
CHAPTER 29 

WAVE  CHARACTERISTICS   IN  THE   SURF   ZONE 

I.A.   Svendsen1       P.A.  Madsen2      J.  Buhr Hansen1 

ABSTRACT 

The equations describing conservation of mass, momentum and energy in 
a turbulent free surface flow are derived for a controle volume extending 
over the whole depth. The effect of the turbulent surface oscillations 
are discussed but neglected in the following analysis, where the equations 
are applied to the energy balance in a surf zone wave motion. This leads 
to results for the wave height variation and the velocity of propagation. 
The results cannot be reconciled completely with measurements and the 
concluding discussion is aimed at revealing how the model can be improved. 

1. INTRODUCTION 

Wave breaking and wave development in the surf zone are topics that 
have given raise to numerous investigations in the past, and yet much 
remains to be done before a satisfactory understanding has been obtained 
and real prediction is possible. 

The present paper describes a combined experimental and theoretical 
work. We concentrate on the development of the gross parameters of wave 
motion after breaking on a gently sloping beach, and first of all on the 
phase velocity c and the energy dissipation, i.e. the attenuation of the 
wave height. 

From visual observation aided by photography in laboratory flumes and 
in the nature it appears that immediately after the wave has started to 
turn over from the breaking point a violent transition takes place over 
a horizontal distance of several times the water depth at the breaking 
point. In this region, which we term the outer breaking region, the motion 
still shows large scale patterns that are repeated with only small vari- 
ations from wave to wave (in regular waves) though they of course differ 
radically with the type of breaking and hence also from wave to wave in 
an irregular train of waves as on a natural beach. This feature of the 
breaking process is most significant in a plunging breaker. 

From this description it is natural to conjecture that the process is 
dominated almost entirely by the wave data at the breaking point, i.e. 
the water depth h and wave height H . In other words that for a wide 
range of wave parameters the horizontal scale for the development in this 
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Fig. 1  Wave characteristics in the surf zone. 
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Fig. 2 Relative change in wave height right after breaking. 

region is h . This is actually confirmed in Fig. 2 which shows the 
relative change in wave height H/H versus the distance from the 
breaking point measured in units of h. . 

The figure also includes data obtained by Horikawa & Kuo (1966) and 
by Nakamura et al (1966) on a similar slope (1 in 30 against ours 1 in 
34) though the above mentioned conjecture implies that the effect of 
the slope is insignificant. It is worth noticing that the wide range 
of wave parameters in Fig. 2 means that the wave height variation is 
independent of the breaker type (spilling or plunging). Considering 
the actual differences in the motion one must question the adequacy of 
the notion "wave height" as a means of description. 

As the wave propagates further the large scale deterministic flow 
breaks up into small scale details which gradually become of a random 
turbulent nature. During this process the front of the wave becomes 
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very similar to a moving bore or a hydraulic jump, and we may speak of 
a system of periodic bores. We term this the inner breaking region and 
it extends to the shoreline where the run-up starts. 

It should perhaps be emphasized that if the wave breaks at or near 
the shoreline (as e.g. a collapsing or surging breaker) this region is 
absent and the outer region is immediately followed by the run-up. The 
description also fails to apply if the depth starts to increase shore- 
wards so the breaking ceases. 

One of the remarkable features of the inner region is that the waves 
or bores from a plunging breaker cannot be distinguished visually from 
those originating from a spilling breaker. 

Thus the water motion at each depth seems to be strongly locally 
controlled in the sense that local depth and bed slope determines the 
characteristics of the flow and hence the energy dissipation, the shape 
of the wave including energy flux, and consequently the decrease in 
wave height. This hypothesis will find further support in the measure- 
ments reported in § 2, where we shall find that for a particular wave 
train the height to depth ratio H/h is only slowly decreasing and the 
shape is almost constant in the case of a constant slope. 

