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The time dependent Ginzburg Landau equation and the fluctuation propagator of a super­
conductor in a static electromagnetic field are examined to the next order of the small param­
eters 1/SF't" and TfsF, where sF is the Fermi energy and 't" the relaxation time. The coef­
ficient of the time derivative of the order parameter becomes a complex number, whose 
imaginary part is of order of TlsF smaller than the real part. This term is shown to be 
important for Hall effect due to the fluctuation near Tc, which has not been expected in the 
usual approximation. The arguments cover the cases of arbitrary mean free paths near Tc 
and of arbitrary temperatures except T<f:.Tc. 

§ 1. Introduction 

In recent years effects of the :fluctuations of the order parameter in super­
conductors on dynamical properties are studied extensively both near transition 
temperature, and in vortex states of type-II superconductors near the critical field 
Hc 2• Aslamazov and Larkin1

) showed that there exist anomalously large contri­
butions to the electrical conductivity, the ultrasonic attenuation and the specific 
heat by taking account of a process, now called the AL process, where the virtual 
cooper pairs represented by fluctuation propagators themselves respond to the 
external fields. Phenomenological descriptions2

) of such effects of fluctuation are 
based on the time dependent Ginzburg Landau (TDGL) equation, which is also 
used to examine the effects of dynamical order parameter in the vortex state near 
Hc2•3)-5) 

In those arguments they used the fluctuation propagator 9J (q, w) and the 
linearized TDGL equation for the order parameter ?JI (r, t), which are derived in 
the following assumptions and approximations. (i) The ladder approximation for 
the BCS effective interaction with a cutoff energy is adopted. (ii) The effects 
of randomly distributed impurities are taken into account in the Born approxima­
tion for the one-particle propagators and in the ladder approximation for 9J. 
(iii) Electrons are assumed to have a dispersion similar to free electrons. (iv) 

*> Part of Ph. D. Thesis submitted by H. Ebisawa to University of Tokyo (1970). 
**) Present address: Department of Applied Science, Faculty of Engineering, Tohoku University, 

Sendai. 
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Wave Character of the Time Dependent Ginzburg Landau Equation 1043 

Integration over a momentum variable is transformed into the energy integral 
multiplied by the density of states, N, at the Fermi energy. 

with 

By these approximations, we have 

ID (q, w + io) = - _!_ [77- il-ow + Aq2
]-\ . N 

f) . 1 
r-?Jf (r, t) = -P2?JI' (r, t) - a?JI' (r, t)' 

fJt 2m 

A=nD 
8T' 

a=~7J-
2mtt' 

(1) 

(2) 

(3) 

r = 2~tt, (4) 

where v and r are the Fermi velocity and relaxation time, respectively. Thus 
all coefficients are real positive numbers. In Eqs. (1) and (2), we neglect terms 
of the order of 1/sFr and T/sF, where SF is the Fermi energy. Using ID, Eq. 
(1), or the TDGL equation, Eq. (2), we can examine such dynamical properties 
as electrical resistivity and the ultrasonic attenuation. However as regards the 
Hall effect, Caroli and Maki3

> obtained a vanishing contribution in the vortex 
state, and Tsuzuki and the present authors6

> showed that the Hall conductivity 
does not have contributions from the AL process slightly above Tc. These van­
ishing results on Hall effects are intimately connected with the fact that Ao and 
A in Eq. (1) or Eq. (2) are real quantities. The reality of Ao and A are, however, 
true only if we neglect terms of the order of 1/sFr and T/sF in the derivation 
of ID. Thus we are in need to determine the fluctuation propagator ID and the 
TDGL equation to this order to examine some dynamical processes. These de­
terminations up to this order in the presence of external electric and magnetic 
fields are the purpose of the present article. We confine ourselves within the 
Born approximations and the ladder corrections to impurity scattering. That is, 
we work within (i) and (ii), but need not (iii) and (iv). 

In § 1 the derivation is given for the nearly free electron system to clarify 
the expansion parameters. As is shown the corrections, which is of order of 
T /sF, depend on the energy dependence of the density of states function near 
the Fermi energy. Then we consider in § 3 the cases of arbitrary Bloch electrons. 
In § 4 we briefly discuss a new effect due to these corrections. 

