Wave damping by a thin layer of viscous fluid
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The rate of damping of surface gravity—capillary waves is investigated, in a system which consists
of a thin layer of a Newtonian viscous fluid of thicknabfloating on a Newtonian fluid of infinite
depth. The surface and interfacial tensions, elasticities and viscosities are taken into account. In
particular, an approximate dispersion relation is derived for the case Wdexad (w/v.)Y%d are

both small, wherek is the wavenumbere is the angular frequency and, is the kinematic
viscosity of the upper fluid. IH—0 while v, d remains finite, published dispersion relations for
viscoelastic surface films of extremely sm@lg., monomoleculathickness are reproduced, if we

add the surface and interfacial tensions, elasticities and viscosities together, and then add an
additional 4 , v, d to the surface viscosity, whege, is the density of the upper fluid. A simple
approximation is derived for the damping rate and associated frequency shift when their magnitudes
are both small. An example is given of what may happen with a slick of heavy fuel oil on water:; a
slick 10 m thick produces a damping rate only slightly different from that of a film of essentially
zero thickness, but the effect of the finite thickness becomes very noticeable if it is increased to
0.1-1 mm. ©1997 American Institute of Physids$§1070-663(97)00905-7

I. INTRODUCTION density of the upper fluid, angd is the acceleration due to
gravity. Subscripts indicate partial differentiation with re-
spect to the coordinates and timhie We assume that the
nonlinear terms in the Navier-Stokes equations for both the
upper layer and the lower bulk fluid can be neglected in
comparison with the acceleration tertdg andW,, for both

the upper layer and the lower bulk fluid: this is the case for
surface waves in the limit thatk<1, wherea is the wave
amplitude. For a further discussion of nonlinear effects and
?he validity of the linearization procedure, we refer the reader
to Appendix A. In particular, the linear approximation is
shown to be valid foek<1 even wherea>d.

In the notation employed below, the subscripj ( re-

to either the upper fluid layer or to the surface, where

The hydrodynamic theory of wave damping by vis-
coelastic films of negligible thicknegg.g., monomolecular
films) on the surface of a Newtonian fluid is well
established;® the dominant effect being the increase in the
rate of damping by a factor of ordewk? w) Y2 over the
clean-surface vald&'? of 2vk?, wherev is the kinematic
viscosity, k is the wavenumberk= 2/ wavelength), and
w is the angular frequency. This effect is due to an increas
in velocity shear in the viscous surface boundary layer o
thickness (2/w)*?, as a result of the altered boundary con-
dition for the tangential stress component.

Wave damping due to the presence of a viscous surfacfeerS

fluid layer offinite thickness is also of practical importance, appropriate, and -)_ refers correspondingly to the lower

for example, in the initial stages of an ol Sdﬁr An "M fluid or the interface. The linearized continuity and momen-
proved knowledge of the rates of wave damping for oil slicks

of finite thickness may help to distinguish oil spills from tum equations are
other low-backscatter features in satellite and airborne radar U,+W,=0, D
images’~?> Wave damping by a finite-thickness surface

— 2
layer has been investigated mathematically by Wébaiho Uit Px=2V7U, 2
applied his results to the damping of waves by a layer of W, + P,= vV?W. 3
rease ice. . .
g We let the interface between the two fluids bezatH and
the free surface be a=d+Z, the corresponding undis-
[l. GOVERNING EQUATIONS AND BOUNDARY turbed levels being=0 andz=d, respectively. At the free
CONDITIONS surface, the kinematic boundary condition is
We consider motions in two dimensions,(horizonta) W=2Z,, (4)

andz (vertical, of a system consisting of two fluid layers: an
upper layer of thicknesd floating on a lower fluid body of
infinite depth. The horizontal and vertical velocity compo-  p, v, (U,+W,) = x+ &yt Ves Exxts (5
nents ardJ andW, respectively, and we employ a reduced
pressure variabl®®=(w/p)+gz—9(p. /p)d, wherew is
the actual pressurg,is the densityin either fluid, p . is the P—9Z—-2v,W,+(y+/p+)Zy=0, (6)

the tangential stress conditiorti$

and the normal stress condition is
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wherey, is the surface tensiory,, is the surface elasticity, (u* ,W*):(g/k)—lﬂ(uyw), p*=kg !p,
and vy, is the surface viscosity. The quantifyis the hori-