The internal flow pattern has been studied by Peregrine and Svend- 
sen (1978) who describe the resemblance with in particular hydraulic 
jumps and single bores occurring in front of a propagating change in 
water depth. Based on a new flow visualization method they concluded 
that the turbulence associated with a hydraulic jump or a bore is not 
limited to a surface roller. In fact there is nothing that separates 
the surface roller from the rest of a region of highly turbulent flow 
which originates from the toe of the roller. From there the turbulence 
develops, in the beginning much like in a turbulent mixing layer. The 
thickness of the turbulent region increases gradually with distance 
behind the toe of the roller but remains attached to the free surface. 
At some distance it reaches the bottom too. These conclusions are 
supported by the measurements made in a hydraulic jump by Resch et al. ' 
(1976). 

It is the purpose of this paper to try to explain analytically the 
basic features phase velocity, energy dissipation rate and wave height 
attenuation. For this purpose we develop in § 3 the integrated forms 
of equations describing conservation of mass, momentum and energy and 
discuss the assumptions made, in particular with respect to the turbu- 
lent surface fluctuations. 

§ 4 describes how the energy equation can be used to determine the 
wave height variation and the measurements are used as guidance in the 
choice of velocity and pressure profiles required in the computations. 
This also applies to the determination of the velocity of propagation 
c which turns out to be an important quantity in the description. 

The conclusions are not satisfactory yet, and the analysis is 
succeeded by a discussion of the inaccuracies and possible improve- 
ments (§ 8) . 
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2. EXPERIMENTAL RESULTS 

The experiments were performed in one of ISVA's 60 cm wide wave flumes 
(length 32 m) with a water depth at the wave generator of 36 em's. The 
waves were of the very regular type deprived of their free second har- 
monic components (Buhr-Hansen and Svendsen, 1974). The waves broke on a 
plane slope 1:34 (see Fig. 3) and the surface variations were measured 
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Fig. 3 Experimental set-up. 

by resistance gauges (two goldplated silver wires, 0.17 mm diameter, 
5 mm apart) and recorded digitally. Eight fixed wave gauges (denoted 
channel 0, .., 7) were used, positioned as shown in Fig. 3. Only surface 
elevations were measured and the depth (excluding set-up) range from 
about 82 mm at channel 0 to about 13 mm at channel 7. 

The following account of measurements is only a preliminary presenta- 
tion. Results of a more detailed and systematical investigation will 
follow. 

First it is worth mentioning that resistance wave gauges can not with- 
out further notice be used in water with air entrained as bubbles as we 
find it around the front of the broken waves. However, detailed in- 
vestigations have been made in a vessel with controlled air entrainment. 
The results show that the gauges used to the accuracy required here 
measure solid water, i.e. measure the elevation we would have had if the 
air had been absent. Furthermore visual observations of the bubble-water 
mixture were compared with photos of the front of the waves indicating 
that the actual air content in the most densely entrained parts of the 
laboratory wave is only 2-4 per cent. 

Thus the surface elevations reported in the following may be regarded 
as the elevation of water with normal density. 

The digital registration makes it possible to identify data points 
separated an integral number of wave periods, and thus an ensemble 
average over many waves can be obtained for the profile at each measur- 
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ing point. Fig. 4 shows such profiles (n) and the standard deviation 
a(n). The results were obtained over 20 wave periods. As expected the 

Fig. 4 Mean and standard deviation of measured profiles for 
experiment with T = 1/.7 sec, H. = 100 mm. 

standard deviation is maximum (about 0.2H, H being wave height) at the 
front and very small elsewhere. Notice that the variations at the front 
may well be fluctuations in the horizontal position interpreted as 
vertical fluctuations by the ensemble averaging procedure. 

Fig. 5 shows wave height to mean water depth H/h   versus still 
water depth h   in the region considered. The experiments reported 
have deep water steepnesses Ho/Lo between 0.0088 and 0.034. Thus the 
distance from the breaking point varies from test to test. The figure 
shows that H/h is decreasing slowly and that the value depends on Ho/Lo. 
Yet the scattering for tests with similar data is considerable, so 
further investigations are obviously needed for a systematical under- 
standing of this point. 
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The measurements of c reported in Fig. 6 were obtained from a trolley 
moving along the wave flume with two wave gauges 20 cm apart. This set- 
up measured the propagation time between the two gauges for a point of 
the wave with a fixed chosen elevation. Results for c versus mean water 
depth are shown in Fig. 6 with v^jhMM<, as reference curve. It is tempting 
though - as we shall see - irrelevant to conclude that the linear 
shallow water result is a fair approximation (i.e. 
equal to unity). 

