be expressed

as

h f (t) =
1

2π

∫ ∞

−∞

H f (iω)eiωt dω

≈
1

2
ρgR2

s

∫ ∞

−∞

e−ω2/geiωt dω (49)

Using Euler’s equality,

h f (t) ≈
1

2
ρgR2

s

∫ ∞

−∞

(

e−ω2/g cos ωt + ie−ω2/g sin ωt
)

dω

(50)

Since sin ωt is an odd function, and e−ω2/g is an even function

ofω, while cos ωt is also an even function ofω, the expression

above reduces to,

h f (t) ≈ h f h(t) = ρgR2
s

∫ ∞

0

e−ω2/g cos ωtdω (51)

defining h f h as the approximate exciting force impulse-

response kernel. The integral in Eq. (51) can be evaluated

using integration tables Gradshteyn and Ryzhik (1994),

resulting in,

h f h(t) =
1

2
ρgR2

s

√

πg

Dr

e−gt2/(4Dr ) (52)

Note that, as expected, h f (t) and its approximation h f h(t)

are non-causal functions of t . Here, ‘exact’ variation for the

exciting force is defined as that determined using a numerical

procedure based on the boundary element method HYDRAN

(HYDRAN 2012; Korde and Ertekin 2015). While multiple-

parameter relationships between the approximate and the

exact functions are possible, it is supposed here that, for all t ,

a single multiplicative parameter F̂ can be used to relate the

approximate and exact functions, where F̂ may be updated

at every iteration. Thus, in simulations here, the exact h f (t)

is thought to be unknown and assumed related to the approx-

imate estimate h f h(t) by

h f (t) = F̂h f h(t) (53)

F̂ = F = 1 implies an exact match. It is assumed here that

F̂ is a slowly varying parameter.
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The radiation impulse-response function hr may generally

also be found using a computational procedure, and the odd

and even function parts hr (t) = ha(t) + hb(t) would be

found simply as hb(t) = hr (t)/2, hb(−t) = hb(t) for t > 0,

and ha(t) = hr (t)/2, and ha(−t) = −ha(t) for t > 0.

Here, an approximate estimate hrh for hr is obtained based

on the Froude–Krylov approximation above i.e incident wave

potential much greater than diffraction potential. Using the

Haskind–Hanaoka relation Wehausen (1971), the radiation

damping in heave can be expressed as,

b(ω) =
k|F f (iω)|2

8Pw

≈
k

8Pw

|F f k(iω)|2 (54)

where Pw is the incident wave power per unit crest length

given by,

Pw =
ρg2 A2(ω)

4ω
(55)

Thus, under the Froude–Krylov approximation of Eq. (47),

b(ω) ≈ bh(ω) =
1

2
ρπ2kωR4

s e−2ω2 Dr /g (56)

Note that k = |ω|ω/g, so that k has the same sign as ω. Fur-

ther, k represents outgoing waves for the radiation problem.

Thus, the approximate radiation impulse-response function

is defined as,

hrh(t) =
ρπ2 R4

s

2g

1

2π

∫ ∞

−∞

|ω|ω2e−2ω2 Dr /geiωt dω (57)

Using Euler’s equality,

hrh(t) =
ρπ2 R4

s

2g

1

2π

∫ ∞

−∞

|ω|ω2e−2ω2 Dr /g(cos ωt

+i sin ωt)dω (58)

Note that, |ω|ω2 and e−2ω2 Dr /g are even functions of ω. Since

cos ωt is an even function and sin ωt is an odd function, the

integral in Eq. (58) reduces to,

hrh(t) =
ρπ R4

s

2g

∫ ∞

0

|ω|ω2e−2ω2 Dr /g cos ωtdω (59)

The integral in Eq. (59) can also be evaluated using inte-

gration tables Gradshteyn and Ryzhik (1994). However, it is

more convenient to use numerical integration in this case.

Here, the exact b(ω) is based on a numerical calcula-

tion using HYDRAN Korde and Ertekin (2015). Just as with

h f h(t) and h f (t), a single (different) multiplicative parame-

ter is assumed to relate the approximate hrh(t) and hr (t).

Thus,

hr (t) = R̂hrh(t) (60)

R̂ may be updated periodically during the simulation. In sim-

ulations, hrh is all that is considered known a priori and the

exact hr is thought to be unknown. When R̂ = R = 1, the

exact hr (t) is approached. R̂ is also assumed to be slowly

varying.
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