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Abstract. Wave conditions in the northern Baltic Proper dur-

ing windstorm Erwin/Gudrun (January 2005) are analysed

based on in situ measurements in three locations and out-

put of operational wave models from the German Weather

Forecast Service, the Danish Meteorological Institute and the

Finnish Institute of Marine Research. The measured signifi-

cant wave height reached 7.2 m in the northern Baltic Proper

and 4.5 m in the Gulf of Finland. The roughest wave con-

ditions, estimated from the comparison of the forecast and

measured data, occurred remote from the sensors, off the

coasts of Saaremaa and Latvia where the significant wave

height was about 9.5 m. Peak periods exceeded 12 s in a large

part of the northern Baltic Proper and in the central part of the

Gulf of Finland.

1 Introduction

Windstorm Gudrun, an extratropical cyclone, also known

as Erwin in Ireland, the United Kingdom and Central Eu-

rope, attacked the northern Europe on 7–9 January 2005. It

reached the power of a hurricane, according to the Saffir-

Simpson hurricane scale (Simpson and Riehl, 1981), in the

North Sea region. In the Baltic Sea region it remained

slightly below the hurricane level; however; it was one of the

strongest in Denmark, Scandinavia and Estonia for at least

40 years. Note that the wind speed used for distinguishing

the hurricanes in the United States is measured as the average

over 1 min whereas the 10-min average is used in Europe. It

caused widespread property damage and exceptionally high

floods, and loss of 18 lives (Carpenter, 2005; Suursaar et al.,

2006). Forest damage in Sweden was the largest ever re-

ported in Sweden (Bengtsson and Nilsson, 2007). The storm

cut down power supply in large areas of Sweden, Norway
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and the Baltic states. The highest storm surge in the known

history (275 cm over the mean sea level) occurred in Pärnu

(Suursaar et al., 2006). New records of water level were es-

tablished in many locations along the Western Estonian coast

as well in the Gulf of Finland. The storm induced a major

water inflow into the Gulf of Riga and flushed totally smaller

shallow areas such as the Moonsund (Väinameri, an area be-

tween Saaremaa, Hiiumaa and the Estonian mainland) with

the water from the Baltic Proper. Particularly intense trans-

port of bottom sediments apparently took place in certain

parts of the sea (Suursaar et al., 2006). Several smaller har-

bours suffered from massive damage and substantial beach

destruction occurred at places (Orviku, 2006). The meteoro-

logical conditions, details of accompanying flooding, and the

reaction of water masses to this storm in Estonian coastal wa-

ters are analysed in detail by Carpenter (2005) and Suursaar

et al. (2006).

A major feature of this storm consisted in very rough

wave conditions in the northern Baltic Proper and the Gulf of

Finland. The combination of rough seas and extremely high

water level eventually is the main reason for the extensive

property damage in affected coastal areas. Since the network

of wave measurements at the downwind side of the northern

Baltic Sea (Fig. 1) only consisted of two directional waverid-

ers operated by the Finnish Institute of Marine Research

and one pressure-based recorder (while sea level was filed

at about 20 sites), it is intuitively clear that the measured

wave data only partially reflected the wave situation during

this storm. The strongest winds (W-WSW) were oblique to

the longest extension of the Baltic Proper (SSW-NNE) and

occurred between Gotland and Saaremaa where the fetch is

relatively short, in an area much southwards from the wave

sensors. Even with these non-ideal conditions for wave

generation (compared to a “perfect” storm steadily blowing

along the axis of the Baltic Proper), very high and long

waves were recorded.
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Fig. 1. Wave measurement sites, marked by ⊗, in the Northern

Baltic Proper, near Helsinki and at the Island of Naissaar.

The purpose of this paper is to estimate the roughest wave

conditions during this storm based on available data. The

analysis is based on wave measurements in the northern

Baltic Proper (NBP) and the Gulf of Finland (GoF), and on

the output of operational wave models in the leading oper-

ational centres in the Baltic Sea area: the German Weather

Forecast Service (DWD, Deutscher Wetterdienst), the Dan-

ish Meteorological Institute (DMI), and the Finnish Institute

of Marine Research (FIMR). The analysis is performed for

the significant wave height but the peak periods are discussed

to some extent as well.

To give an impression of extreme wave conditions and re-

lated features of the local wave climate, we start from an

overview of the existing wave data and numerical wave stud-

ies in the NBP and the GoF. Operational wave modelling rou-

tines for this area are described next. Further on, wave data

from a buoy in the NBP and from two locations in the GoF

are compared with modelled wave properties. Finally, we

construct an estimate of the overall maximum wave height in

this storm and discuss potential reasons of the excitation of

high and long waves.

