
 

1 

 

Wave-current interactions in a tide dominated estuary 

 

 

 

Bolaños, R. * 

National Oceanography Centre 

Now at: 

DHI 

Agern Alle 5 

Hørsholm, 2970, Denmark 

Phone: +45 45169580 

Fax: +45 45169292 

Email: rbol@dhigroup.com 

  

 

 Brown, J.M. 

National Oceanography Centre 

Joseph Proudman Building 

6 Brownlow Street, Liverpool, L3 5DA, UK. 

Phone: +44 (0) 151 795 4971 

 Fax: +44 (0) 151 795 4801 

Email: jebro@noc.ac.uk 

 

 

Souza, A.J. 

National Oceanography Centre 

 Joseph Proudman Building 

 6 Brownlow Street, Liverpool, L3 5DA, UK. 

Phone: +44 (0) 151 795 4820     

 Fax: +44 (0) 151 795 4801 

Email: ajso@noc.ac.uk 

 

 

 

 

 

 
*
 Corresponding author  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

mailto:jebro@noc.ac.uk
mailto:ajso@noc.ac.uk


 

2 

 

 

 

Abstract  

There is a need to understand the interactions of waves and currents in the nearshore and 

estuarine areas.  By using observational data and an advanced model an assessment of the wave-

current interactions was performed in a hypertidal estuary. The circulation model includes both 

barotropic and baroclinic processes arising from tides, rivers and atmospheric forcing. It is 

coupled to a spectral wave model and a turbulence model. Waves within the estuary are strongly 

modulated by the tide. Significant wave height and period are mainly controlled by time-varying 

water depth, but wave periods are also affected by a Doppler shift produced by the current. The 

major-axis depth-averaged current component is tidally dominated and wave induced processes 

do not have a significant effect on it. However, the inclusion of wave effects, in particular 3D 

radiation stress, improves the depth-averaged minor-axis (transverse) current component. The 

residual currents show a clear two-layer system, indicating that the baroclinic river influence is 

the dominant process. The wave effects are second order, but their consideration improves the 

long-term modelled residual circulation profile, specially the along estuary component. The main 

improvement appears when a 3-dimensional radiation stress coupling is considered. The 3D 

version of radiation stress produced better results than the 2D version. Within the estuary, wave 

setup has little effect on the storm surge, while 2-way wave-current interaction improved the 

wave simulation. Using a 3D Doppler shift further improved the model compared with using a 

2D version. 

 

Keywords: Estuarine dynamics, coastal modelling, wave-current interaction, POLCOMS, WAM, 

Dee estuary, wave storm impact 
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1. Introduction 

Coastal waves and currents are highly variable and can have a significant impact on human 

activities and structures (Wolf et al., 2011). There is also a need to understand the interactions of 

waves and currents in the near-shore zone as nonlinear effects become more important. Waves 

can contribute to the circulation, which then modifies the waves creating a wave-current 

feedback mechanism. The impact of currents, waves and surges at the coast are closely linked 

(Brown et al., 2011; Jones and Davies, 1998) and thus the prediction of wind-waves and ocean 

currents is of great importance for the management (including navigation) of coastal areas. 

  

There have been a number of research studies dealing with such interactions e.g. wind – waves 

(Chen et al., 2013; Donelan et al., 2012; Fan et al., 2012; Janssen, 1989; Makin and Kudryavtsev, 

1999, 2002) where the effects of waves on the wind boundary layer are studied. For a 

comprehensive review the reader is referred to a special issue in Journal of Geophysical 

Research (see Babanin et al., 2012). Wave-current interactions have also been subject of several 

theoretical and practical studies (Ardhuin et al., 2008b; Jorda et al., 2007; Kumar et al., 2012; 

Mellor, 2003, 2005; Michaud et al., 2012). Andrews and McIntyre (1978a) have derived an exact 

theory for the interaction of waves with a Lagrangian mean flow including the wave momentum 

into the mean flow evolution. Mellor (2003, 2005, 2008) derived, in an Eulerian framework, a set 

of equations to be used in ocean models based on linear wave theory, assuming a flat bottom. 

Sheng and Liu (2011) show Mellor’s (later 2008) method is more accurate, than alternative 3D 

methods, at hindcasting wave-induced circulation. Mellor’s formulations have been subject of 

debate regarding some inconsistencies in the derivations (Ardhuin et al., 2008a; Bennis et al., 
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2011) and at the same time other approaches have been developed.  Ardhuin et al. (2008b), 

following Andrews and McIntyre (1978a, 1978b), derived explicit wave-averaged primitive 

equations limited to 2nd order wave theory. McWilliams et al. (2004) derive a set of equations 

for use in finite water depth which led to a Vortex force representation evaluated by e.g. Lane et 

al. (2007) and implemented in the ROMS-SWAN model (Kumar et al., 2012; Uchiyama et al., 

2010). The main effects of waves on the mean flow commonly considered are due to radiation 

stress and Stokes drift, although interaction with turbulence and bottom stress can also be  

important (Babanin et al., 2009; Rascle and Ardhuin, 2009; Rascle et al., 2006). Several 

numerical, experimental and observational investigations have been done to understand wave 

processes in upper ocean dynamics. Ardhuin et al. (2009) used radar measurements to estimate 

Stokes drift showing that typically it is between 0.6% and 1.3% of the wind speed (the direct 

wind induced current is about 1–1.8% the wind speed). Weber et al. (2006) showed that the 

Eulerian and Lagrangian approaches for the fluid motion produce the same mean wave induced 

flux in the surface layer: for their simulations the wave induced stress constituted about 50% of 

the total atmospheric stress for moderate to strong winds. Coupled 2D current-wave models have 

shown the importance of considering wave effects when modelling water levels due to a 

hurricane in the Gulf of Mexico and a storm in the Adriatic Sea (Roland et al., 2009), and for 

storm surges in the Irish Sea (Brown et al., 2011; Brown and Wolf, 2009). Osuna and Wolf 

(2005) and Wolf et al. (2002) studied the effects of waves on the hydrodynamics  of the Irish 

Sea, further work by Brown et al. (2013b) studied the effects of 2D radiation stress formulation 

on a 3D hydrodynamic model showing the benefit of including these processes without 

compromising computational time. Tang et al. (2007) implemented wave–current interaction in a 

3D ocean model (POM) and a spectral wave model (WAVEWATCH III) following Jenkins 
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(1987) and evaluated the model by comparison with surface drifters. They showed that Stokes 

drift is a dominant effect for surface drift speed with a contribution of about 35%. They also 

showed a reduction of momentum transfer from wind to currents if waves are taken into account. 