§ 2. Fluctuation propagator and TDGL equation for a 
nearly free electron system 

For nearly free electrons, the structure of the propagator g) is very simple. 
The model Hamiltonian is 
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1044 H. Ebisawa and H. Fukuyama 

Here A is the vector potential and the impurity potential U(r) is assumed of 

short range. The units are taken as h=c=kB=1 and the signs of g and e are 

positive. The one-particle Green's function, in a system without A or g, is given 
by 

where 

1 . 
-=2nniu2N, 
r 

N is the density of states 

X l =1+---r+ ... , 
2sF 2 

N= mkF. 
2n2 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

u is the Fourier transform of U(r). · The branch of square root is such as Im <f?1R>O. 

From now on, the approximation, Re 1: = 0, is adopted. 

In the ladder approximation for the BCS coupling, the fluctuation propagator 

Is given by 

1 i[i i[i Il(q, iw-;..) = -- drdr' exp[iw-;..(r-r')J<T .. P"t(q, r)P'( -q, r')), 
{3 0 0 

where 

(12) 

(13) 

(14) 

Here IJR is an analytic continuation of II(q, iw-;..) from the upper plane of{)) and 

the bracket means the thermal average. Adopting the ladder approximation for 

impurity scattering, which is consistent with Eq. (8), one obtains 

IJR(q, w) =~fro dx tanh _!E_[flRR(x, x+ w) -flAR(x, x+w) 
4nz -oo 2T 

+flAR(x-w, x) -flAA(x-()), x)], (15) 
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Wave Character of the Time Dependent Ginzburg Landau Equation 1045 

where 

jjBB' (X, X1
) = gBB' (q, X, X1

) [1- niu2gBB' (q, X, X1
) ]-1, 

g(q, iem ien') = :E G (k, ien) G (-k- q, - ien~), 
k 

(16) 

(17) 

B and B' take A or R, which means that the function Is analytically continued 

to real axis from below or above, respectively. 

Explicit calculations lead to 

. 1 2 1 

gBB' (q, x, x') = :: N (/)1B (x) + (/)2B' (x') {1 + 3111'2 [cp1n (x) + (/)2B' (x') ]2} ' (18) 

in the small q limit, where 

j -x' -.SA( -x') x' i 
C(J2R(x')== 1+ e]i' _-1+2e]i'+2r+···. (19) 

One can immediately see that the fourth term in Eq. (15) gives the same con­

tribution as the first. In the dirty limit Eq. (15) is calculated as 

N ( w \ sco x =- 1+-) dxtanh-
2 4eF -co 2T 

{[{ 
w+iDq

2 

( w )}-1 . _1] 1 } 
x x+ 2 1+ 4c;F - (x+zo) + x+io ' (20) 

which is valid to the linear order of w. Here we have performed the expansiOn 

of cp's with respect to 1/c;Fr and x/c;Fr-...JT/c;F (or WD/c;F) to the order following 

the one that leads to the ordinary ID. The expansion parameter with q2 is rDq2
• 

Introducing the BCS cutoff, !xi <wD, in the second term, and using the relation 

l__JIR(O, 0) = l_-Nln 2rwD =ln_Z_, 
g g nT Teo 

(21) 

one obtains JIR and then IIJR as follows: 

[I!JR(q,w)]-
1=-N{ln ~o +w(~ +t:)-w(~) 

+_!_[_!_-ln_Z_- w(l_ + e:) + ¢ (l_)]}' (22) 
4c;F gN Teo 2 2 

where ¢ 1s the di-gamma function and 

- iw + Dq 
2 

( w ) 
(= 4 T 1 +4- · 

7C eli', 
(23) 
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1046 H. Ebisawa and H. Fukuyama 

In the presence of a magnetic field, q should be replaced by Q = q- 2eA.7
> This 

result, Eq. (23), has new terms proportional to w, which is smaller than the 
ordinary terms by a factor T / cp. 