zontal fluid particle displacement, which satisfies pr=plp—, (y=*x=*)=Kp_ "1 Hys x2),
U=§¢,. (7 Veu* = K32, _19_3/21/5: and v* = g‘1/2k3/2v.
At the interface, the kinematic boundary condition is  We shall consider solutions for which the dimensionless fre-
W, =W_=H,, ®) quencyw*_= 0O(1) in thg limit agd*—>0. _
Dropping the asterisks again for convenience, the equa-
continuity of the velocity field gives tions of motion(1)—(3) give
Uu,=u_, 9 dz (n 2
and the tangential and normal stress conditions are dzZ <;+1) [d_zz_1 w=0, (149
PV Uy +Wo )+ x_bxt vs—xxt which has four independent solutions, of foret? and

)1/2

e*'?, in each layer, wheré= (n/v+1)Y? with positive real

=p-v-(U_+W_) (10 part’2 Dropping the () suffix for lower-layer parameters
and and variables, we have in the lower layer,
p+(Pr—gH-2v,W. ) w=c,e’+c e 2+ cae'?+c,e 7, (15)
where the no-motion condition forz— —« requires
=p,(P,—gH—2v,W,Z)+ Y-Hyc (11) c,=C4=0. In the upper layer we choose linear combinations

wherey_, x_ andvg_ are the interfacial tension, elasticity, of the exponential solutions:

and viscosity, respectively. We assume that the motions de- = E[coshz+ coshl . z)]cqs + l[coshz
cay to zero ag— — . 2 2

Now assume that we have travelling waves in the —cosh{l,2)]ce_ + =[sinhz+1, "1 sinh(l, 2)]ce.
x-direction, so that . 1 2

(U,W,P,Z,H)=(u(2),w(2),p(2),{, p)e*** ™, (12) + 5[ sinh z—1,. " tsinh(l,z)]cs_ . (16)
wheren=—iw. We now choose nondimensional variables

From the boundary condition®)—(11), using (1), (2),

and parameters - ) ;
(4) and (8) to eliminate the horizontal velocity component,

(X*,z*,d*, 0%, n*, &%) =(x,2,d,{, 7, )k, (13)  pressure, and surface and interface displacement variables
t* = (gk) 4 respectively, we obtain the following homogeneous system
' of linear equations for the coefficients..., cs., ¢, and
k*=1, (n*,0*)=(gk) YAn,w), C3:
VE+(|+2_

1
2 coshd+ (1,2+1)cosh! .d)+ )[sinhd+l+ sinh(l,.d)]{cey +4 2 coshd— (I .2+ 1)cosk] , d)

+

1.2-1
yre( 7 )[sinhd—u sinh(I . d)]{c._+1 2 sinhd+1, (1, 2+ 1)sinh(1 . d)

P+
VE+(|+2_1) . .
+p—n[coshd+l+ coshl ,d)]{css+1{ 2 sinhd—1, 1,2+ 1)sinh1 . d)
+
1,2-1
+$+n)[coshd—l+ cosI1I+d)]}cs_=O, (17)
+
p+n2 2 . .
m[(l+ +1)sinhd+2l . sinh(l.d)]+(p, + v,)[coshd+coskl,d)];C.y
p+n2 2 . .
+ m[(hr +1)sinhd—2I, sinh(l . d)]+(p++y,)[coshd—coshl d)];c._

2
+ _h(l’”f 0 [(1+2+1)coshd+2 costil .d)]+ (p + y;)[sinhd+1, ~* sink( +d)]]cs+

2
" —2—(|p+il)[(|+2+1)coshd—2coSN|+d)]+(P++7+)[Sinhd—|+_lSinf(hd)]]cs—zoi (18

+
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Ce+ —C1—C3=0, (19)
Cs+ —C1—1C3=0, (20)
1 1,%+3 1 2n
§P+n|+z—_10c+—§P+n0c—+VE—Cs+—ﬁ01
12+1
—nm%:o, (21)
N 1,
—P+Cc+—§P+n |+z—_103+—zp+n Cs—
151 2In?
+{n P_—1+1+’y, ci+ I—z_—1+1+’y, C3:O,
(22)

where we have introduced the effectif@mplex®* surface/
interface viscositywg. = x+ /n+ vg. .