Wave–current interaction has also been studied in a flume, observing unexpected changes in the 

mean horizontal wave profile (Groeneweg and Battjes, 2003) and wave induced mixing 

(Babanin, 2006). 

  

Wave-current interactions in estuaries and coastal lagoons have been relatively less studied. 

Some examples are Bender and Wong (1993), Lin and Perrie (2003), Piedracoba et al. (2005) 

and Pleskachevsky et al. (2009) who show the importance of modelling depth and velocity 

variations when simulating waves in estuaries. Internal estuarine wave effects can be time 

limited, due to the presence of dissipative banks at the mouth. Often in wave influenced estuaries 

the wave related processes are greater during high water elevations when wave dissipation over 

the banks at the mouth is least. The timing of the wave conditions relative to the tidal flow at the 

estuary mouth can also be important for sediment dynamics.   

 

Bolaños et al. (2013) modelled the Dee estuary during calm weather conditions, showing the 

effect of wind and river on stratification and residual circulation. Although the Dee is hypertidal 

with a very small river contribution, it was shown that baroclinicity can still dominate the 

residual circulation. However, the effect of more energetic atmospheric conditions and wave 

effects were not studied. The main objectives of the present work are therefore to evaluate the 

main wave-current interaction processes in the, hypertidal, Dee estuary using observations and 

an advanced 3-dimensional (3D) wave-current-turbulence model. Investigations under similar 
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conditions are limited and thus the paper brings new insight into the importance of these 

processes. A comprehensive model-observation comparison for waves, currents and surge is 

performed to fully assess the skill of the modelling system at simulating pertinent processes. In 

the next section the Dee estuary is described. Section 3 details the Proudman Oceanographic 

Laboratory Ocean Modelling System (POLCOMS) and its application to the Dee estuary. 

Section 4 presents the data available and describes the environmental conditions. Section 5 

discusses the results, and the final concluding remarks are given in Section 6. 

 

2 The Dee estuary 

The Dee is a funnel-shaped hypertidal estuary situated in the eastern Irish Sea (Figure 1). It has a 

length of about 30 km, with a maximum width of 8.5 km at the estuary mouth. The average tidal 

prism is 4×10
8
 m

3
 and the annual mean river discharge is only 31 m

3
 s

-1
 making the Dee a tidally 

dominated estuary. The tidal range during mean spring at Hilbre Island is of the order of 10 m. 

The main channel bifurcates 12 km seaward from the canalized river at the head of the estuary, 

resulting in two (more than 20 m) deep channels extending into Liverpool Bay, the Hilbre 

channel is on the east and the Welsh channel is on the west. The two shorelines of the estuary 

show a marked contrast between the industrialized usage of the coastal belt in Wales (west coast) 

and residential and recreational usage in England (east coast). The estuary has been subject of 

several man made modifications such as canalizations and training walls causing siltation and 

accretion on the eastern shore and colonization of areas by saltmarsh. The estuary contains 

extensive areas of intertidal sand and mudflats (Hutchinson, 1994; Hutchinson and Prandle, 

1994), which support a benthic fauna. Large areas of saltmarsh also occur at its head and along 

part of the east shore. The three sandstone islands which comprise the Hilbre Island complex and 
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Red Rocks at the northeast tip of the Wirral peninsula represent the only natural hard rock coast 

within the estuary. 

 

3 The numerical model 

3.1 POLCOMS 

POLCOMS is a 3D numerical model formulated in a spherical polar, terrain following 

coordinate system (sigma coordinates), on a B-Grid (Holt and James, 2001). It solves the 

incompressible, hydrostatic, Boussinesq equation of motion separated into depth varying and 

depth independent parts to allow time splitting between depth-independent ( ̅) and depth-

dependent (   ) components. The eastward velocity is then    ̅     and the northward 

component is    ̅      For the turbulence, POLCOMS is coupled with the Global Ocean 

Turbulence Model (GOTM, Umlauf et al., 2005). This allows for more sophisticated turbulence 

modelling, such as accounting for turbulent mixing with TKE injection at the surface to represent 

white-capping of waves. A study of turbulence modelling using POLCOMS in the Northwest 

European continental shelf (Holt and Umlauf, 2008) has shown the κ-ε formulation to better 

represent mixing fronts, thus it has been applied again here. Another process considered in the 

model is wetting and drying. For wave processes, POLCOMS is coupled with the spectral wave 

model WAM (Monbaliu et al., 2000). For 2D wave-current interaction (see Table 1), wave 

refraction and Doppler shift are included using the depth-averaged current; the bottom friction is 

enhanced by  waves (Mellor, 2002), while a JONSWAP bottom friction is applied in WAM after 

it was found to perform better in the Dee estuary (Brown, 2010); the wind drag is modified by 

the presence of the wave field using a wave dependent Charnock parameter (Brown and Wolf, 

2009). To ensure numerical stability WAM limits the growth of the high frequency end of the 
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wave spectrum (Monbaliu et al., 2000). However, nearshore, the default limit restricts the rate of 

change of the wave spectrum, preventing tidal modulation of the waves. An improved wave 

prediction in shallow water is obtained by relaxing this limit (Brown, 2010). For 3D wave-

current interaction the model uses Mellor (2003, 2005), implemented and tested by Bolaños et al. 

(2009), Bolaños et al. (2011) and Brown et al. (2011). Stokes’ drift is estimated by an integration 

of the wave spectra in the form: 

 

   ( )    ∫ ∫             (   )                                                              (1) 

 

where α refers to the x or y component of the Stokes velocity vector USα (and of the wave 

number vector k), c is the respective wave celerity, D water depth, F(f, θ) the wave energy 

spectrum, g acceleration due to gravity, θ and f are the direction and frequency of each spectral 

component, σ is the sigma coordinate. 