If Dq2/T<1, we get 

[.fDR(q, w)]-1= -N[ln T +J...q2 -iJ... 0w+_!!!__-1-]~ 
Teo 4sFgN 

(24) 

This equation is valid for cases with arbitrary values of mean free path, if we 
set 

7( (3)v2 

J...- 48(nT)2 x(p), (25) 

where X (p) is the Gor'kov function, B) given by 

X (p) = _8_1_ { n2 + l_[¢ (_!_) - ¢(_!_ + _!_P)} J 
7( (3) p 8 2p 2 2 2 ' 

(26) 

1 
p= 2nrT· 

So far we have neglected the effects of electric fields. For the derivation 
of the TDGL equation which includes a scalar potential of an electric field, careful 
treatments are necessary concerning the ordering of the operator 8 /8r and the 
potential. Introducing an external field by 

(27) 

one has the equation for the order parameter Jt,9
> 

Jt(q, w) = g {JIR(q, w) Jt (q, w) + PR(qh q2, w) Jot Cq1) 2e V(q2, w)}, (28) 

to the linear order of V. The function P is defined by 

P(qh q2, iw}o) = - _!_ fP fP drdr' exp [iw}o (r- r')] 
{3 Jo Jo 

x (T./Jft Cq1 + q2, r) 1Jf (- qh r) n (- q2, r')) (29) 
where 

n(q) = J dr exp[ -iq·r]¢tt(r)¢t(r). 

In the dirty limit, a similar calculation to those for JIR yield PR(qh q2, w) for 
the limit, w___,.O (Appendix A). 

iN ( 1 Dq
2

) 
PR(qt, q 2) = - 4nT ¢<

1
> 2 + 4nT 

N [ 1 T ( 1 Dq1
2

) ( 1 ) 
+ 4cp gN-ln Teo-¢ 2+ 4nT +¢ 2 
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Wave Character of the Time Dependent Ginzburg Landau Equation 1047 

where ¢<1) is the tri-gamma function. In the r-representation, q1 or q2 is an operator 

8/8r which operates on jt(r, t) or V(r), respectively. Thus we obtain 

{¢ (_!_ + DQ
2

) _ cjJ (_!_) + ln I_+ - i(}) + 2ie V(r) ¢Cl) ( _!_ + DQ
2

) 

2 4nT 2 Teo 4rcT \ 2 4rcT 

+ (})- 2e V (r) [-1- _ ¢ ( l_ + DQ
2
) + ¢ (_!_) -ln T _ DQ

2 
¢<1) (_!_ + DQ

2
) 

4sF gN '2 4rcT 2 Teo 4rcT 2 4rcT 

-4rcT~DQ2 f2eV(r), 1 J 1 
}Jt(r,t) =O, 

n L 2sn + DQ2 2sn + DQ2 
(31) 

where [ , ] is a commutator and 

Q=q-2eA. 

§ 3. Fluctuation propagator in the case of Bloch electrons 

We assume an arbitrary Sk- k relation in a single band dispersion, restricting 

ourselves only to systems with the cubic symmetry. In this section we confine 

ourselves only in the dirty limit, and in the systems with a Fermi energy such 

that 1/sFr<1, T/sF<1 and (})D/sF<l. Equation (15) is still valid if one use the 

correct expressions for fl, i.e., for g. The self-energy is calculated as 

(32) 

where N(x) is the density of states at cp+ x. Similarly one obtains 

gAR(x,x)= JdskN(sk) 1 
. 

1 
. ~-ircN', (33) 

x-sk+Sp-z/2r -x-sk+sF-z/2r 

where N' is the derivative of N with respect to x at x = 0. Using the relation 

and neglecting the quantity of the order of (})D/ cp, one gets 

(}) SIJJD X d JIR, 2+3 (q, (})) =-. dx tanh- -[gAR(x, x)- 1 -niu2
]-

1 =0. 
4rcz -IJ)n 2T dx 

Another branch of g is expressed as 

gRR(x, x+(})) =~ GR(k, x)GA(k, -x-(})) 
k 

(34) 
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1048 H. Ebisawa and H. Fukuyama 

where the first term is expanded in terms of (J) as 

The k summation can be performed if one notes that one can expand the de­
nominator of G in terms of rx/"'.JrT. 

:E GR(k,x)GA(k, -x) = deN(e) eF-e+~z~-x 1+~z~~-S [ · ( · N' )] -
1 

k 2r 2r N 

X Sp-e--z~+x 1--z __ _ [ 
· ( · N' )]-

1 

2r 2r N 

=2rcNr(1-2rx), 

:E GR(k, x)_LGA(k, -x-{f)) =- :E _J__GR(k, x)_J__GA(k, -x-(J)) 
k 8k/ k f)kp f)kp 

=- :E GR(k, x)GA(k, -x-(J)Y(_J__e(k))
2 

.k f)~ 

=- :E(_]_e(k) rGR(k, x)2GA(k, -x)2 

k f)kp 

(37) 

(38) 

-2{)) (1--i_ N' ):E(_J__e(k))
2

GR(k, x)2GA(k, -x)3
• (39) 

2r N k f)kp 

The first of Eq. (39) is evaluated as follows. 