2 Wave climate in the northern Baltic Proper and the

Gulf of Finland

Many Baltic Sea countries have performed extensive wave

studies in the past and have implemented operational wave

models nowadays. The longest instrumental wave measure-

ments in the NBP have been carried out in 1978–2003 by the

Swedish Meteorological and Hydrological Institute with the

use of an inverted echo-sounder near a caisson lighthouse of

Almagrundet (Fig. 1, Mårtensson and Bergdahl, 1987; Bro-

man et al., 2006). Wave properties at this site are determined

based on the classical zero-downcrossing method. An esti-

mate of the significant wave height H1/3 (defined as the av-

erage height of 1/3 of the highest waves) is found somewhat

non-traditionally from the 10th highest wave in a record of

about 10 min once an hour under the assumption that the

wave heights are Rayleigh distributed. Note that contem-

porary measurement devices and spectral wave models use

another estimate of the significant wave height HS≈H1/3 de-

fined as the fourfold variance of the water surface. The high-

est H1/3=7.82 occurred at this site in January 1984 (Bro-

man et al., 2006, Kahma et al., 2003 mention the value

HS=7.7 m) whereas the mean period (which generally is by

10–20% smaller than the peak period) reached 11 s. This is

formally the largest significant wave height ever recorded in

the NBP. This storm is the only one recorded at this site when

H1/3≥7 m was registered.

Directional wave properties in the central part of the NBP

(buoy 1 in Fig. 1, 59◦15′ N, 21◦00′ E, water depth about

100 m) have been measured by the FIMR starting from

September 1996 excluding ice seasons. The measurement

routine and an overview of wave statistics (occasionally in-

volving observations at Almagrundet and at some other lo-

cations) are presented by Kahma et al. (2003). The highest

waves with HS=7.7 m were recorded on 22 December 2004

at this location. The significant wave height has exceeded

7 m only four times at this site: twice in December 1999 and

twice within three weeks – on 22 December 2004 (when the

largest single wave ever recorded in the NBP has been reg-

istered with a height of 14 m) and on 9 January 2005 during

windstorm Gudrun. The peak periods during these events

slightly exceeded 12 s.

High-quality wave data sets have been measured by the

FIMR starting from 1970s in areas surrounding Finland

(Kahma et al., 1983; Kahma and Pettersson, 1993; Pettersson

1994; Pettersson, 2001; Kahma et al., 2003). A directional

waverider is deployed off Helsinki in the GoF (Fig. 1, 59◦

57.9′ N, 25◦ 14.1′ E, water depth about 60 m, below referred

to as buoy 2). The measurements have been made in 1990–

1991, 1994 and from November 2001 during the ice-free sea-

sons. The highest HS=5.2 m in the GoF was measured at

this site in November 2001 (Pettersson and Boman, 2002;

Soomere, 2005). The peak periods reached 11 s during this

event. Practically no data are available from the coastal areas

of Estonia and Latvia except for visual observations from the

coast (Soomere and Zaitseva, 2007) and for sporadic mea-

surements with the use of pressure sensors (Soomere, 2005).

The third generation wave models (e.g. Komen et al.,

1994) adequately represent the sea state in the northern Baltic

Sea (e.g. Tuomi et al., 1999). Several numerical wave stud-

ies have been performed for the southern part of the Baltic

Sea (e.g. Gayer et al., 1995; Blomgren et al., 2001) or for

limited areas of the northern Baltic Proper (Soomere, 2001;

2003) during the last decade. Recently, wave statistics for the

Baltic Proper has been estimated with the use of the second-

generation spectral wave model HYPAS and wind data from

1999–2000 (Jönsson et al., 2002; 2005). The spatial distri-

bution of wave heights follows the local anisotropy of the

wind and wave regime in the Baltic Proper (Soomere, 2003).
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Statistically, the regions of the largest wave activity are found

along the eastern coasts of the Baltic Proper. These areas are

characterised by long fetches for the dominant winds. The

quantitative features of the results in (Jönsson et al., 2002;

2005), however, may differ from the factual ones, because

these studies do not account for ice cover in a part of the

northern Baltic Sea during the season that statistically con-

tains the highest wind speeds.

A number of studies are concentrated on specific problems

of the Baltic Sea wave fields such as multi-peaked wave spec-

tra (Kahma, 1981), wave energy problems (Mårtensson and

Bergdahl, 1987), possible changes of wave climate caused by

changes of storminess (WASA Group, 1995), methods of es-

timates of wave climate (Mietus and von Storch, 1997), the

persistence of wave statistics (Boukhanovsky et al., 1999),

or wave climate in small semi-enclosed basins (Soomere,

2005). However, no comprehensive description of the wave

climate or statistical estimates of extreme wave conditions

exists in the whole Baltic Proper. Older publications such

as Rzheplinsky and Brekhovskikh (1967) are obsolete. The

books published in the former Soviet Union (e.g. Davidan et

al., 1985) contained valuable measured wave data but were

available only in Russian language.