For each of the 8 recording points (channel 0 through 7) the (ensemble) 
mean profiles have been determined in each test and Fig. 7 shows such 
profiles at 4 of the points for 4 different tests, and Fig. 8 shows a 
comparison of the profiles at the first and the last measuring point. 
Notice that the abscissa corresponds to increasing time at fixed x so 
that the wave profiles are "propagating towards the left". The vertical 
coordinate is scaled with the local wave height to make a direct com- 
parison possible. 

The striking feature of these figures is the remarkable similarity 
of the profiles, not only from point to point in a particular test, but 
also at the same point for different deep water data (Fig. 8). In fact 
the only significant development seems to be a decrease in the height 
of the crest and an increase in depth of the trough as the wave propa- 
gates shorewards. Since the surface elevation r\  is adjusted so that 
rT J  n dt = 0 (i.e. ri is measured from the local MWS) these changes do of 
0 
course correspond to a systematical change in shape. It may be noticed 
that this development goes in the direction of a linear variation of r\ 
between crest and trough. 

In the following sections we try to understand the physical flow 
conditions behind these results on the basis of the fundamental equations 
of hydrodynamics. 
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3. THE INTEGRATED EQUATIONS 

As described in the introduction the motion of the waves in the inner 
region of the surf zone resembles periodic bores or hydraulic jumps. 
Thus it is natural to start a theoretical analysis by applying the same 
methods as have been used with great success on particularly hydraulic 
jumps, i.e. using the integrated equations of mass and momentum to de- 
termine the velocity of propagation c and the integrated energy equation 
to find the dissipation. 

Before doing so it is profitable to consider the form of these basic 
equations. In this context we briefly mention some effects at the free 
surface which are due to the turbulence, and which do not seem yet to 
be widely appreciated. 

The coordinates and notation used in the following are shown in Fig. 
9, which also indicates the type of problem considered. 

7/V/V /^/'/V-V-V i 

Fig. 9 Definition sketch. 

The integrated equations for conservation of mass, momentum and 
energy may be derived from the general formulation of these principles 
given by Jeffrey (1965) for volumes with boundaries moving arbitrarily 
relative to a fixed frame of reference. 

For reference these equations are quoted in our notation and for our 
conditions, i.e. an incompressible fluid without interval energy 
(neuclear, chemical, etc.). 

Equation of continuity 

3 
3t /   p dw + /   (u - v) • ds 

V(t) S(t) 
(1) 

Equation of momentum 

%r J   P u do) 
dt 0(t) 

J   p dS - J   p u (u-v) • dS + J  p g dw 
S(t)       S(t) fi(t) 

(2) 

Equation of energy 

3t / 
fi(t) 

p uz/2 du> r •*•-»• - J pu • dS 
S(t) 

J pu2/2(u-v)' dS 
S(t) 

+ /        pu-gdiu - |        D   dw 
fi(t) fi(t) 

(3) 



528 COASTAL ENGINEERING—1978 

Here S(t) ^s the surface of the controle volume fi[t) , u is the fluid 
velocity and v the velocity of the surface element dS (for a volume 
changing in time) positive along the outward normal. D is the energy 
dissipation per unit volume due to viscous forces. In the equation of 
momentum viscous stresses along the surface have been neglected in this 
formulation. 

For waves on a sloping bottom it appears to be simplest to use a 
control volume (see Fig. 9) following the free surface but otherwise 
being fixed in space, at first of length dx, later on integrated over 
a finite horizontal distance. (Thus the first step corresponds to an 
integration over depth of the differential form of the three equations). 