Ill. DISPERSION RELATION AND WAVE DAMPING

A. General case

The system of equationd7)—(22) has a non-trivial so-
lution if the determinant of the coefficients is zero, from
which condition we can derive the dispersion relation and
hence, from the real part of, the rate of wave damping. We
can in fact eliminate... andcg.. to obtain a system of two
equations in the two unknowns; andcs, and equate the

corresponding X2 determinant to zero.
From (19)—(22) we obtainc._ andc_ in terms ofc,
andcj:

.°+3 4 +2vE, . [.2+3
C = — C —_—
¢ 1.2=1 p (1P=1)  pen |t 1,21
2 [12+1 +2vE,| 03
Z |2_1 pan Cs, ( )
+ 1,243 2 [1?+1
Co = _2P+ ?2’+_ +2 Tl
p+N =1 pyll°=1
2 (1+y prtyse 1,243
—| 7 ||Ct| —2 7l
p+\ N p+N l,5=1
N 4 N 2 1+7/) (24
— E— —_— C s
p.(1°=1)  p,\ n 3

wherey=y_+vy,. Ifweletp,=1,v,=v», vg_=0, and
v_=0, we have the case of a single fluid, and fr¢h®)—

(20) and (23)—(24) we can show that
w=c,e*+cze’? (25

also applies for &z=d. If vg, =0, Egs.(17)—(18) then
become equivalent to

1241

2 C1

{n2(|2+1)/(|2—1)+1+y 2In%/(12= 1)+ 1+ v|| c4
0 26
=lol (26)
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Equating the determinant of thex2 matrix of coefficients
to zero, and definings=vY4 and e=»"? so that
n=s’— €%, we obtain the viscous surface gravity-capillary

wave dispersion relation presented by Chandrasekhar,

(s?+ €?)?—4se®+ 1+ y=0. (27
For |e|<1 we obtain
n==i(1+7y)¥2-2e2+0(€d), (29

so that the wave damping rate is indeed approximately
2vk? in terms of dimensional variablé$:12

In the general case, the coefficientsogfand c; which
result when we substitut¢19)—(20) and (23)—(24) into
(17)—(18) are rather complicated expressions. If we assume
thatd<1 and|l ,d|<1, we obtain a simpler set of equations
when we neglect terms containinf and higher powers of
d in the Taylor expansion of the hyperbolic functions, and
neglect terms of ordepg.d in comparison with those of
ordervg. :

B 1—p++y,+ |+2+3_|2+1
n2 P+|+2_1 12-1

VE+ VE_(I+2_1) |2+1 VEI

+ +{ >+ —

p.n? diest) z=g+
1-p,+y_ .2+3 2l

+

+ J—
n2 p+||+2_1 (|2_l)

lve,ve_(1,%2—1
L verve (2+ )}d
p+N

C3: 0, (29)

1+y 1%+1
7tz
| n <=1

1+ 21
L1ty

1241

+
1°—1

d

c3=0, (30)
wherevg=vg, +ve_ . If ve=0, andd— 0, keepind . con-
stant, we regain the relatiorf26)—(28) for a single viscous
fluid.

The dispersion relation is again obtained by setting the
determinant of the coefficient matrix to zero. Its behavior
depends on the relative values of the parameters, particularly
of v, (hencel,), d, andvg.. .

B. Very thin film

If we let d—0, while letting v, become large so that
v, d— const., we can neglect terms proportionattahich
do not have ,2—1 in the denominator. We obtain

[2v+vg+4dp,vid][2nv(1+n/v)Y2+ 1+ y]
—[n?(1+2v/n)+ 1+ y][n+2v+(1+n/v)'?
X(vg+4p,v,d)]=0, (31
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which is of the same form as published dispersion relations

for viscous surface films of negligible thickn€s;5-8if we o~
add 4o, v.d to the non-dimensional viscosity of the film.

More specifically, we should add it to the sum of the dilata-

tional and shear viscosities of the fif®?’ Note that if

v, is allowed to be complex and frequency-dependent it will

also make a contribution to the effective surface-film elastic-

ity. A further discussion of thed—0, v, d— const.) limit is

given in Appendix B.