3 Operational wave models in the DWD, FIMR and

DMI

All the listed operational centres run the third generation

spectral wave model WAM cycle 4 (Komen et al., 1994)

on a regular rectangular or spherical grid in shallow wa-

ter mode without data assimilation. The models use differ-

ent sources of wind information and their land-sea masks,

bathymetry, computational grid, spatial and temporal resolu-

tion, and spectral range are different (She and Nielsen, 1999;

Soomere et al., 2004).

The regional spectral wave model LSM (Local Sea Wave

Model) is used in the DWD for an area including the

North Sea, the Baltic and the Adriatic Sea since 1999.

Wave conditions in the Baltic Sea are independent on the

sea state in other model areas. The LSM mesh size is

1/10◦ along latitudes and 1/6◦ along longitudes. The FIMR

runs the wind and wave models for the Baltic Sea area

with a 1/5◦×1/5◦ resolution along since November 2001

(Järvenoja and Tuomi, 2002). The resolution was increased

to 0.08◦×0.08◦ just before the storm in question, from

November 2004. The DMI runs since 1999 the WAM model

for the North Sea and the Baltic Sea in 1/6◦×1/6◦ resolution.

A nested model, with 1/30◦×1/30◦ resolution, is applied in

the nearby Danish waters; however, no feedback from the

fine model is used in the coarse model runs.

All the models are driven by forecast winds at the standard

height of 10 m above the surface level. The LSM wave model

uses three-hourly wind fields provided by the atmospheric

model LM of the DWD with a mesh size of 1/16◦×1/16◦.

The DMI and FIMR wave models use hourly wind data

from different versions of the atmospheric model HIRLAM:

the DMI-HIRLAM (horizontal resolution of 1/20◦×1/20◦),

and the Finnish Meteorological Institute’s HIRLAM version

6.2.1 (horizontal resolution of 0.08◦×0.08◦).

The WAM model calculates the two-dimensional wave en-

ergy density spectrum at each sea point for a set of equally

spaced directions and logarithmically spaced frequencies.

The LSM and FIMR models use 24 directions (i.e. direc-

tional resolution is 15◦) whereas the DMI model uses 12 di-

rections (resolution 30◦). The spectral directions of all the

models are shifted away from the major compass directions.

The LSM and DMI models employ 25 frequency bands from

0.04177 to 0.41145 Hz (periods from about 2 to 20 s) in 10%

steps. The FIMR model uses an extended range of 35 bands

up to 1.073 Hz in order to better describe shorter waves in

sub-basins of the Baltic Sea.

The LSM and the FIMR models account for sea ice (areas

covered by ice are coded as land) while the DMI model does

not. For the storm in question this feature of the models is

irrelevant, because sea ice only existed in Bothnian Bay in

the area that does not influence wave fields in the NBP or in

the GoF. The depth information and the land-sea mask of the

LSM model are optimised for the concurrent use with a cir-

culation model. In some northern parts of the Baltic Sea they

do not exactly follow the factual coastline. For example, the

area of Pärnu Bay is not represented in the model grid and the

eastern part of the GoF is by and large sheltered from waves

propagating from the NBP. The FIMR model accounts for

special features of the northern Baltic Sea. The archipelago

area between Åland and the Finnish mainland is handled

by coding this area as impassable for waves. The irregu-

larities of the shoreline and sheltering islands are accounted

for by an appropriate choice of the model shoreline. The

depth map of the DMI model is sampled from the ETOPO5

bathymetry map of the National Geophysical Data Centre

(http://www.ngdc.noaa.gov/mgg/global/global.html) with an

imposed minimum depth of 5 m.

The LSM model provided operational forecasts for 48 h

twice a day in January 2005. The DMI and FIMR models

were run four times a day with a 54 h forecast length. The

output of these models is called modelled wave data below.

After each forecast cycle, the most important parameters of

the sea state such as the significant wave height of the en-

tire wave field, the significant wave height, the peak period

and the wave direction for both windsea and swell, and op-

tionally the mean period, and the components of the driving

wind fields (wind speed, wind direction) were stored for all

sea points three-hourly for the LSM and the FIMR model,

and hourly for the DMI model. Spectral information was

only saved for selected sea points in the FIMR model. The

peak period TP used in comparisons below is the 1 D peak

of the directionally integrated spectrum which is equivalent

to the peak period estimated by the waveriders and from the

pressure data.
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Fig. 2. Modelled wind speed (m/s) and direction (arrows) 10 m

above water surface at 06:00 GMT on 9 January in the DMI 54-hour

forecast valid at 00:00 GMT on 9 January.

Fig. 3. Modelled significant wave height HS (m) and wave prop-

agation direction (arrows) at 06:00 GMT on 9 January in the DMI

forecast valid at 00:00 GMT on 9 January.