The continuity_equation 

From (1) the continuity equation becomes 

^ J  pdz + ^- J  pudz = 0 (4) 
-h -h 

which results in the well known 

_9_ 
9x 
9 r11 J u dz = - n (5) 

-h 

In this equation we now extract the turbulent fluctuation denoted by '. 
Thus we in general introduce 

(u,w,p,n) = (u,w,p,ri) + (u' ,w' ,p' ,n') (6) 

where  means time mean value. 

In (5) this yields after turbulent time averaging (i.e. disregarding 
the time variation of the mean values) 

teV      3t"^J- (7> 
-h n 

The last term here actually corresponds to the extra term found by 
Hasselmann (1971) in the kinematic free boundary condition in a situa- 
tion with wavelets superimposed on larger scale wave motions. 

Notice that the result (7) is readily obtained by an integration 
over depth of the continuity equation V • u = 0 if Hasselmann's kine- 
matic boundary is used at the turbulent mean surface r|. 

Obviously similar terms must occur in the equations of momentum and 
energy^ Hasselmann also showed that the dynamic free surface condition 
at z=n is not p(ri) =0, but 

P(n) = " Pw'2 (8) 

a change which is again a result of the fluctuations at the turbulent 
mean water surface l"|. 

In all published investigations on bores and hydraulic jumps known 
to the authors (as e.g. Resch, Leutheusser and Coantin, 1976, Rouse, 
1958, Tsubaki, 1950) the fluctuations in ri seem to have been neglected, 
corresponding to omission of the last term in (7) and similar terms in 
the other equations. In an ordinary free surface turbulent flow these 
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\ 
terms are probably small, but this can hardly be expected to apply to 
the region with the surface roller in a hydraulic jump or a bore. 

Thus being aware of the possible errors it may lead to, we shall in 
the present investigation allow ourselves to make the same approximation 
(i.e. neglect the effect of the surface fluctuations) in order to be 
able to pursue other ideas. We therefore assume that the continuity 
equation reads 

&f"**--\ (9) 
-h 

in which we may substitute the definition 

1  ^ 
U=j| udz (10) 

-h 

to get 

3x-(Ud)=-\ 

The   e qu ation of momentum 

From (2)   we get 

3 
3t 

n 
; p dz = 

3 
3x 

n 
/    (PU24 
-h 

(11) 

(12) 

which is exact since p(ri) is zero. T, is the bottom shear stress. Intro- 
ducing the turbulent description by substituting (6), and neglecting 
the fluctuations of the free surface yields after turbulent averaging 

a n     a n          , 
•£• J udz+^J  (u2+u'2 + p)dz- i-hxp(-h) + xb = 0 (13) 

-h -h 

For further applications it is convenient to express the integrals 
in terms of coefficients, which we define as 

a = ~  / (u/U)2dz ;   a' = i / u^/U2 dz (14) 
d d 

K = -—TJ- J p dz   where  p=p + pgz (15) 
pga d 

Thus (13) may be written 

p 4r(Ud)   + 4-[p(a + a')du2+ pgK+d2- Ugn2]-h  p+(-h) +x   =0 | 
at ox *• x (16) 

Here the 3/3t - term can not be integrated with respect to x without 
information or assumptions about the changing shape of the wave. This 
is discussed in the following paragraphs. 

The_ener_2y equation 
->- 

Here it is useful first to consider the g - term in (3). This term 
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in fact represents the potential energy and may conveniently be re- 
written as follows 

(••*••*"       r     "*- J   p u • g da) = - J   p u • V g z dio 
fi(t) Q(t) 

which invoking the continuity equation V • u = 0 becomes 

= - /   (V • g zu)dw = - J   E u • dS (17) 
fi(t) S(t) p 

with E = g z (18) 
p 

We further notice that the rate of change of potential energy inside 
the volume is 

~r J E   dU)= -  J pu-gdu+f E    ,_(v-u) • dS (19) 
3t   Jl(t)    P £l(t) S(t)    POt 

where the minus sign of the first right hand term indicates that gravity 
has to do negative work to increase the potential energy. Combining (17) 
and (19) yields 

J        pu«gdw = --r-J        Edw+J        E  (v-u) • dS (20) 
fi(t) d     fi(t)   P S(t)    P 