1 o
2%+ v+l M y(1-p,)—y-]d

1 1
+ EI _1/2p+d6_1F1/4VT+ EI 1/2(p+d)26_1F3/4

X(Rz—l)}[1+il/261F1/4VT
+i 71/2p+d6711-*1/4]71. (36)

If d— 0 this becomes identical to the corresponding for-
mula for a film of negligible thicknes$?® If vg=0, i.e., we

We can find a closed-form expression for the perturbaﬂeg|ect surface and interfacial elasticity and ViSCOSity, but if
tion in the complex wave frequency due to the combined v+|>vd™!, we haves~2"3%(1-i)e, which reproduces
effect of the lower-fluid viscosity and the presence of thethe rate of damping for an inextensible fifti} and also
upper fluid layer, provided that the perturbation is relativelyWeber's® result for a layer of grease ice which has such a
small. We assume that= —iI'Y2— 5, wherel'=1+ v, with high viscosity that the Stokes flow approximation can be
|8|<1: the real part of is then the rate of wave damping. If applied in the upper layer.

C. Wave damping

we lets=i Y Y41+ @), definingi#=¢€"#2, we have The damping rate will be of order if eitherd or v are
of the same order as or greater than If vg=0 and
5= €2+ 2ial' V2 (32) |v,d|=0(»), but bothd and|v,d| are much smaller than
v'2 we haved~2e®+2p, v, d. If the densities of the up-

per and lower fluids are equgb(=1) andy, =y_=0, this
his consistent with the damping rate for a fluid with nondi-

mensional viscosity which varies more-or-less arbitrarily

with depti®3! but which is always much smaller than 1:

where we neglect higher-order termsdrand . From (29)
and(30), we obtain, neglecting higher-order corrections wit
respect tad, «, ande:

l1-p,+y_

2€2+ VT+d Sz

s(pr—1)—

0
5~2 f, v(z) 2e¥dz (37

1+y [ e 8

X| =" +d
S €S

Keeping wvg=0, if d is so large that
3i Y25, de I'Y4p, v, d) dominates over the other con-
tributions to the numerator df36), and the denominator is
dominated by its final term, we find that Re=2p, v.d if

p.=1 andy_=0. This is also consistent wit{87).

=[1+y+s"+d(ps+ys+p5Y)]

X , (33

14 P+S
1+ —+d—
€S €

where D. Numerical example

In order to get some idea of the relative sizes of the
various contributions t436), we look firstly at waves of 2
cm wavelength on a system containing a lower fluid with
trecve-di(pavy). (39 density 1000 kg m® and kinematic viscosity 1 m?s ™!
(corresponding to watgrand an upper fluid with density
900 kg m 3 and viscosity 10*m?s™! (corresponding to a
1 1 1 heavy fuell 0i). We assume that_the surface tension is
a~1{ — §|r 12g2 Z'F 12y, + EF Ty(1-p.) 25 mN ni 5, the interfacial tension is 15 mNT, and the
thickness of the upper layer is 0.1 mm. We assume that the
1 surface elasticity is 15 mN i, the interfacial elasticity is
—y_]d- Zi1’2p+de*1F*1’4vT 10 MmN m %, and that the surface and interfacial viscosities
can be neglectedThe assumed surface and interfacial elas-
1 ., , - ticities are at the lower end of the typical rafgd0-50
+ Zlfl (prd)?e TY(R*-1) mN m~! for surfactant materials on wateiThe ak<1 re-
quirement means that the wave amplitude should be much
X[1+iY2e 0 Yy +i~ Y2 de ™71, (35  smaller than 3 mm, but it is permitted to be greater than the
upper-layer thickness.
whereR=(p., +v.)/(p.T'), neglecting higher-order terms. The various nondimensional parameters are then as fol-
Hence, to the same approximation, lows:

vi=(xs+tx_)Intvg, +vg +4p,v,.d

We thus have
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p.=0.9, y,=0.2516, y_=0.1510, frequency limit. For a fixed value of, , at a sufficiently low
frequency the rigid-film approximation will break down,