To match the factual temporal resolution of all the models,

comparisons are made for three-hourly wave data at 00:00,

03:00 GMT etc. at which the wave data of FIMR and the

LSM models are saved. As the observation times at buoys 2

and 3 not necessarily coincide with the model output times

and have certain gaps, we use the average values of the avail-

able wave data and of the DMI model output during ±1.5 h

around these time instants.

To the knowledge of the authors, no systematic validation

of the models’ results against measured data in the northern

Baltic Sea have been reported in international literature al-

though there is acute need for such analysis. The available

information suggests that, at least in typical wave conditions,

all the listed models show reasonable performance. For ex-

ample, comparison of the DMI model with satellite data re-

vealed that the overall bias and standard deviation of the sig-

nificant wave height in the North Atlantic and the Baltic Sea

was 0.13 m (the model tended to slightly overestimate the

wave heights) and 0.56 m, respectively during July 2004–

March 2005 (http://ocean.dmi.dk/validations/waves/satellite/

sat valid.uk.php). The mean relative error of the forecast of

the maximum wave height in the 5 strongest storms is about

15% for 13 buoys operated by the DMI in the Baltic Sea and

in the North Atlantic (http://ocean.dmi.dk/validations/waves/

resultat/index.uk.php). The DWD model shows an equiva-

lent performance. For example, the monthly bias and stan-

dard deviation in February 2003 were from −0.27 to 0.32 cm

and from 0.3 to 0.71 m, respectively, in 12 different buoy lo-

cations. The presented estimates well match the standard de-

viation of the forecast from the observed wave heights during

the stormy week 7–14 January 2005 at the locations of buoys

1 and 2 (Table 1) and the relative error of the forecast of the

maximum wave height during the storm maximum (see be-

low). The reasons of somewhat larger deviations of the fore-

cast from the observed wave heights for the location of buoy

3 are discussed below.

4 Observed and modelled wave properties in the Baltic

Proper

Several features of wind patterns are interesting from the

viewpoint of wave generation. Since the coastal data suf-

fered from failures of equipment (Suursaar et al., 2006), we

shortly describe the modelled wind properties. The maxi-

mum wind speeds on the open sea, according to the DWD

and the DMI (Fig. 2), were 28–29 m/s between Gotland and

Saaremaa (cf. coastal data in Suursaar et al., 2006). Wind

blew from W in the central Baltic Proper, from WSW in the

Gulf of Riga, and from W–NWN in the northernmost part

of the Baltic Proper during the wave storm maximum, and

thus a convergent wind pattern occurred. All forecasts sug-

gested that strong wind was to blow during many hours. The

forecasts released on 6–7 January predicted the highest wind

speeds to occur along the Norrköping–Hiiumaa/Saaremaa

line. The significant wave height was forecast to exceed 10 m

at buoy 1, to reach 11–12 m at the entrance of the GoF, and

to be over 6 m in the central part of this gulf. Such wave

conditions would have been rougher than during any other

storm in the northern Baltic Sea in the history of contempo-

rary shipping (K. Kahma, personal communication on 8 Jan-

uary 2005).
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Table 1. Comparison of modelled and observed significant wave height HS and peak period TP during windstorm Gudrun (from 12:00 GMT

on 08 January to 24:00 GMT on 09 January) and during the stormy week 7–14 January 2005 (until 06:00 GMT on 12 January at buoy 2, and

from 08:00 GMT on 8 January at buoy 3) in terms the bias (model – observed) and root-mean-square (rms) error.

Significant wave height (m)

Location Northern Baltic Gulf of Finland Gulf of Finland

Proper (Buoy 1) Helsinki (Buoy 2) Naissaar (Buoy 3)

Model Bias Rms error Bias Rms error Bias Rms error

FIMR Whole week −0.363 0.527 −0.232 0.330 0.324 0.490

Gudrun −0.347 0.663 −0.003 0.222 0.661 0.856

DMI Whole week 0.386 0.587 0.155 0.419 0.714 0.864

Gudrun 0.865 1.063 0.404 0.638 1.119 1.306

DWD Whole week 0.242 0.458 −0.255 0.388 0.587 0.825

Gudrun 0.703 0.829 −0.053 0.379 1.119 1.329

Windsea peak period (s)

FIMR Whole week −0.604 0.904 −1.146 1.685 −0.738 1.170

Gudrun −0.701 1.145 −1.156 1.662 −1.274 1.527

DMI Whole week 0.372 0.662 0.182 1.211 0.260 0.785

Gudrun 0.328 0.979 −0.263 1.682 0.004 1.130

DWD Whole week −1.270 1.588 −2.586 2.974 −1.965 2.490

Gudrun −1.244 1.492 −2.407 2.826 −1.399 1.793

The low pressure area, in fact, propagated less northwards

after crossing Norway and Sweden (Carpenter, 2005, see also

analysis of the path of the cyclone and of the strongest winds

in Suursaar et al., 2006, or (http://www.emhi.ee/index.php?

ide=2&shownews=18). The area with the largest modelled

wind speeds crossed Gotland, the northern part of Latvia

and the Gulf of Riga, southwards from the location of buoy

1. The highest waves were excited off Saaremaa and Latvia

(Fig. 3).