The Doppler velocity (uAα) that modifies the wave dispersion relation is evaluated according 

to the expression based on Kirby and Chen, (1989) analysed and described by Mellor (2003), and 

it is defined as: 

   ( )   ∫              (   )                                                                (2) 

                                

 where u represents the total (depth-averaged and depth-varying) velocity. 
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Longuet-Higgins and Stewart (1962, 1964) described the radiation stress of surface waves as 

an excess flux of momentum by the waves. Therefore the momentum conservation modifies the 

current field by changes of the radiation stress. Its effects are more evident in shallow water due 

to wave energy gradients. Mellor (2003) developed a formulation to explicitly take into account 

this process in ocean models. The expressions of Mellor were given for a monochromatic wave 

but they can be adapted so that a wave spectrum can be accounted for: 

    ( )  ∫ ∫    [                (             )]                           (3) 

                           

   ( )  ∫ ∫    [          {(   )                   }        ] (       )             (4) 

                                                                     

Where α, β are the horizontal components, δαβ=1 for α=β and the depth dependent functions are defined 

as: 

           (   )                   (   )                                                 (5) 

            (   )                   (   )                                                 (6) 

                     

 

A 2D version of radiation stress following Longuet-Higgins and Stewart (1964) and 

Mastenbroek et al. (1993) is also available (e.g. Brown et al., 2013b) and is included in the 

present analysis.  This method applies a vertically uniform stress to the depth-independent 

velocity component within the POLCOMS, whereas the 3D method applies a vertically-varying 

stress to the depth-varying velocity component within POLCOMS.   
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3.2 Model set-up  

To model wave-current-turbulence processes in the Dee estuary within Liverpool Bay, the 

POLCOMS-WAM-GOTM modelling system (Brown et al., 2010; Bolaños et al., 2013) has been 

used considering 3D wave-current interaction. Accounting for freshwater input, surface heating 

and the offshore temperature and salinity structure enables a baroclinic-wave-tide-surge model to 

be set-up.  

 

To capture the (waves, surge, temperature and salinity) conditions around the offshore boundary 

to Liverpool Bay a system of nested model grids was used.  The Liverpool Bay model (~180 m 

horizontal resolution and 10 sigma layers) was forced with boundary conditions from the Irish 

Sea model (~1.8 km resolution) (Bolaños et al., 2013; Brown et al., 2011).  Fields generated by 

the UK Met Office Northwest European Continental Shelf (mesoscale) model were used to force 

the atmospheric conditions.  These data consisted of hourly wind velocity at 10 m and 

atmospheric pressure, as well as air temperature, relative humidity and cloud cover every three 

hours, with a resolution of ~12 km.  It has been previously shown (Bolaños et al., 2013) that 

even in a hypertidal estuary,  weak river inflow can significantly impact the residual estuarine 

circulation. Freshwater at the river sources within the POLCOMS model domains was accounted 

for using daily averaged river discharges from available river gauging stations across the study 

area from the Centre of Ecology and Hydrology (CEH). The Liverpool Bay model was 

initialized with a salinity of 35 PSU and a temperature of 7 °C.  A one month spin-up period was 

then used to generate the baroclinic conditions before the simulations were performed. The wave 

model was spun up over 1 day prior to the study period and had a 3 s propagation time step with 
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a 12 s source term time step.  Information exchange between POLCOMS and WAM occurred at 

the same rate as the baroclinic computation, every 9 s. The directional wave spectra were 

discretized in 25 frequencies and 24 directions. 

 

Table 1 summarizes the Dee model simulations used to investigate wave-current processes in the 

study area. All the runs included the same boundary conditions from the Irish Sea model and 

wetting and drying, but different forcing were considered to investigate the local 3D water 

structure and the effect of wave-current interaction. The reference run (P-ref) included 

atmospheric forcing (wind, pressure and heat transfer) and baroclinicity induced by river inputs. 

In the run Pnostrat the river input was removed to assess the effect of baroclinicity in periods of 

moderate wind and wave activity. In the run Pnoatm atmospheric forcing was not considered to 

enable understanding of the importance of this surface forcing. Several wave-current coupled 

runs were performed (PW) in order to assess the 2D and 3D coupling. Wave-current coupled 

runs considered the exchange of water depth and bottom and surface roughness. The PW2D run 

included the 2D Doppler shift while in the run PW2Dr both 2D Doppler shift and 2D radiation 

stress are considered. The PW3D incorporated the 3D Doppler shift, the PW3Ds included both 

3D Doppler shift and Stokes drift while the PW3Dr included Doppler shift and 3D radiation 

stress. 

  

The model hindcast is analysed and compared with observation within the estuary area. The 

statistical parameters used to quantify errors are: 

  -        ∑ (     )    ∑ |  |                                                          (6) 
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       (   )                                                         (7)      ∑ (     )      ∑ (|      |  |      |)                  (8) 

 

and the correlation coefficient, r
2
. Where <> denotes the mean values, P-Bias is the under or 

over prediction (in %) of the model prediction (M) compared with the observation (O) and RMSE 

is the root-mean-square error of the predicted model hindcast. The index of agreement (D) is 

another quantity that measures the skill of the model to reproduce the observations and is 

bounded between 0 and 1, with 1 being the optimum model. 

 

4. Available Data 

The modelled and observed data used in the present work came from three locations in our study 

area (Figure 1). The WaveNet buoy managed by the Centre for Environment, Fisheries and 

Aquaculture Science (CEFAS, http://www.cefas.co.uk/data/wavenet.aspx) provides offshore 

wave parameters. The Welsh and Hilbre wave data are from moored instrument deployments 

during a set of Dee surveys performed in February-March 2008 (Bolaños and Souza, 2010). In 

the Hilbre channel an instrumented tripod with an upward looking ADCP (Acoustic Doppler 

Current Profiler) provides current velocity profiles with a vertical bin resolution of 0.5 m and 

integrated wave parameters. A second smaller rig was deployed in the Welsh channel providing 

near-bed current (from Acoustic Doppler Velocimeter, ADV) and pressure measurements. 

Estimates of wave parameters, using the PUV (Pressure, u current component and v current 

component) method (Gordon and Lohrmann, 2001) were performed. Note that no ADCP and, 

thus no current profiles, were available in the Welsh channel. A meteorological station located 

on the Hilbre Island complex provided hourly wind speed and direction. The prevailing 
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conditions from the 25 February 2008 to the 07 March 2008 are considered to be a period of 

significant wave-influence (Figure 2), which is therefore the focus of this study.    