When substituted into (3) this can be written 

~r- J    (E' + E )dw = - J   p U • dS - J    (E1 + E ) (u-V) • dS 
d  fl(t)  k  P      S(t)        S(t)  k  p 

- J   D du (21) 
fi(t) V 

with 

1 --T2 E^ = f pu' (22) 

For the particular control volume considered here we get in the first 
step (length dx, see Fig. 9) 

3 n 3 n n 
P aT /  (Ev + E )dz = " a- J  (P + Ej +E )udz - J Ddz       (23) dt _h  K   p      dx _h    K  p       _h 

When we in (23) substitute the turbulent description (6) and average, a 
large number of turbulent fluctuation.terms result. These, however, all 
belong to the category which we in this context include in the dissi- 
pation term D. Thus we concentrate our attention on the ordered mechan- 
ical energy only and therefore get 

3 rV 3 -* -* 
3t ',_ (Ek + VdZ =" 3x-J_(p + VEk)udz- L°t** (24) 

with 

-h  "  p      dx -h    p  -      -h 

Ek = Jp (u
2 + w2) (25) 

in which D now includes both viscous dissipation and turbulent energy 



SURF ZONE WAVE 531 

not yet dissipated, and we recognize the well known expression for the 
flux of ordered mechanical energy 

n i      _  _ 
E (t) = /  (pgz + p + ~Q(u2 +  w2))udz (26) 

-h 

Thus the energy equation may be written 

£« =-^Bf(t) -9 (27) 

with the definitions 

r\ ri 
i  = /  (E.+ E Jdz ,   $   = j     D dz (28) 

-h  k   P -h 

which simply states that the rate of change of energy inside the control 
volume is the difference between net flux over the boundary and the 
loss due to dissipation. 

Again it is useful to express the integrals in terms of coefficients 
which we define as 

6 = i J (u3 + w2 5)/U dz (29) 
d 

d 

6 = —^ / (u - U)p+/Udz (30) 
Pg   d 

Then the energy flux E_(t) may be written 

E   (t)   = ln  (p+ + i-p (u2  + w2)udz=  pgd2U(6 + K+) +p 6dU3 (31) 
1 -h Z 

and the energy equation becomes 

•^i = - -^ [pgd2U(6 + K+)   + pgdu3] (32) 

Thus it has been shown how the three fundamental equations inte- 
grated over depth can be expressed in terms of velocity and pressure 
profiles under the assumptions mentioned. In the following these equa- 
tions are applied to waves. 

4. AVERAGED ENERGY EQUATION 

One of the important features in the surf zone is the wave height 
attenuation due to the turbulence generated by the breaking. 

For this purpose we average (27) over a mean period (assuming period- 
icity in time) to get 
_    8E„ 
9 =  - -5-£- (33) 3x 

where H  is the mean dissipation per m2 of bottom and E_ is the time mean 
of E (t). We define a non dimensional energy flux B in analogy to ordi- 
nary wave theory and using (26) find 
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T   n 
af ~ T 
E*  = k /     /      (p+  + |"P (u2  +  w2))udzdt  5  pgcH2B (34) 

Similarly we define a nondimensional energy dissipation D and since we 
want to relate this quantity to the hydraulic jump or bore conditions it 
is convenient to let D represent the energy dissipation per wave 
length. Thus we write 

» = pgf&D (35) L 4h 

a form which is closely related to the expression for the hydraulic jump. 

Substitution of (34) and (35) into (33) and rearrangement of the terms 
yield 

(A     -       A + 
CX + 

Bx\H   ho D /H\
2     Y   X 

VhJx - " {— + 2c- + 2ijh ' 8L i \h)       '    X = h0 
(36) 

which is a first order nonlinear differential equation in H/h. Notice 
that (36) itself is fairly general. It is only assumed that the motion 
is periodic and that D includes the turbulent energy. It also turns out 
to be a quite convenient basis for studying the effect of simplifying 
assumptions, also in the related expressions (31) and (34) for B. 
Solution, however, requires information of the coefficients, and this is 
the purpose of the following analysis. 