The measured wave heights did not establish any new

records. The significant wave height at buoy 1 reached

HS=7.2 m at 03:00 and 07:00 GMT on 9 January (Fig. 4).

The wave height was about 7 m during about 12 h (00:00–

11:00 GMT). The FIMR model well matched the roughest

wave conditions in the early morning of 9 January (Fig. 4a,

Table 1). The overall maximum of HS was overestimated

by 0.44 m (5.8%). The wave storm decayed somewhat more

slowly than suggested by the model. The FIMR model also

underestimated by about 1 m (about 20%) the wave height

on 13 January. The models of the DWD and the DMI to

some extent overestimated the wave heights during the whole

stormy week (Table 1). The largest error (1.29 m and 1.91 m)

of the instantaneous wave height occurred during a short time

interval when the modelled wave height reached its maxi-

mum but the factual wave heights dropped by about 0.6 m.

The error of the modelled overall maximum wave height

(8.17 and 8.96 m) was 12.4% and 20.1%, respectively, for

the DWD and DMI models.

The windsea peak period TP at buoy 1 exceeded 10 s for

nearly 24 h and was about 11–12 s when the wave height was

close to 7 m (Fig. 4b). Both the DMI and the FIMR mod-

els well reproduced its temporal behaviour (Fig 4b, Table 1).

The period calculated by the DMI model behaved in a step-

like manner, because no interpolation in space, time or in

spectral space was done. The DWD model systematically un-

derestimated the wave periods by 1–1.5 s. This feature also

caused the large root-mean-square error of the peak period

predictions. Notice that the overall performance of the mod-

els during windstorm Gudrun is approximately the same as

during the entire stormy week 7–14 January 2005 (Table 1).

It is interesting to mention that the FIMR and the DWD mod-

els almost perfectly reproduced the wave heights at buoy 2

specifically during Gudrun.

The modelled peak periods were somewhat higher, about

12–14 s, in the north-eastern part of the Baltic Proper during

a long time. Since the wind direction in the Baltic Proper

probably changed from south to west as the cyclone gradu-

ally crossed the sea, a part of long waves in the north-eastern

area of the Baltic Proper apparently were excited by more

south-western winds in the early stage of the storm. Yet the

above-described match between the observed and modelled

peak periods at buoy 1 suggests that remarkably long and

high waves eventually occurred in some sea areas.

5 Waves in the Gulf of Finland

Wave properties in the GoF were measured at two sites

(Fig. 1). Off its southern coast, the Institute of Cybernetics

used a domestic wave recorder (PTR Group) based on Keller

www.nat-hazards-earth-syst-sci.net/8/37/2008/ Nat. Hazards Earth Syst. Sci., 8, 37–46, 2008
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Fig. 4. (a) Significant wave height (m) and (b) peak period (s) at

the location of the FIMR buoy 1 in the NBP (59◦15′ N, 21◦00′ E)

as observed (blue) and modelled by the DWD (red), FIMR (green)

and DMI (black).

pressure sensor and mounted about 8 m below the water sur-

face, to record this event. The site (59◦37.1′ N, 24◦29.1′ E,

water depth about 14 m, below called buoy 3) is located

north-westwards from the Island of Naissaar. The pressure

data was recorded with a frequency of 4 Hz and analysed

with the use of the classical procedure of establishing the sur-

face wave properties from the pressure time series based on

the linear wave theory (e.g. Stumbo et al., 1999). Wave prop-

erties in record sections with duration of 20 min were calcu-

lated from the truncated wave energy density. The waves

with periods <3 s were ignored. For comparisons below the

mean wave properties over 3-h time intervals are used.

The observed HS exceeded 4 m at 02:00 GMT on 9 Jan-

uary and remained about 4 m during many hours (Fig. 5a).

The maximum wave height (4.5 m, the second highest in-

strumentally registered wave height in the central part of the

GoF) occurred at 09:00 GMT on 9 January. Wave proper-

ties at this site are not directly comparable with the mod-

elled data because the closest model grid point (in the FIMR

model) is located in a much deeper area about 10 km from

buoy 3. The reason is an unfortunate mismatch of the ge-

ometry of the coastline and the mesh in the relatively low

resolution of the operational model: the centre of the most

seaward land point lies only slightly landward from the fac-

tual coastline and from this temporary measurement site.