 

4.1 Environmental conditions 

Figure 2 shows the time series of hydrodynamic parameters during the studied period. Current 

speed (Figure 2a) and water depth (Figure 2b) are controlled by tides, following the spring/neap 

and flood/ebb cycles, velocities are slightly faster during floods and currents behave as in a 

standing wave with maximums occurring between high and low tide. The significant wave height 

(Hs, Figure 2c) for the three locations shows the main wave event occurred on the 1 March 2008. 

Offshore, at the WaveNet position, large waves (about 5 m Hs) result in direct response to the 

local wind forcing (Figure 3a) and show no tidal modulation. However, nearshore within the 

estuary channels, the wave height is reduced due to bathymetric features and modulated by the 

tide. Larger waves are evident at the Welsh channel mooring, the Hilbre channel mooring being 

less exposed to wave activity. 

 

In the Hilbre channel the main current direction is aligned with N-S while the Welsh channel is 

E-W. In the Hilbre channel wave direction was predominantly from the N, in agreement with the 

channel orientation. Mean periods in the area ranged from 3 – 6 seconds and peak periods from 4 

– 10 seconds. River outflow was relatively small (~ 35 m3 s-1) and constant during the study 

period peaking at 45 m3 s-1 on the 2 March. 

 

The storm surge (Figure 2d) was obtained by applying tidal analysis to remove the tide. The 

Titan package (part of the Task-2000 package, http://www.pol.ac.uk/ntslf/software.html) with 16 

http://www.pol.ac.uk/ntslf/software.html
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major and 15 related constituents was applied to the full record of sea surface elevation to obtain 

the residual elevation due to non-tidal effects (e.g. wave and meteorological setup and set-down). 

The plot shows that the storm surge peaked at nearly 0.8 m during the storm event, while a set-

down was also observed during the calm period after the storm, reaching about -0.8 m.  The 

surge during this study at the mooring locations has previously been validated (Brown et al., 

2012; Brown et al., 2013a). The dominant component of the estuarine surge was found to be the 

surge generated externally to Liverpool Bay, while, the local meteorology and stratification were 

of secondary importance.   

 

Figure 3 shows the time series of the wind speed and direction at Hilbre Island (a few hundred 

meters from the Hilbre channel deployment). The figure represents a two-month validation 

period of the mesoscale model under a wide range of conditions. It shows a few minor wind 

events with velocities of about 10 m s
-1

 and more intense wind events reaching up to 25 m s
-1

. A 

major wind event within the study period is observed to start on the 29 February 2008 with a 

maximum speed of 20 m s
-1

, duration of about 4 days and SW wind direction. During the 1
 

March 2008 the wind veered to the NW for about 12 hours producing the peak in significant 

wave height. The mesoscale (Met. Office) atmospheric model statistics are (r
2
=0.67, P-bias=-

11.76 and D=0.89) for wind speed and (r
2
=0.55, P-bias=1.81 and D=0.87) for wind direction. 

 

4.2 Wave processes within the estuary 

Waves inside the estuary are modulated by the tides (Figure 2c). During low tide the waves are 

restricted because most of the energy is dissipated on the sand banks extending out from the 

estuary mouth, only small waves or waves locally generated by the wind are able to occur in the 

channels. Figure 4 shows the relation of Hs (left column) and Tz (right column) with surface 
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elevation for both the Hilbre (top panels) and Welsh (bottom panels) channels. Surface elevation 

is the main factor that controls wave propagation into the estuary, especially in the Hilbre 

channel where, during low water, the Hs and Tz are clearly reduced. The Welsh channel location 

is more exposed, with less influence from surrounding sandbanks and thus the tidal elevation has 

less influence on the waves. Some clustering can also be observed in the plots due to the flood 

and ebb currents, this effect is stronger for the wave periods due to a Doppler shift of the waves 

(decrease in Tz, during flood currents).   

 

Waves can contribute to the overall storm surge through wave setup induced by the radiation 

stress (Brown et al., 2013b; Brown and Wolf, 2009; Longuet-Higgins and Stewart, 1964).  The 

total (wave plus meteorological) surge peak (Figure 2c) correlates with the storm event, 

however, the separation of the meteorological induced and wave induced setup is not possible 

from these observations and thus only the total is shown. It is important to note that the peak of 

the surge occurs before the peak of Hs. This is because the surge interacts with the tide over the 

continental shelf. In Liverpool Bay the surge is mainly controlled by the external surge produced 

by the SW winds (see Jones and Davies, 1998), when the wind veers to the NW the external 

surge is reduced but local surge and Hs in Liverpool bay is increased. The short fetches within 

the Dee for SW winds prevent counteraction of the external forcing at the estuary mouth. The 

surge has a strong correlation with the wind (r
2
=0.6 for the study period and r

2
=0.76 for the main 

wave event) and less correlation with the local wave properties (r
2
< 0.4 with Hs). The effect of 

waves on surge was explored further using model simulation,  their effect was found to be 

marginal and isolated to the storm event during the 1 March 2008, when the winds were from 

NW inducing the largest waves approaching the estuary. 
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5 Results and discussion 

5.1 Currents and wave-induced currents 

A comparison of the modelled depth-average velocity with observation in the Hilbre channel 

only (as no current profiles were available for the Welsh location) is presented in Figure 5. 

Model and data has been rotated along the main current axis independently to minimize possible 

errors due to bathymetry, position of the rigs and channel orientation. The model reproduces the 

velocities very well, especially the principal component which is aligned with the channel 

orientation. The minor-axis component is overestimated and some disagreements occur during 

the wind-wave event. The overall statistics (P-Bias, D and r
2
) for the model runs in terms of 

depth-averaged velocity are presented in Table 2. The main current component is clearly tidally 

dominated and thus error statistics are similar among the different runs, all of them showing very 

strong tidal signal. The main component is not very sensitive to the different wave processes 

included in the simulations. However, the minor-axis component of the depth-averaged velocity 

is sensitive to the wave processes. The largest errors in the minor-axis component occur when no 

wave effects are considered (P-ref) and the simplest inclusion of waves (PW2D) gives an 

improvement of the P-bias and RMSE. In general, the model produces very low correlation with 

the observation for this component, which could be attributed to an error in the model resolution 

at the location and/or model bathymetry, or inaccuracies in the baroclinic forcing. The minor-

axis component in the Hilbre channel is less influenced by tidal forcing and circulation induced 

by atmospheric forcing, potentially enabling waves and lateral density gradients to have a 
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stronger impact. The consideration of 3D radiation stress (PW3Dr) produced better results (lower 

P-bias and RMSE) than the other runs (see Table 2). 