1+y=1.403, x,=0.1510, y_=0.10086, which explains why even at., /v_=10 000 we see a peak
v=0.001778, v,=0.1778, €=0.04216, 3 inthey(f) curves. _ , ,

The effect of removing the interfacial tension and elas-
l,~2.17-1.93, d=0.03142, ticity, as may be expected if an oil/water interface becomes

emulsified, does not produce any qualitative difference in the

wave dampindsee Figs. (c) and Xd)]. The main effects are

The  contributions to vy are x,/n=0.1275, probably due to changes in the dispersion relation as a result

x_/n=0.0850, 4p,v,d=0.0201, andvg vg_d/(p,v,) of the reduced value ofy=vy,+y_ in the case of zero

~—0.0021. We see that in this casey.4v, d is an order of  surface/interfacial elasticity, and due to the reduction in total

magnitude smaller thary, /n+x_/n, and that the final surface/interfacial elasticity= x,+ y_ where the surface

term ve,ve_d/(p.v,) is an order of magnitude even elasticity is non-zero.

smaller. An increase of a factor 10 im, will bring

4p,v.d up to the same order of magnitude as the surface

elasticity contribution. The final term may possibly becomelV. CONCLUSION

significant forv, in the ranged®<v, <1.
The various contributions t(36) are

| 1d=~0.0682-0.0605.

In this paper we have derived a simple approximate ex-
pression for the damping rat@and associated frequency

p.de 1=0.6705, (p.,d)?e 1=0.01896, shift) of linear surface gravity—capillary waves due to the
1 presence of a thin layer of a Newtonian fluid on the surface

262=0.003556, - yy=0.009090.1062, of a Newtonian fluid of infinite depth. The effects of surface
2 and interfacial elasticity and viscosity are taken into account.

ir-vy y(1—p,)—y_]d=—0.00294, The vertical variation of the fluid motions within each fluid

layer is described exactly by exponential functions: it is not
necessary to use approximations to the governing ordinary
differential equation(14). Applying the surface and interfa-
cial boundary conditions leads to two linear simultaneous
equations in two unknowns which have coefficients contain-
ing hyperbolic functions of the upper layer thickness. Equat-
1o _ ing the determinant of the coefficients to zero leads to a
1/ 1/4 1 _

1Yoyt~ ~3.00+ 3.58, rather complicated transcendental equation for the wave dis-
and persion relation; considerable simplification is achieved if

._ _ the upper fluid layer is sufficiently thin k<1l and

1/2 124
I"Tpde T7=0.516-0.516. |wv, ~!|Y?d<1 in dimensional units

(39
i ~Y2p, de ¥y~ 0.0594+0.0502,

iY%(p., d)2e T34 R2— 1) = —0.00145- 0.00145,

N~ N

We find that5~0.0313-0.0385, which is of the same or- The dispersion relation for a “monomolecular” vis-
der of magnitude as, and is dominated by the effect of the coelastic film of essentially zero thickné$s®is reproduced
surface and interfacial elasticities. if we let d—0, if we replace the surface tension, elasticity

Figures 1a)—1(h) show the damping ratigy(f), the and viscosity by the sums of the surface and interfacial val-
computed wave damping rate divided by the damping ratees of the respective quantities, and then add#, d to the
for pure water, as a function of frequenty w/(27). Using  surface viscosity. Additional effects of finite surface-layer
non-dimensional variables;(f)= 3¢ 2 Re 5. This ratio is  thickness also arise due to the fluid density difference and
plotted for eight different cases, covering three different vis-interfacial tension. Calculations of wave damping rates under
cosity ratios v, /v_, and the presence and absence ofconditions representative of slicks of heavy fuel oil on water
surface/interfacial elasticitieg. and of interfacial tension indicate that the effect of surface elasticity generally domi-
y_ . For each case, results for various thicknesses of theates the wave damping, but that the finite surface-layer
upper fluid layer are plotted. The other parameters are athickness causes significant changes in the damping if the
specified previously. The frequency corresponding to thesurface layer is 10@m thick or greater.
wavelength of 2 cm is also indicated. The damping ratio for It should be possible to use the theory presented in this
a surfactant film of oleic acid on water of surface tensionpaper to compute from first principles the effect of oil slicks
73 mN m?, from Ref. 8, is also shown in all plots for ref- of finite thickness in damping wind-generated waves, given
erence. accurate laboratory data on viscosity, surface tension and