Putting the grid points closer to the island in this resolution

would lead to unrealistic fetches and unrealistic significant

wave heights. Thus it is not unexpected that the modelled

wave heights at the closest grid points did not match the ob-

served values. Still all three models followed the measured

sea state qualitatively. The FIMR model suggested the max-

imum HS≈5.5 m and captured even the minor wave height

maximum at 02:00 GMT. For another wave storm on 13 Jan-

uary it predicted somewhat earlier appearance of high waves.

The DWD and DMI models predicted that the overall wave

height maxima at this site were close to or even exceeding

6 m. The analysis below suggests that these values probably

were not reached.

The observed peak periods exceeded 10 s during a large

part of the 9 January at buoy 3 and were close to 12 s dur-

ing about 10 h (Fig. 5b). Visual observations by one of the

authors (TS) in the morning of 9 January from high cliffs of

the peninsula of Pakri (located about 30 km south-eastwards

from buoy 3) confirmed that the periods of the largest beach-

ing waves were well over 10 s. The DMI wave model mostly

captured this feature (Table 1). The FIMR model qualita-

tively followed the temporal behaviour of TP but underesti-

mated by about 1 s the longest wave periods during Gudrun.

The DWD model systematically underpredicted the peak pe-

riods by 1.5–2 s.

The other wave measurement site (buoy 2) was located

in the northern part of the GoF off Helsinki (59◦58.5′ N,

25◦14′ E). The FIMR operated a directional waverider at this

site until 12 January. Since this site is more remote from the

Baltic Proper than Naissaar, it is not unexpected that both

the wave heights and peak periods were slightly smaller than

at Naissaar (Fig. 6). The observed wave height was close to

4 m during a short time interval in the early morning of 9 Jan-

uary and exceeded 3 m during the rest of the day. The FIMR

and the DWD models well reproduced (but the DMI model

somewhat overpredicted) the observed wave heights during

the maximum of the wave storm.

The observed peak periods near Helsinki exceeded 10 s

during nearly the whole day and reached 11–12 s at noon on

9 January (Fig. 6b). The modelled peak periods did not ex-

ceed 9 s and generally were less than 8 s. The DMI model

mostly captured the temporal behaviour of TP also at this site

(Table 1). The FIMR model underpredicted the peak periods

by about 1 s and the DWD model by 2.5 s.

The occurrence of long and high waves in the interior of

the GoF is an important feature of this storm. Early wave

measurements have suggested that the peak periods in rough

seas are 8–9 s and usually do not exceed 10 s in the GoF
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Fig. 5. (a) Significant wave height (m) and (b) peak period at the

location of buoy 3 near the Island of Naissaar in the Gulf of Finland

(59◦37,1′ N, 24◦29,1′ E) as observed (blue, hourly mean values of

peak periods are shown) and modelled by the DWD (red), FIMR

(green) and DMI (black). Only observed periods clearly exceeding

the threshold period (3 s) are shown.

(Kahma and Pettersson, 1993). More recent observations

indicate that TP ≈11 s may occur in this area (Pettersson,

2001). Yet the rough seas, with HS∼4 m, have peak pe-

riods of about 8–9 s. The number of observations of even

larger peak periods is small: TP ≈11 s were filed only three

times during measurements in 1990–1994 (probably during

one storm) and occurred during a short time during another

very strong storm in November 2001. The distribution of the

frequency of occurrence of peak periods (Pettersson, 2001)

suggests that TP ≥10 s usually corresponds to penetration of

long-period swell of moderate height from the NBP to the

GoF (cf. Broman et al., 2006).

The modelled maximum wind speed in the northernmost

part of the Baltic Proper and at the entrance of the GoF was

about 20–24 m/s during Gudrun (Fig. 2). In the gulf it appar-

ently was well below 20 m/s during a large part of the storm

(see also coastal data in Suursaar et al., 2006). The moderate

water depth (50–80 m) of the western part of the gulf reduces

 

 

Fig. 6. (a) Significant wave height (m) and (b) peak period (s) near

Helsinki as observed at the location of FIMR buoy 2 (blue) and

modelled by the DWD (red), FIMR (green) and DMI (black). There

is a gap in measured data at 15:30–21:30 on 9 January.

the celerity of long waves (which is about 20 m/s for deep

water waves with periods about 12 s). Although transfer of

energy of long waves to atmospheric motions (e.g. Kudryavt-

sev and Makin, 2004) is generally quite small, one may as-

sume that the wind was mostly faster than the dominating

waves and such transfer was negligible in the GoF.