 

A snapshot of depth-averaged currents during the peak of the storm (1 March 2008) for the 

reference run (P-ref) and the runs including radiation stress (PW2Dr and PW3Dr) are shown in 

Figure 6. The outer part of the Welsh channel experiences large velocities and variable current 

direction due to the shape of the coastline, the curvature of the tidal channel and the bathymetry 

of the sand bank at the north of the channel. The consideration of radiation stress slightly 

modifies the pattern of the depth-averaged velocity. The 2D radiation stress produces a small 

reduction of the flow in the Welsh channel and induces some heterogeneity of the flow in the 

more offshore areas. The 3D radiation stress on the other hand produces an intensification of the 

flow in the Welsh channel. These differences, although small, have some relevance when 

looking into the details of the current profile and the residual circulation as shown next. 

 

The long-term residual circulation is defined in the present work as the time-averaged velocity 

during the study period. In Figure 7 the observed and modelled residual circulation profiles in the 

Hilbre channel are presented. The observed major-axis component is aligned with channel 

orientation and displays a two-layer system with a surface layer flowing out of the estuary. The 

observed minor-axis component is vertically more uniform, flowing towards the central part of 

the channel. In agreement with Bolaños et al. (2013) for a calm period, the residual circulation 

profile (Figure 7) in the Hilbre channel is mainly controlled by the presence of density driven 

flow, thus, when not taken it into account the model produced less accurate patterns (Pnostrat) in 

both components. When baroclinic effects are considered the vertical profiles are well modelled 
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(P-ref), although a weak two-layer structure does occur in the minor-axis current component. 

Wave processes are of lesser importance than stratification, but their inclusion improves the 

vertical profile of the modelled horizontal residual circulation (PW2D, PW2Dr and PW3Dr). The 

clearest improvement is by the 3D radiation stress in the main current component (PW3Dr). The 

radiation stress as proposed by Mellor (2003, 2005), which was also implemented in ROMS 

(Haas and Warner, 2009; Warner et al., 2008), showed improvement of the results when 

modelling the residual circulation profile within this estuary. However POLCOMS-WAM has 

previously been tested in Liverpool Bay (not shown) suggesting incorrect wave-setup during 

extreme storms due to unrealistic currents offshore (Brown at al., 2011). This is in agreement 

with discussions on the inconsistences of Mellor’s derivation (Ardhuin et al., 2008a; Bennis et 

al., 2011), which have also led to alternative formulations (e.g. Vortex force, Lane et al., 2007; 

McWilliams et al., 2004) that have now been incorporated in the COAWST system based in the 

ROMS model (Uchiyama et al., 2010; Kumar et al., 2012). 

 

Consideration of 3D radiation stress modifies the near-bed profile to a much greater extent than 

the other wave couplings. The improvements are due to an integrated effect of radiation stress 

over the area modifying the horizontal current profile in the mouth of the estuary, which in turn 

influences the flow within the estuary. In this case, the radiation stress generates a landward flow 

in the major-axis residual component over the entire depth, but with slightly greater flow 

velocity near the bed. This causes a shift in the overall velocity profile towards negative 

(landward) values improving the validity of this simulation, and thus, demonstrates the need to 

correctly represent the vertical profile of radiation stress to obtain an accurate residual current 

structure under wave conditions.  Interestingly, the 2D radiation stress also improved the vertical 
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profile of the major-axis residual current component, indicating that even though the process is 

formulated in 2D, when included in a 3D hydrodynamic model it induces improvements in the 

vertical structure. However, the two-layer structure in the minor-axis residual current is 

incorrectly enhanced as the model responds to the depth-uniform stress.  These results also 

indicate that the wind-wave mixing during the storm event is not strong enough to overcome the 

effect of the baroclinic circulation, which is the primary driver of the circulation in the Hilbre 

channel. The SW winds during this event support wind strained stratification  (as described by 

e.g. Chen and Sanford (2009) and Scully et al. (2005)), a down-estuary wind enhances subtidal 

vertical shear, which strains the along-channel density gradient to increase stratification; up-

estuary wind reduces or even reverses the vertical shear, thus tending to decrease stratification). 

Weakening of the stratification happens only near the peak of the storm.  This is the why the 

two-layer system remains evident over the majority of the study period (eg. Brown et al., 2014). 

Stokes drift did not produce any significant change to the patterns simulated with the PW3D run 

(so PW3Ds is therefore not shown). 

 

5.2 Wave and surge modelling 

Waves are an important mechanism for triggering sediment re-suspension through the increase of 

bottom stress and generation of currents, thus it is important to model their properties accurately 

within the estuary. Figure 8 (first and second row) shows a comparison of modelled and 

observed significant wave height, Hs, and mean period, Tz, at the offshore (WaveNet) location. 

The major wave event between the 29 February 2008 and 5 March 2008 generates a significant 

wave height of more than 4.5 m and mean period of 7 s. All wave model runs show similar 

patterns in terms of Hs but an improvement is achieved by considering the 3D Doppler shift 
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(PW3D) especially during the main peak of the storm. This improvement is seen more clearly in 

Tz as the model very closely matches the pattern observed. The model shows a reduction of P-

Bias and RMSE (Table 3) for the 3D runs due to the Doppler shift effect while the inclusion of 

radiation stress and Stokes drift did not produce significant changes. 

 

Figure 8 (third to sixth row) shows the comparison of wave parameters (Hs and Tz) within the 

estuary mouth in both the Hilbre and Welsh channels. At these inshore locations, in contrast to 

the offshore WaveNet location, it is evident that wave dissipation occurs and that the tidal 

modulation of wave parameters becomes stronger. The observed wave events with Hs greater 

than 3 m offshore are attenuated within the estuary, although less so in the Welsh channel than 

the Hilbre channel. Nearshore, the model runs accurately predicted the tidal oscillation of wave 

parameters, but Hs was underestimated more so than offshore. In contrast to the offshore results, 

the 3D wave-current interaction processes (PW3D) do not improve the simulation of Hs and, 

generally, the 2D run (PW2D) gives better results in terms of Hs. A slight improvement in Tz 

occurs when considering 3D Doppler shift at both locations in the estuary mouth, the tidal 

modulations are better captured and the magnitude is better predicted. Due to of the importance 

of water depth variation for waves, errors in the wave simulation are likely to be highly affected 

by bathymetric inconsistency modifying the wave propagation and bottom friction dissipation. 