The h /h term includes the wave set-up so that determination of this 
term requires integration of the averaged form of the equation of momen- 
tum (16). This is perfectly possible but is considered beyond the scope 
of the present paper. Since the set-up in most of the surf zone is only 
a small fraction of the still water depth we use an estimate of h /h 
based on the bottom slope and experimental results for the set-up. 

The c /2c and B /2B are more interesting terms, and we first tackle 
the determination of c. 

5. THE VELOCITY OF PROPAGATION 

For simplicity the method by which c can be determined for a breaking 
wave is described for constant depth only. It should be mentioned, how- 
ever, that it is fairly straightforward to show that the effect of a 
sloping bottom is negligible on c. 

We also assume that the wave motion is of constant form to avoid the 
complications of defining a speed of propagation for a changing wave 
form and include the associated effects in the analysis. With a proper 
choice of c (speed for ri = 0, say) the effect would again be negligible. 

None of these assumptions in fact remove from the problem the effects 
we want to study, namely the influence of the velocity and pressure 
variation over the depth (i.e. the magnitude of a and K and for the 
energy dissipation of (3 and S). 

Under these conditions it is convenient to change to a frame of refer- 
ence moving with the wave, and in which the horizontal particle velocity 
is termed v. Thus 
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V = 0 

a i- / (v/V)2 dz 

(37) 

In a wave of constant form we have 

/ u dz =0d = c Ti 
d 

if i) n is measured from the mean water level 

ii) there is no net mass flux 

(see Svendsen, 1974, p. 164 ff). 

The continuity equation (11) yields 

Vd = const = (U-c)d = cn -cd 

or 

(38) 

(39) V = - ch/d 

h being the mean water depth. 

The equation of momentum (16) becomes (neglecting the bottom friction) 

rgri
2] = o (40) £ (Vd) + ^-[(av+a!)dv2 + gK+d2- ^—2i 3t 8xu 

in which the constant form assumption implies that 3/8t = 0 so that the 
equation can be integrated from X2 to xj (see Fig. 9) to yield 

l 
0 (41) (av + a')d v2+ g K+d2 - 75-gri2] 

^    2 

or with V from (39) 

c2h2/d (a + a') + g K d2 - ^-gn2] (42) 

For a wave of constant form c is the same for any choice of xi and X2. 
Hence (42) is an equation from which c may be determined, the proper in- 
formation given. (A check on a solitary wave, say, rapidly confirms this). 

In numerical computations, however, the most accurate results are 
obtained when X2 and xi are placed at the (instantaneous) position of 
the crest and trough, respectively (Fig. 9). 

As a special case we first consider a periodic bore with static pres- 
sure and v uniform over the depth. Placing X2 so far down the stream 
that there is no turbulence we have 

1 a' n/a 

Solving for c we then get 

bore  1 did? ., 
~W~  " 2-h*-(dl +d2) 

or with Z =  d2/di ;  £ = di/h 

(43) 

(44) 

(45) 
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^-K«« + 1> (46) 

which transforms into the well known expression for a single bore if we 
choose h = di (i.e. £ = 1). 

In the more general case the direct solution of (42) yields 

-2  Al[1+2JS||^] 
bore 

where by definition 
+ 

K K n/d 

K1 

Ai S 

(47) 

(ai + a{) - (Ofe + ofe') 

index . _ referring to xi and X2 respectively and c,    given by (46). 

In (47) may now be introduced various assumptions for the a and K 
coefficients and the outcome compared with the measurements reported in 
§ 2. Fig. 10 shows the result of such computations. Here three different 
sets of coefficients have been used, and for reference v^~h is shown too. 

c 

1.0 0 

• o     o       * 

• t 

, » 
» ^measured » „ 
• Vgh ' « 

° ^bore 

» c„ 
T = 1/0.7sec 

ct 
Ho/L0 = 0.03H0 

80        70        60        50        40 

Fig. 10 Measured and computed values of c. 