- :E(-1__e(k) rGR(k, x)2GA(k, -x)2 

k f)k,. 

S [ · ( · N' )-. - 2 

=- dea(e) Sp-e+ dr -x 1+ dr N J 

X Sp-S--z-+x 1--z-~~ [ 
· ( · N' )] -

2 

2r 2r N 

=4rcr3a(sF) (1+3irx), (40) 

where 

(41) 

In an isotropic system, a (eF) is independent of If.. By similar procedures to Eq. 
(40) one obtains 

:E(_]__s(k) rGR(k, x)2GA(k, -x)S 
k f)k,. 
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Wave Character of the Time Dependent Ginzburg Landau Equation 1049 

[ 
ia' ( ia' )] =6nir4a 1+--+8irx 1+~- . 
6ra 8ra 

(42) 

By Eqs. (37), (38), (39), ( 40) and ( 42), Eq. (35) is expressed as 

gRR(x,x+U))=2nN{1+iU)r+2irx[1+iU)r(1- 1r ~)]}-2rcr3aq2• (43) 

Thus we get 

JI1+ 4 (q, 0)) =~ Jdx tanh ~[gRR(x, x + 0))-1
- niu2

] 

2nz 2T 

=N[1 +2iU)r (1-_i__ N' )] fdx tanh~ 1 
2 4r N 2 T x + i( ' 

(44) 

where 

( = -
1- (- iU) + Dq2

) [1 + 2iU)r (1 - _i_ N' ) ] , 
4nT 4r N 

(45) 

D=ar2/N. 
The same procedures of the integration over x as used In § 2 yield 

0) N' [ 1 ( 1 ) ( 1 ' T J} +--- -<J; -+( +<J; -) -ln~ . 
2 N .gN 2 2 Te 

(46) 

Again q should be replaced by Q = q- 2eA in the presence of a magnetic field. 

§ 4. Discussion 

We have derived the fluctuation propagator and the TDGL equation for the 
order parameter and found the new terms proportional to 0) of order of TjsF. 
Though it is small it is important in some situation. One can show that there 
is a contribution to Hall conductivity due to fluctuation by use of the newly 
derived TDGL equation, Eq. (31), instead of Eq. (2). The arguments are restrict­
ed in the range near Te. The basic equations are 

where 

h(r+is)( :t +2ie¢)Jt(r, t) =- [ 2~( -ir-
2
:Ar+a]Jt(r, t), (47) 

j(r, t) =- i!__(y -P' +4i~A)Jt(r', t)A(r, t) I , (48) 
2m c ~~ 

2a e=-r. 
7C 

(49) 
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1050 H. Ebisawa and H. Fukuyama 

As we are concerned only with weak magnetic field cases, we apply the Wigner 

representation10
> to treat the magnetic field for the system of fluctuating order 

parameters. Using the formal solution Jt (t), one gets the density matrix of the 

system as 

p=(J(t)Jt(t)) 

=-B- dt' exp 2k T st [( 
hr -co h(r- is) 

i~ext ) (t- t') J • 1 

!}[ + i!J{ext ) (t _ t') J 
h(r+ ie) h ' 

(50) 

where 

!J[ 1 2 
=-'It +a, 

2m 

1t = p + 2.!!.__ A , 
(51) 

c 

!}[ext= 2eEx . 