 

Table 3 summarizes the model statistics for the wave parameters at the 3 study locations.  The 

differences are due to wave-induced changes in the circulation, which in turn influences the 

refraction and Doppler shift of the waves and the representation (2D or 3D) of the current 

structure. There is an improvement in the modelled Hs when considering 3D effects in the 
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offshore location, but reduced accuracy within the Dee. For Tz an improvement is observed in the 

3D runs at all 3 locations. 

 

The significant wave height distribution around the Dee estuary during the day of the storm peak 

(1 March 2008) is shown in Figure 9 for the PW2D (top panels) and PW3D (bottom panels) runs 

at times of low (right column) and high (left column) water. The influence of bathymetry is 

clearly seen to be stronger on the wave field when considering the 3D Doppler shift. At high 

water the structure of the main channels can clearly be seen in the maps of wave height and at 

low water the varying coastal bathymetric profile can be seen. During the first 12 hours of this 

day the winds veered from SW to NW producing relatively large waves approaching the estuary 

mouth. Most of the wave energy is dissipated over the sand banks at the estuary entrance. 

However, during high tide, waves of more than 1 m can penetrate deeper into the estuary. The 

PW2D and PW3D runs present significant differences nearshore and within the estuary. The 

consideration of the 3D currents in WAM produced stronger dissipation as the waves propagate 

towards the coast. This is because the more intense currents near the surface have stronger 

effects on surface waves. This generates larger horizontal wave gradients and clearly restricted 

wave propagation within the tidal channels. The implementation of a 2D or 3D current within 

WAM also changed the drying areas during low tide, however, at such tidal stage the wave 

processes are minimal within the estuary (Brown et al., 2013b).  

 

In general terms the use of the 3D Doppler shift improved the modelling of wave parameters 

both offshore and nearshore. The only exception was for Hs in the estuary, this could be 

associated to errors in the bathymetry and thus in wave dissipation which becomes more evident 
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when wave periods are modified by 3D Doppler shift. The large tidal amplitude and the 

associated water depth variations, make the consideration of tidal effects for wave modelling 

very important in shallow (estuarine) water.  

 

The sea level residuals were obtained from tidal analysis (see section 4.1). Both channels present 

the same patterns, a setup in surge during the peak of the storms and a lesser set-down in surge 

during calm condition surrounding the main wave event. The model accurately reproduced (not 

shown here but in Brown et al. (2012), Brown et al. (2013b) and Brown et al. (2011)) the general 

trend of the observation, however it produced some overestimation of surge during the peaks in 

storm conditions. This could be related to errors in the external surge generated by offshore wind 

and pressure as the storm tracks over the Irish Sea.  

 

The wave processes do not produce any significant change in the surge elevation due to wave 

setup and increased surface or bottom roughness. This result seems somewhat paradoxical to the 

knowledge of storm surge produced by waves. However, the wave processes at the mooring sites 

within the estuary are highly controlled by dissipation at the estuary mouth and thus wave setup 

within the estuary is expected to be small. As discussed by Jones and Davies (1998), for SW 

winds in the Irish Sea the observed surge in Liverpool bay is dominated by the “external” 

forcing. For the present conditions, this external forcing is the main source of surge in the Dee 

estuary as it influences the elevation at the mouth and therefore the flow into and out of the 

estuary. The local wave conditions produced under SW winds are small, so is not a significant 

factor influencing surge in the Dee estuary. 
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5.3 Wave effects on water column turbulence and salinity distribution 

Waves and atmospheric forcing may affect the salinity and turbulence distribution in the water 

column in several ways, including direct turbulence production and weakening or strengthening 

of the stratification. Figure 10 shows different model simulations (at the mooring location in the 

Hilbre channel) of the distribution of salinity (left column), current shear squared (M
2
, central 

column) defined as (    )  (    ) 
, and the turbulent kinetic energy shear production (P, right 

column) defined as –  (〈    〉 (    )  〈    〉 (    ))   for the first 100 hours in March when the 

storm occurred. Where ρ is water density, u, v, w are the velocity components and z is the 

vertical coordinate. 〈    〉     〈    〉 are the Reynolds stresses. The salinity distribution from 

model runs changes values significantly depending on the process included. The reference run 

(P-ref) is the one that presents the largest values showing stratification at low water and a well-

mixed water column during high water. When removing the atmospheric forcing the salinity 

drops but the stratification increases. This is due to the removal of the storm surge that brings 

offshore waters into the estuary as well as the reduction of surface mixing, which results in the 

strengthening of baroclinicity. The effect of radiation stress (PW3Dr) also reduces the overall 

salinity but to a lesser extent than no atmospheric forcing (Pnoatm), and it does not change the 

strength of stratification at the Hilbre channel. 

 

The current shear (M
2
) for the reference run (P-ref) and 3D radiation stress (PW3Dr) are similar 

and do not show a clear response to the tidal cycle, with large values at different tidal stages. 

However, the run without atmospheric forcing (Pnoatm) does show a clear cyclic pattern. The 

lack of wind forcing allows the stratification to slightly strengthen, which in turn produces 

stronger shear near the surface. This effect is observed especially at low tide, when baroclinic 
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effects are more important. Near the bottom the shear is mainly induced by the bottom boundary 

layer and magnitudes are similar for each run. 

 

The TKE production (P) is closely linked to the M
2
, and shows very similar patterns between the 

reference run (P-ref) and the radiation stress run (PW3Dr). However, the run without 

atmospheric forcing (Pnoatm) presents, controversially, larger turbulence values of P, typically 

close to the surface associated with the shear induced by the stratification and in some cases high 

turbulence throughout the water column, associated to bottom friction and the stronger river 

influence during low tide. 

 

Weakening of stratification occurs during the peak of the storm due to enhanced mixing. 

However, the residual currents display a two-layer structure suggesting density driven currents 

are still the dominant process in generating the residual circulation within the Hilbre channel 

even during a wave influenced period. The strong effect of the baroclinic circulation shows that 

wave mixing within the estuary is small and stratification is persistent. The fact that stratification 

was persistent during the storm event could be related to: the storm’s occurrence during a neap 

tide when stratification is strongest; slight increase on river outflow, the generally southerly wind 

direction during the study period supporting wind strained stratification; and the most energetic 

waves being dissipated on the offshore sand banks.  