20 ymm] 

The results denoted c    correspond to (46). The values of n used in 
the computation were taken from the measured profiles and we see that 
the agreement is good, but of course this can not be taken as a proof of 
static pressure and uniform velocity. 

The points denoted c have been obtained by assuming a deviation from 
static pressure corresponding to a Boussinesq approximation. Thus for u 

we have used 

1,1 
c n/d + j (j ^*\X 

(48) 

and for p 
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P = pg[ (n - z) + |(i - (^-j-V hnxx] (49) 

Again the values of n and n  have been determined from the measured 
mean profiles. 

As Fig. 10 shows the resulting c-values are smaller than the bore ve- 
locity. In general a non uniform velocity profile under the wave crest 
(x2> (as (48)) yields a   >1, which tends to increase c, whereas a pressure 
lower than static (K<0) will reduce c. (In the trough (xi) the value of 
hri  is too small to give significant contributions) . 

In c    and c the turbulence has been neglected by assuming a1 =0. 

The last set of points (denoted c shows the effect of the turbulent 
velocity fluctuations. The value of a'  has been chosen as 0.10, which is 
the approximate value one can derive from Rasch et al. (1976) who report 
results for u  in a hydraulic jump. 

The turbulent velocity fluctuations act as an additional momentum and 
v 

hence increase c. In the figure a' has been applied to the case where a 
and K were determined by a Boussinesq approximation (so cJ: should be 
compared with c„). In the classical sense this is inconsistent since the 
Boussinesq theory is usually based on potential theory. However, the 
formula (49) may also be derived simply by assuming a linear variation 
of the curvature of the mean stream lines, and (48) may be regarded as 
simply a parabolic approximation for u. 

In general the effect of turbulence (i.e. a') on c can be extracted 
from (47) as 

turb .   . ,„ 

I     =(1"7^> ' <50> 
potential 

It is emphasized here that a' = 0.10 is not much more than an arbi- 
trary guess used to illustrate the nature of the problem. 

6. THE ENERGY FLUX 

The non dimensional energy flux B can be determined from (34) using 
the same type of information required to find c. When (31) is substituted 
B is expressed in terms of the coefficients B,6 and K and by U, c2/g h 
and H, and the result can be tidied for waves of constant form using the 
continuity equation. 

Here_it suffices to mention that for sections (X2, xi) at crest and 
trough w ~ 0, and if we introduce the linear shallow water assumptions 

u ~ c rj/h ;     p ~ pgri (51) 

we get as first approximation for B 

1  T 
B = i- J (n/H) 2 dt (52) 

0 

Let us for a moment consider improvements of this result using the 
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Boussinesq approximation introduced above. Then (52) is the first term 
in an expansion in T]/H. Further analysis shows that the next term with 
(r|/H) 3 yields contributions only a few percent of (52), for measured 
values of n. 

Therefore in the following considerations it seems reasonable at the 
present stage to rely upon (52) for B. 

7. WAVE HEIGHT VARIATION AND ENERGY DISSIPATION 

The application of (36) to determine the wave height variation re- 
quires input for the energy dissipation described by D, and considering 
that c was found to be nearly equal to e.    the first natural choice is 
also to use the bore result for the energy dissipation. For a periodic 
bore this corresponds to 

h2/did2 (53) 