For such wind speeds the observed wave periods in the in-

terior of the GoF were very large. Classical estimates of the

wave growth in fetch-limited seas suggest that storms with a

wind speed of about 20 m/s may excite peak periods about

12 s only if the fetch length is ≥600 km and the wind dura-

tion ≥18 h (e.g. Rosenthal, 1986). Although recent growth

curves (Kahma and Calkoen, 1992; Komen et al., 1994) sug-

gest that somewhat shorter duration (about 15 h) and fetch

(about 350 km) are sufficient for generation of such seas, it

is probable that a portion of long waves stemming from the

Baltic Proper contributed to the observed wave system in the

GoF. Long waves propagating from the southern parts of the

Baltic Proper are refracted by the coastal slope of Hiiumaa
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(a large island northwards from Saaremaa) which turns them

to the right and (for a certain combination of wave periods

and propagation directions) may guide waves exactly into the

gulf. This effect only works for waves approaching from SW

because the archipelago north-westwards from the entrance

of the GoF is almost impassable for waves.

6 Maximum of the wave storm

The above has shown that the wave storm maximum evi-

dently occurred much southwards from buoy 1. The mod-

elled wind speed had considerable North-South gradient

(Fig. 2). There were quite large differences (up to 6% accord-

ing to the DMI model) in the modelled wave heights at cer-

tain adjacent grid points in the North-South direction in the

NBP. This feature suggests that the wave field contained par-

ticularly strong N-S gradients and that the overall maximum

wave height apparently was larger than at the measurement

site. For single sea points the forecast wave heights varied

considerably as the new releases became available because

of a certain deflection of the trajectory of the windstorm. Yet

the forecast of the overall maximum wave height in the whole

Baltic Sea showed a reasonable variation, for example, it was

between 10.8 and 12.2 m according to the DMI model.

The overall maximum HS in the NBP and in the GoF

during this storm can be roughly estimated from a compari-

son of the modelled spatial distributions of wave properties

with the modelled and observed wave heights. It eventu-

ally occurred off the coast of Saaremaa (Fig. 3) about 57◦ N,

20.4◦ E, that is, about 200 km south-eastwards from the lo-

cation of buoy 1. Assuming that (i) the wave models ade-

quately represent the spatial patterns of wave properties and

(ii) that the relative error of the modelled wave properties is

roughly the same in the whole area of intense waves; the es-

timate can be obtained by correcting the overall maximum

of the modelled HS by the relative error of the model at the

measurement site. The results of doing so based on obser-

vations in one point only should be interpreted as indicative:

the accuracy of the forecast may vary in different parts of

the Baltic Proper; especially in the case when the wind di-

rection turns in the NBP as usually happens during strong

cyclones. Yet this is a feasible way to estimate the maxi-

mum wave heights during the storm given the limited data

set. Since a large part of properties of the wave fields repre-

sented in Figs. 4–6 are located within the ‘corridors’ formed

by outputs of the three models, a reasonable estimate of this

maximum eventually lies between the values defined by the

three models. The above has shown that the discussed wave

models reasonably followed the temporal behaviour of wave

fields in the NBP. Their accuracy did not change much dur-

ing the whole stormy week and matched the available error

statistics. Thus the listed assumptions are sensible.

The FIMR wave model suggested that HS up to 10.2 m

occurred near Saaremaa on 9 January. Since it overesti-

mated the maximum of HS at buoy 1 by 5.8%, the proba-

ble maximum of HS was 9.6 m. The DMI model suggested

that HS=11.7 m occurred in the same area; accounting for its

overestimation at buoy 1 by 20.1% gives the probable max-

imum of HS≈9.4 m. The DWD model predicted the overall

maximum of HS about 10.95 m on 9 January. At buoy 1 this

model gave maximum HS=8.17 m and the overestimation of

12.4%, respectively. The estimate for the overall maximum

of HS in the Baltic Proper therefore is 9.6 m.

The relatively small scatter of the estimates suggests that

the overall maximum of HS in the Baltic Proper during wind-

storm Gudrun most probably was about 9.5 m. The signifi-

cant wave height eventually was well over 9 m in a consider-

able part of the Baltic Proper. It is unlikely that the threshold

of 10 m was exceeded.

Analogous reconstruction of the maximum wave height

in the GoF is not straightforward. The site near Naissaar

was located at a considerably smaller depth than the clos-

est model point and it is not obvious how to account for

shallow-water effects in this area with quite a complex ge-

ometry and bathymetry. The FIMR deep-water measurement

site off Helsinki offers a better ground for comparison. Ap-

plication of the above-described procedure suggests that HS

slightly exceeded 5 m but most probably did not considerably

exceed the historical maximum HS=5.2 m between Helsinki

and Tallinn.