 

5.4 Bottom stress 

Wave effects in the estuary are very important in terms of bottom stress in agreement with the 

findings of Umgiesser et al. (2004) and Bolaños et al. (2005) inside coastal lagoons. Figure 11 
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shows the spatial distribution of maximum current stress for the 1 March 2008 and wave stresses 

for high and low water conditions corresponding to the times shown in Figure 9 (bottom panel). 

Current only stresses are of the order of 1 N m
-2

 and occur in the main tidal channel However, 

during high water levels, waves produce stresses that are more than a factor of 2 greater than 

those of the currents and have much greater intensity offshore. Within the estuary, high wave 

stresses occur in shallow areas, where most of their energy is dissipated, and not in the tidal 

channels where water depth is greater. At lower water levels the wave stress is limited to the 

channels due to banks drying. Within the channels during all tidal states the wave stresses are 

comparable to the current stresses. Therefore waves are important, enhancing the bottom stress 

and intensifying suspension of sediments, which can then be transported by the tidal currents and 

thus affect the morphology. At low water, waves only have influence at the estuary mouth, but 

with increasing depth, wave stresses can be generated up to the head of the estuary.  Using either 

2D or 3D currents in the wave model runs to estimate the bottom stress has an impact inside the 

estuary. The 2D run allowed larger waves to penetrate further into the estuary, increasing the 

estimated bottom stress over the shallow banks. 

 

 

6 Concluding remarks 

Measurements within estuarine channels and model results have been used to understand the 

relevant wave-flow interactions within a hypertidal estuary.  A 3D coupled circulation model has 

been implemented considering 2D and 3D wave effects in the Dee estuary and has been used to 

assess the wave-current interactions. The circulation is controlled by tides and baroclinicity, 

while wave parameters inside the estuary are dependent on depth variations inducing wave 
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dissipation over the outer sand banks. The ocean model showed good agreement in depth-

averaged velocity and 3D residual patterns. Earlier studies (Bolaños et al., 2013) validated the 

3D structure in more detail, which is not repeated here. 

 

Waves within the estuary are strongly modulated by tides. Significant wave height and period are 

controlled by offshore wave conditions and water depth variations. Wave periods are also 

affected by currents, through Doppler shift. Thus, for accurate modelling of wave parameters the 

coupling with the ocean model to account for time-varying water depth and currents is necessary. 

Both, 2D and 3D Doppler shift improved the wave modelling, but the use of the 3D Doppler 

shift outperformed results using the 2D method at both offshore and nearshore locations.  

 

An improved prediction of the residual circulation profile during storm conditions in the 

nearshore tidal channels was produced when using 3D radiation stress. However, it is 

computationally expensive and its effect over the longer term is minimal, since its influence is 

limited to isolated large wave events. Using a 2D radiation stress method avoids the highly 

debatable vertical distribution of its contribution, and together with its much faster computational 

time makes it more suitable for operational or long-term applications. In addition, this approach 

has been shown to be more robust offshore (Brown et al., 2013b), while its effect within the 

estuary are shown here to improve model performance. 

 

Wave induced currents within the estuary are of second order compared with the baroclinic 

currents, thus the main long-term hydrodynamic patterns can be modelled without wave effects. 

Water column stratification would intuitively be expected to become reduced under more 
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turbulent storm conditions due to wind and wave mixing, causing stratification induced currents 

to weaken. However, it is shown that the effect of the mixing process on residuals is relatively 

small when considering the full period of wave influence in this study.  

 

 However, for bed processes, the presence of waves is of primary importance. Waves can 

significantly increase the bottom stress, particularly in shallow areas, which may have 

consequences for the re-suspension of sediments which are then transported by the concurrent 

tidal currents.  Sporadic wave events could be an important factor in shaping the estuary mouth 

and to a lesser extent the inner estuary and should therefore be considered in morphological 

studies. 

 

The results have shown that the inclusion of radiation stress improved the residual current 

simulation within the estuary. However, density gradients due to river input, even with a small 

flow, have proved to be critical for the correct simulation of residual circulation, as also shown 

for a calm period by Bolaños et al. (2013), even during wave dominant conditions. Thus, when 

modelling long-term suspended particulate matter 3D effects and density gradients should be 

included in order to accurately predict the net transport pathways, along with the sediment 

sources and sinks.  
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Figure Captions 

Figure 1. Location of the Dee estuary in Liverpool Bay showing the model domain bathymetry 

and the location of the measured data. The white diamonds show the mooring locations in 

the Welsh channel (west) and Hilbre channel (east). The white square shows the WaveNet 

buoy position. 

 

Figure 2. Measured time series of a) depth-averaged velocity in the Hilbre channel (positive for 

ebbs and negative for floods), b) water depth in the Hilbre channel, c) significant wave 

height at the three study locations and d) surge in the Hilbre and Welsh channels.  

 

Figure 3. Wind speed (top) and wind direction (bottom) from observations and model. 

 

Figure 4. Scatter plot of significant wave height (Hs) and mean period (Tz) against surface 

elevation for the Hilbre and the Welsh channels. 

 

Figure 5. Time series of the observed and modelled depth-averaged current components in the 

Hilbre channel. 

 

Figure 6.  Depth-averaged velocity distribution during the peak of the storm (1 March 2008) for 

P-ref (left), PW2Dr (centre) and PW3Dr (right), model runs are identified in Table 1.  

 

Figure 7. Residual circulation profile from observed ADCP data (mounted on the Hilbre rig) and 

modelled under different forcing terms given in Table 1.  
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Figure 8. Observed and modelled significant wave height and mean period at the, offshore, 

WaveNet location (first and second row). Significant wave height (Hs) within the Hilbre 

and Welsh channels (third and fourth row).  Mean period (Tz) in the Hilbre and Welsh 

channels (fifth and sixth row).  

 

Figure 9. Distribution of significant wave height during high tide (left) and low tide (right) for 

the POLCOMS-WAM run PWG2D (top) and PWG3D (bottom) on the 1 March 2008. 

 

Figure 10. Hilbre channel mooring location, left eft column is the salinity distribution (in PSU), 

central column is the current shear (M
2
 in s

-2
) and right column is TKE production (P in 

Wm
-3

) for model results of P-ref (top row), Pnoatm (central row) and PW3Dr (bottom 

row). M
2
 and P have the same colour scale. 