Fig. 11 shows the resulting variation in the wave height compared with 

H/^MWS 

~~~ — ^^ 

x" 

x    Measured 

T = 1/0.7 sec  Theory  with 

H„/L0 = 0.0238 
bore conditions 

hsw|[mm) 

H'CsV 

"x       x^ 

0.5 3 ,    -     .    - 

T> 1/0.45 sec K    Measured 

Ho/L0= 0.0126 -  Theory  with 
bore  conditions 

0.1 
hsWL(mm) 

Fig. 11 Measured and computed ratios of wave height 
to water depth H/h. 

measured results. As input to the computations is used the wave height 
at the first measuring point (largest depth). The agreement is poor and 
obviously the energy dissipation can not be determined by simple bore 
relations. 

To further illustrate this (36) has been reversed by solving with 
respect to the D-term which is then determined by using measured values 
of the other terms including (H/h) . We define x 

AE      = Us. (5,2 5. 
measured  8L h B 

V„   hlh   2c  2B' 
(54) 

Fig. 12 shows a comparison between AE      . and AE,   which clearly 
,.   ,,     ,  .   , measured     bore 

confirms the conclusion above. 
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AE AE 

.^_,AEmeasu red    ^^^^ 

^/AE_ red 

NAEbore 

T= 1/0.45 sec 
A^bore 

T = 1/0.7 sec 

H0/Lo =0.0126 hswllmm) H0A0 =0.0238 hswlmm) 

Fig. 12 Measured and computed values of AE defined by Eq. 54. 

The actual energy dissipation may be determined from (32) for simpli- 
fying assumptions similar to those introduced to find (47) for c. And 
again these represent a good approximation locally. Thus neglecting the 
changing form of the wave and assuming a horizontal bottom 3^/8t becomes 
equal to - c 3#/3x and (32) integrates directly from xz  to xi. The result 

xi 
represents an equation with the term J $ dx as. unknown. This term re- 

presents the total energy dissipation between X2 and xi. The solution can 
be written in terms of D introduced above as 

^—  =   1 +77^172 (52 K2 + K1) +   A3(|±i)2[l +-p!ri(?
2K2-K1)] 

bore 

- 4 *- (c«I-6Y) (?-n 
(55) 

where 

A3 - Ax S2_1  - 1 

V      (,V 
with g and 0 defined from (29) and (30) in analogy with (37), and K 
and Ai by (15) and (47) respectively. 

In (55) a uniform velocity distribution corresponds to <5 = 0, A3 = 0 
and Ai = 1, and static pressure implies K = 0, 6=0. 

8. DISCUSSION 

Eqs. 47 and 55 have been evaluated for a variety of velocity and 
pressure conditions in order to obtain agreement with the measurements. 
This would require a D/D    value of 1.4 to 1.6 corresponding to the 
ratio between the two curves in Fig. 12, and at the same time c must be 
close to c,    as indicated by Fig. 10. 

bore 
In this context the physical picture of the process suggested by Pere- 

grine and Svendsen (1978) (see description in § 1) has been invoked. 
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This model implies that at the bottom between X2 and xi the flow is not 
influenced by the (surface) turbulence, so that the Bernoulli equation 
yields a simple relation between the bed velocities at X2 and xi, 
(pressure specified). In all cases considered the conditions at the wave 
trough were fixed at static pressure and uniform horizontal velocity. 

The following general properties may be extracted from these investi- 
gations: 

a) D/D    increases for increasing values of 012. On the other hand any 
physically relevant velocity profile yields a not much larger than 
unity. The opposite applies to the pressure variation where pressures 
smaller than the static at X2 reduce D/D, 

* bore 

b) In this respect D/D    follows c/c,   . It also appears that the 
largest value of D/D,    for a fixed value c/c,    is obtained if I B I 

...  , _   _. bore v bore 
is minimized for fixed a . 

c) None of the relevant velocity profiles and the associated pressure 
variations, however, lead to D/D    larger than about 1.2 as long as 
a1 =0 (i.e. as long as the momentum of the turbulent velocity fluc- 
tuations are omitted). 

d) Notice that the energy dissipation (55) includes the turbulent energy 
generated between xi and X2 and subsequently convected out of the 
volume through section 2 (see Fig. 9). But (55) does not include the 
energy lost by generation of turbulent energy behind section 2. This 
amount is difficult to estimate but may account for some of the de- 
ficit in energy dissipation. 

e) Finally it turns out that D/D    given by (55) increases rapidly 
with increasing a1, i.e. if the momentum of the turbulent fluctuations 
are included, even though we have seen that the velocity of propagation 
c is relatively insensitive to this factor. 

Though a more detailed investigation of this is required it seems ob- 
vious that the significant deviations between measured and calculated 
energy dissipations shown in Fig. 12 are primarily associated with the 
momentum of the turbulent velocity fluctuations represented by a'. 
Further analysis, however, will also require that the effect of the free 
surface fluctuations are included. 
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