7 Results and discussion

The strong reaction of the water surface to windstorm Gu-

drun both in terms of sea level and high and long waves is

the most interesting feature of this event, creating substantial

hazards both onshore and offshore. The maximum sustained

wind speed (about 29 m/s in the Baltic Proper) was large but

not exceptional. Also, the modelled strongest wind direction

(from the West) was not particularly favourable for wave gen-

eration: the effective fetch was about a half of that for SW

winds. Yet Gudrun excited very high and long waves. The

central outcome of the above analysis is that that the overall

maximum of HS evidently exceeded 9 m off coasts of Saare-

maa and Latvia and most probably was about 9.5 m in some

areas. Such wave heights were unexpected based on the ex-

isting wave statistics from the northern Baltic Proper.

It might be speculated that a future storm of the same

strength and duration, but corresponding to more favourable

wave generation conditions, may create even higher waves.

Very high waves may occur in the NBP when a strong and

large cyclone (that is able to create a practically homoge-

neous wind field over the whole Baltic Proper for a long time)

travels in the NNE direction. Since only a few cyclones do

so (Suursaar et al., 2006), such a “perfect storm” is not likely

to occur. However, if it would happen, it would contain a

considerably longer fetch and probably would excite even

rougher wave conditions at the entrance of the GoF and off
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the south-western coast of Finland than Gudrun near Saare-

maa.

It is not straightforward to identify which feature of Gu-

drun is responsible for the generation of the above-described

wave fields. As discussed in Sect. 4, the wind direction in

the Baltic Proper apparently changed as the cyclone gradu-

ally crossed the sea and a part of wave energy in the area

of the roughest seas eventually was excited by more south-

western winds corresponding to longer fetches. Also, the

spatial distribution of the modelled wind speed (Fig. 2) sug-

gests that, at least, during a certain time interval the wind

field had a convergent pattern that also may result in wave

energy concentration in some areas. For the pattern in Fig. 2

the highest waves eventually occur near Saaremaa. Notice

that NW winds over the land archipelago visible in Fig. 2

insignificantly contribute to the wave field in the northern

Baltic Proper, because most of the archipelago is practically

impassable for waves.

The wind direction in a large part of Gudrun was oblique

with respect to the axis of the Baltic Proper; thus so-called

slanted fetch situation occurred (The SWAMP Group 1985,

Ch. 8). If an oblique wind pattern persists during a long

time, a system of long waves propagating along the coast-

line emerges (Holthuijsen, 1983). At times it may form the

main spectral peak. A frequently used explanation of this

phenomenon is that the effective fetch for certain wave com-

ponents in such conditions may be much longer than the

downwind distance from the coast. This phenomenon ac-

tually is supported by nonlinear interactions as well. It fre-

quently occurs in the GoF (Kahma and Pettersson, 1994; Pet-

tersson, 2004) in which a part of the dominating winds are

slanted with respect to the coastline (Soomere and Keevallik,

2003). To the knowledge of the authors, this phenomenon

has never been analysed in the Baltic Proper where the dom-

inating winds mostly are aligned along the axis of the basin.

Its contribution to the wave field is very similar to that of a

convergent wind pattern.

Another interesting feature of windstorm Gudrun is that

very long and high waves also appeared in the interior the

GoF, an area which generally is somewhat sheltered from

long waves excited in the Baltic Proper. It is debatable if

they were excited by west wind in the NBP at the latitudes of

the GoF or whether they represented a part of long waves ex-

cited in the more southern areas of the Baltic Proper possibly

by higher wind speeds over a longer fetch. The combination

of such waves with uncommonly high water level is a prob-

able reason for extensive damage to certain beaches, smaller

harbours and jetties in sea areas where such long waves are

uncommon (Orviku, 2006). For the above-described ‘perfect

storm’ the direct excitation of a similar combination by wind

in the inner part of the GoF is not likely, because the wind

direction is largely different from the axis of the gulf. How-

ever, topographic refraction may still redirect a part of waves

approaching from SW into the gulf.

The comparison of modelled and observed wave data

shows that the basic features of wave fields during windstorm

Gudrun as well as during the following stormy period were

mostly well captured by operational wave models. They only

tended to either somewhat overestimate the wave height or to

underestimate the wave periods. An important feature is that

the observed properties of the roughest windseas were gener-

ally found between the values predicted by different models.

Consequently, a “poor man’s ensemble modelling” (which

can also be called consensus forecast) based on the compar-

ison of predictions of different models and analysis of their

performance in extreme conditions might give a reasonable

forecast for the future storms. This forecast method is well

known in meteorology where it is used for more exact deter-

mining of particularly sensitive parameters such as the posi-

tion or trajectory of tropical cyclones (Weber, 2005), or po-

tential location of floods (Chowdhury, 2005), and where it

has led to clear improvements of the forecast skill. Its appli-

cation in the forecast of mostly wind-induced marine hazards

such as extreme water levels and storm surges is straightfor-

ward. The performed analysis suggests that this method is

also applicable in predictions of hazardous wave conditions

in cooperation of operational services.
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