It can be seen that the effect of surface/interface elasticnterfacial tension. It is still necessary to take account of the
ity generally dominates the wave damping, the exceptiongffect of surfactants which are present both in the oil and in
being for v, /v_=1000 with (dimensional d>1 mm, and the surrounding watéf*3as the effect of surface/interfacial
for v, /v_=10000 with d>30 um. Nevertheless, the elasticity dominates the wave damping under normal circum-
damping is affected significantly by the finite thickness ofstances.
the film whenv, /v_=100 andd=1 mm. If the upper layer The wave damping rate approximation is also consistent
is extremely viscous, we approach the rigid-film limit with with previously published results for damping due to

y(f)=2752¢"1, which is proportional tof ~3? in the low-  vertically-varying(eddy viscosity?>3! and due to a surface
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viscous or viscoelastic fluid layer representing greasé’ice. boundary layer processes leading to wave generation by

For applications such as distinguishing oil slicks fromwind forcing, and the nonlinear interaction processes be-
natural films by their radar backscatter characterisfic&it tween the different Fourier components of the surface-wave
will also be necessary to consider in detail the atmospheritield.” 83437
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FIG. 1. The ratioy(f), of the wave damping rate to the damping rate for a single flwatep with an uncontaminated surface, as a function of frequency

f, for various thicknesses of the upper fluid. The thicknesses corresponding to the different line types are shown in the key. The sub-figure headings show the
viscosity ratiov, /v_, and whether either or both ofi) the surface/interfacial elasticity.. ; (ii) the interfacial tensiory_ and also the elasticity _ ; are

set to zero. Other physical parameters are as specified in Sec. Ill D. The corresponding vgldg¢dafan oleic acid surfactant film on water, from Alpers

and Hihnerfuss(see Ref. 8are shown for reference on each sub-figure, and also a vertical line at the frequency corresponding to a wavelength of 2 cm.
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FIG. 1. (Continued)
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APPENDIX A: NONLINEAR EFFECTS We now letF denoteU, W, P, Z, orH, and we expand
F andc in the form
In this section we treat nonlinea_r effe_cts, with viscosity E—FO L AFD L A2ZE@
and surface tension neglected. Again takingas the actual ' A8
pressure, we let c=cO+A%c@+ . (A8)

w,=p+(Py—9g2)+0p.d, (A1) as in the Stokes expansion for waves on the surface of a
_ _ homogeneous fluit Our aim here is to determine the ef-
w_=p_(P_-—9g2)+gp.d,

fects of nonlinearity when the upper layer deptlis small.
where the subscripts refer to the layers, and we scale the TakingH(®=A cos6, we find that

variables through

0)_ i
(2= (xDk, = (gk)¥ UY’=A(a. coshz+ B. sinhz)cos¥,
(0) — ~(0)J(0)
(U*, W) =(1A) (g~ Y(UW),  P*=[KI(gA) P, Eldiel A9
WO =A(a. sinhz+B. coshz)sin 6,
Z*=(k/IA)Z, H*=(k/IA)H, d*=kd, p*=p./p_, where
where A is a small parameter. Then, omitting the asterisks (c@)2— (1 p)
and letting 6=x—ct, the equations governing irrotational a_=B_=1, a+:+, B.=c0.
flow take the form pC
N W (A10)
(;_0 + (Z_ =0, (A3)  Herec® solves
z
(1-p)sinhd
d c¢2-1]| (92— ———————|=0, All
ﬁ[P+(A/2)(U2+W2)—CU]=O, (A4) L™= € coshd+p sinhd (ALD
a dimensionless form of a well-known equatiriThere are
_CW”L E[P+(A/2)(U2+W2)]=O, (A5) two solutions describing waves travelling in the positive

direction, the barotropic mode(®’=1, and the baroclinic
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mode, for which the second factor (A11) vanishes. For the boundary-layer thickness without any conceptual difficulties,

latter mode the wave speed@d*?) in the cased<1.

although it is formally identical to th®(ak) perturbation in

Our calculation of wave decay is concerned exclusivelythe Eulerian descriptioff+4*

with the barotropic mode, and we therefore restrict our atten-

tion to this mode by taking(®’=1. Then theO(1) solution
becomes

UQP=pO=Ae coss, W=Ae sind,

(A12)

Z9=Ae%cosfd, H@=A cosé,

and a short calculation shows that ©¢A) solution is
1
U(il):\/\/(il): 0, P(il): — EAZGZZ,
(A13)

1 1
Z(1)=§A2e2d cos X, H(1>=§A2 cos X.