 

Figure 11. Distribution of maximum current stresses modelled by P-ref for the 1 March 2008 

(left), wave stresses during high tide (centre) and low tide (right) for the PWG3D run (see 

Figure 9, bottom panels). Colour bar units in N m
-2

, note the different colour scale between 

the current and wave stresses.  
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Tables 

Table 1. Description of the model runs and physical processes included. All runs included tidal 

and Coriolis forcing. Wave-current coupling runs considered the exchange of time-varying 

properties: current, depth, bottom and surface roughness.  

Run 

name 

Atmospheric 

forcing 

River wave-current 

coupling 

2D 

Doppler 

shift 

2D 

radiation 

stress 

3D 

Doppler 

shift 

3D 

Stokes 

drift 

3D 

Radiation 

stress 

P-ref X X       

Pnoatm         

Pnostrat X        

PW2D X X X X     

PW2Dr X X X X X    

PW3D X X X   X   

PW3Ds X X X   X X  

PW3Dr X X X   X  X 

 

 

 

Table 2. Statistical parameters for the depth-averaged velocity components (minor-axis 

component, u, and major-axis component, v) for the different model runs investigated. 

 P-ref PW2D PW2Dr PW3D PW3Ds PW3Dr 

P Bias u -59 -46 -52 -47 -49 -36 

P Bias v 6 5 4 4 4 -0.2 

RMSE u 0.0413 0.0382 0.0393 0.0389 0.0391 0.0391 

RMSE v 0.1237 0.1237 0.1232 0.1247 0.1252 0.1223 

r
2
 u 0.036 0.048 0.032 0.032 0.028 0.04 

r
2
 v 0.908 0.902 0.904 0.9 0.898 0.887 

D   u 0.92 0.92 0.92 0.92 0.92 0.93 

D   v 0.96 0.96 0.96 0.96 0.96 0.96 
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Table 3. Statistic parameters of model performance for wave parameters at the 3 locations. 

  PW2D PW2Dr PW3D PW3Ds PW3Dr 

W
av

eN
et

 

P Bias Hs -22.8 -12.6 -12.6 -12.6 -12.8 

P Bias Tz -23.4 -6.1 -6.2 -5.8 -7.0 

RMSE Hs 0.446 0.317 0.317 0.317 0.315 

RMSE Tz 1.180 0.436 0.440 0.442 0.465 

r
2
 Hs 0.911 0.938 0.938 0.938 0.939 

r
2
 Tz 0.593 0.851 0.850 0.838 0.850 

D   Hs 0.934 0.968 0.968 0.968 0.968 

D   Tz 0.690 0.939 0.938 0.937 0.933 

W
el

sh
 c

h
an

n
el

 

P Bias Hs -15.5 -30.7 -30.8 -30.8 -31.2 

P Bias Tz -11.9 -7.8 -7.6 -7.7 -7.5 

RMSE Hs 0.279 0.278 0.279 0.279 0.281 

RMSE Tz 0.921 0.603 0.602 0.02 0.591 

r
2
 Hs 0.721 0.867 0.868 0.868 0.869 

r
2
 Tz 0.250 0.508 0.504 0.505 0.539 

D   Hs 0.902 0.892 0.890 0.890 0.887 

D   Tz 0.628 0.792 0.791 0.791 0.804 

H
il

b
re

 c
h

an
n

el
 

P Bias Hs -30.5 -54.1 -54.4 -54.4 -55.0 

P Bias Tz -9.5 -9.7 -9.1 -9.2 -9.4 

RMSE Hs 0.255 0.303 0.306 0.306 0.306 

RMSE Tz 1.183 0.716 0.710 0.709 0.680 

r
2
 Hs 0.692 0.829 0.837 0.838 0.852 

r
2
 Tz 0.0001 0.071 0.076 0.079 0.103 

D   Hs 0.863 0.756 0.754 0.754 0.749 

D   Tz 0.335 0.527 0.537 0.539 0.558 
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Figure 1. Location of the Dee estuary in Liverpool Bay showing the model domain bathymetry 

and the location of the measured data. The white diamonds show the mooring locations in 

the Welsh channel (west) and Hilbre channel (east). The white square shows the WaveNet 

buoy position. 
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Figure 2. Measured time series of a) depth-averaged velocity in the Hilbre channel (positive for 

ebbs and negative for floods), b) water depth in the Hilbre channel, c) significant wave 

height at the three study locations and d) surge in the Hilbre and Welsh channels.  
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Figure 3. Wind speed (top) and wind direction (bottom) from observations and model. 
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Figure 4. Scatter plot of significant wave height (Hs) and mean period (Tz) against surface 

elevation for the Hilbre and the Welsh channels. 
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Figure 5. Time series of the observed and modelled depth-averaged current components in the 

Hilbre channel. 
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Figure 6.  Depth-averaged velocity distribution during the peak of the storm (1 March 2008) for 

P-ref (left), PW2Dr (centre) and PW3Dr (right), model runs are identified in Table 1.  
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Figure 7. Residual circulation profile from observed ADCP data (mounted on the Hilbre rig) and 

modelled under different forcing terms given in Table 1.  
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Figure 8. Observed and modelled significant wave height and mean period at the, offshore, 

WaveNet location (first and second row). Significant wave height (Hs) within the Hilbre 

and Welsh channels (third and fourth row).  Mean period (Tz) in the Hilbre and Welsh 

channels (fifth and sixth row).  
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Figure 9. Distribution of significant wave height during high tide (left) and low tide (right) for 

the POLCOMS-WAM run PWG2D (top) and PWG3D (bottom) on the 1 March 2008. 
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Figure 10. Hilbre channel mooring location, left column is the salinity distribution (in PSU), 

central column is the current shear (M
2
 in s

-2
) and right column is TKE production (P in 

Wm
-3

) for model results of P-ref (top row), Pnoatm (central row) and PW3Dr (bottom 

row). M
2
 and P have the same colour scale. 
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Figure 11. Distribution of maximum current stresses modelled by P-ref for the 1 March 2008 

(left), wave stresses during high tide (centre) and low tide (right) for the PWG3D run (see 

Figure 9, bottom panels). Colour bar units in N m
-2

, note the different colour scale between 

the current and wave stresses.  

 

 