The bracket means ensemble average with respect to stochastic variables, and 1 

means the unit matrix. The factor in front of the integral in Eq. (50) is adjusted 

such that in the absence of external fields p may be consistent with GL free 

energy. 
Constructing the Liouville operator for the Wigner distribution function I 

corresponding to p from the equation of motion, one obtains 

fi/ = i (.£o + .£' + Lext) I+ 2kB T ' 
fit hr 

(52) 

i.£ = - 2(-1-n2 +a) - .£ !!_ _}_, 
hr 2m /!. m fix 

· r' _ e2(J)c ( fi fi ) 
l.,L ---- 7Cx--7Cy-r2 finy finx ' 

(53) 

i.£ext = 2eE_}_. 
finx 

The equilibrium distribution function IS 

fD= kBT 
(1/2m) 7t

2 +a 
(54) 

Following Kubo's derivation of the expression for the conductivity tensor to the 

linear order of H, one gets 

(55) 
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Wave Character of the Time Dependent Ginzburg Landau Equation 1051 

_ 8e2wct c.kBT 1 Jd d 2exp[ -(2/hr)(1/2m·7t2 +a)] 
- ---- 'lrx 7Cy7Cy ' 

m 2 r 2nd (1/2m ·7t
2 + a)2 

(56) 

where the restriction of phase integral is used. Explicit calculations lead to 

I.e. 
I Wet: 1 e2 1 

(Jxy=-----
9 gN 16hd r/ 

(58) 

The temperature dependence is thus found more singular than (J~x by Aslamazov­
Larkin.1) 

The full discussion of this large contribution to the Hall conductivity due 
to fluctuations will be given in a following paper, based on the microscopic theory, 
including contributions form the Maki process. 11

) 

A note is added concerning the difference of the new term in the fluctuation 
propagator or the TDGL equation form the corresponding one by Abrahams­
Tsuneto12) and Maki.18) Theirs include the q2 term as 

(D+ _i )q2. 
4m 

(59) 

As is shown in Appendix B, g)R (q, w) is a real number for w = 0 in any approxi­
mation for the impurity scattering other than the Born and the ladder one as far 
as we work in the ladder approximation for the BCS coupling. 

In such approximations we may expect the corrections of order of 1/c.ur to 
the coefficient of w, which do not appear in the ladder approximation for the 
impurity scattering. The consistent treatments over 1: and the vertex corrections 
must be done. One more open problem now is the validity of neglecting the 
real part of 1:, which is closely related to the model potential due to impurities. 
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Appendix A 

Calculation of pR (q, q') 

In the ladder approximation Eq. (29) becomes 
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1052 H. Ebisawa and H. Fukuyama 

X [1- niu2g(qh isn, isn) ]-1 [1- niu2g(q2, isn, - isn + iwA) ]-1 

X [1- niu2g(q1 + q2, isn, isn- iwA) ]-1
• (A·1) 

The analytically continued function of the summand is calculated similarly to fjBB', 

as 

1 
X-------------------------------

(/}11 + (/)2- ir- Cq1 + q2)2/3kF2 · ir 1 (cp/ + cp2) 

{ 
ql

2 
[ 1 1 

X 1 + 3k/ (cp1 + (/)2)2 + 2 (cp1 + cp/) (cp1 + (/)2) 

+ 2 (<Pl + <P•; ( rp,' + <P•) 2 (<Pl + <P.'~ (<P.' + <P•) J 
(q1+q2)

2 
. } + 3kF2 (terms obtamed by exchange of cp1 and cp/) , 

where cp~, cp2 or cp/ means the abbreviation of cp1B (x), cp2B (x) or cp1B' (x'), respec­
tively. Here q'2 is put to zero because the space charge, P2V, is vanishing. 
Expanding cp's in terms of T/sF and 1/sFr, one obtains, to the lowest order of 
{)), 

R Ns X X 1 1 P Cq1 q2) = - dx tanh-----------------
' 4 2T -2sF x+iD/2·q12 x+iD/2· (q1 +q2)2 

+_wN_Jdxtanh-x __ d_[ 2 1 _1_(1+-i-D(q1+q2Y)] 
4 2T dx w(1-x/2sF) x-iD/2·q12 -2 4sF ' 

which leads to Eq. (30). 

Appendix B 

Reality of ilJR(q, 0) 

By definition, we have 

IJR(q, 0) =-~ fdx rdrexp[iq(r-r')] 
4m J 

(A·2) 

where bar means the ensemble average over the random distribution of impuri­
ties. In Eq. (B ·1) we have put {)) = 0, for no singularity appears if (J)---)0. Im-
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Wave Character of the Time Dependent Ginzburg Landau Equation 1053 

purity potential is real and the scattering is elastic. We have, then, 

[GR(r, r', x)]*=GA(r, r', x). 

Thus JIR(q, 0) 1s real. 
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