Using (A12) and (A13), we find that theO(A?) equations
can be reduced to

IPW2 92w
Y Pr =0, (Al14)
with boundary conditions
<+2)
w2 — —7 = (2c®@—A%e?%) Aed cos 6, (A15)
atz=d, and
1 [ow?  Hw?2
(2) _ _ T (2e2_ A2
W 1=p| oz [ (2¢c A“)A cos 9,
(Al6)
at z=0. The solution takes the form
W2 =Aqe? sin 6,
(A17)

W2 =A(B coshz+ y sinhz)sin 6,

wherea, B, andy are constants.

Substituting(A17) into the boundary conditions yields
three linear equations for these constants, for which the de-

Finally, the fact that we have imposed boundary condi-
tions at the mean surface can be justified with reference to
Miles.*? In these studies of the generation of surface waves
by shear flows, he found that imposing the boundary condi-
tion at the mean surface rather than at the surface wave made
no difference to the results.

APPENDIX B: LIMIT AS d—0

If interfacial surfactant effects are omitted and if we con-
sider a thin upper layer, as in Sec. Il B, the dimensional
dynamic boundary conditions at=0 become

2 (9W_ i H Bl
p—2v_——= 9+p—_(7++7’7) : (B1)
Ju
(4p. v, K2d)u+p_v_ E-ﬁ-lkw =0, (B2)

with errors ofO(d). EquationgB1) and(B2) were obtained
by taking the smaltl limit of the exact solution, withw_ d
fixed, and were checked by lettingg=z/d denote a scaled
variable and by solving for the flow in the upper layer
through the use of an ordinary perturbation seried.in

For the flow of a single layer of fluid covered by an
insoluble surface film az=H, Miles2® generalizing earlier
work by Dorresteirf, assumes a tangential surface force

Vsy+ 71Vs(Vs Ug) + 772Vszusv (B3)

where y is the surface tensiorV is the surface gradient,
U is the tangential velocity at the surface, apdand », are
surface viscosity coefficients. Miles also definésas the
concentration of the surface film, with reference valug
and y as the surface elasticity, with mathematical definition

x=—To(dy/dDl)pp,. (B4)

When expressed in terms of the present notation, Miles’

terminant of the coefficients vanishes. A solvability condi-theory shows that the linearized normal and tangential

tion is required, and is given by

1
c@=C

2

1+p(e*-1)

1+p(e®-1)

2
S A2, (A18)

which reduces to the standard solufidim the casel—0. As
can be seen, the perturbation expangid8) remains well-

ordered in this limit, and therefore it appears that the linear-

ization procedured employed earlier is valid fo<1. In

particular, it is valid ford<<A, so that the wave amplitude is

boundary conditions for two-dimensional flow in the
xz-plane are

2 w_ +k2 H B5
p=ev-——=19 p—_7 ) (B5)
and
du
(—+n1+772 k*u+p_v_ - tikw|=0, (B6)

permitted to be much greater than the upper-layer thicknessvhere the suny,+ 7, plays the role of the surface viscosi-
The linearization procedure should also be valid in thetiesv.. in (5) and(10). Hence, by comparin@81) and(B5),
case where we include fluid viscosity. This is certainly theand (B2) and (B6), we see that a thind— 0) but very vis-

case for waves on a single fluid which haade<1 but where

cous[v, =0(d"1)] upper layer of Newtonian fluid has ex-

a can exceed the thickness #/2)/? of the viscous surface actly the same properties as regards wave decay as an in-
boundary layer. One way to show this is to employ a La-soluble surface film if we replace in the surface film theory
grangian description of the hydrodynamic equations, fotby v, +vy_, and (x/n+ n+ 7,) in the surface film theory
which the O(ak) perturbation allowsa to exceed the by 4p, v, d.
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