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The wave field around a rectangular submerged breakwater is investigated by means of an experiment in numerical

wave flume. The results were compared with those obtained making use of the Boundary Element Method. The

numerical experiment is carried out to determine the share of the incident wave energy that are reflected, dissipated

over the roof of the breakwater, and transmitted in the lee. The wave field before the breakwater (i.e. the quasi

standing field) obtained with the CFD simulations is quite similar to that obtained with the BEM. Some relevant

differences between the two models arise in the lee of the breakwater, because the wave motion is strongly affected by

the dissipation occuring over the breakwater roof by friction and wave breaking. They cannot be foreseen with BEM,

being the motion ideal. Their analysis show that the dissipation is more than halves the transmission of energy, despite

the relevant submergence of the considerated breakwater.
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INTRODUCTION

Detached breakwaters for coast defense are usually realized by means of rock stones or concrete blocks.

These structures rest on the seabed with the crest rising above the mean sea level or remaining below it.

Emerged breakwaters do not present wave transmission over the structure, whilst overtopping and signifi-

cant wave transmission occurs across low-crested breakwaters. Fully submerged breakwaters are employed

to minimize the visual intrusion of the breakwater, that is important for recreational coastal developments.

In this case, waves pass over the crest of the breakwater with breaking, and higher energy is transmitted in

the lee of submerged breakwaters in respect of semi-submerged structures.

The effectiveness of a breakwater in attenuating wave energy can be measured by the amount of wave

energy passing the structure. The transmission factor T 2, defined as the ratio between the mean wave

energy flux transmitted on the landward side of the structure and the mean wave energy flux of the incident

waves on the seaward side of the structure, allows evaluating the effectiveness of the submerged breakwater.

In particular, high values of T 2 indicate a small wave attenuation. Empirical formulas, for estimating

wave transmission over submerged breakwaters, have been proposed by Harens (1987), d’Angremond et al

(1996), Seabrook & Hall (1998).

It is possible to reduce the transmission factor T 2 assuming an ”active defense” of the coast. The

REsonant Wave Energy Converter (REWEC) is a device useful for this purpose (Boccotti, 2003; Boccotti

et al, 2007; Arena & Filianoti, 2007). The first realization of this device (named REWEC1) consists of

several caissons in reinforced concrete placed side by side to form a barrier that remains a few meters

below the still water level. Each caisson embodies a device for the energy absorption, which exploits the

resonance between incident waves and the water motion in the ducts recovered inside the caisson. A worth

solution is using the breakwater in two different operational regimes: one for winter seasons, the other for

summer seasons. In winter, when generally occur the strongest sea storms, we fill of water the plenum,

so the structure operates as a conventional ”non-active” submerged breakwater. In this configuration the

REWEC1 has a bigger weight, and it is able to better withstand the action of the highest waves. In summer,

when the sea storm is generally less severe, and we need more protection in the lee of the breakwater,

because sports craft could be moored behind it, we pump air in the plenum, giving the REWEC1 the ability

to reduce the energy of waves past over, by partially absorbing it. The performances of these caisson

breakwaters have been investigated by Filianoti & Piscopo, (2015). In particular, they propose a semi-

analytical model to estimate the wave energy transmitted in the lee of the breakwater, taking in account

the energy reflected towards the open sea by the breakwater, the energy absorbed inside it, and the energy

dissipated over its roof.

In this work we analyze the wave field around the REWEC1 devices described by Filianoti & Piscopo,

(2015) when it works as a conventional ”non-active” submerged breakwater. To this aim we carried out

numerical simulations using two diffent approaches: the BEM and the CFD, in order to investigate the

limits of the first to adeguately represent the wave field arround the submerged breakwater.
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THE BEM MODEL

We can represent the velocity potential Φ, in a generic point (y,z) of the flow field, as a sum of the

complex incident waves potentialΦW , and the diffracted waves potentialΦS . Supposing waves are periodic

with height H and period T, as the flow is harmonic in the time, the velocity potential can be written in the

form

Φ (x, y, t) = g
H

2
ω−1 [

ΦW (y, z) +ΦS (y, z)
]

exp(−iωt). (1)

The term due to the incident waves is known:

ΦW (y, z) = −i
cosh[k(d + z)]

cosh(kd)
exp(−iky). (2)

The term due to the diffracted waves is obtained supposing a uniform distribution of wave sources on the

contour of the submerged body, each of them with a different intensity. It can be expressed as an integral

equation (Wehausen & Laitone, 1960):

ΦS (y, z) =
1

2π

∫

Γ

f (η, ζ)G(y, z; η, ζ)dΓ, (3)

where f is the source intensity function, G is Green’s function related to a punctual source of unit intensity

placed in the point (η, ζ) on the submerged contour Γ of the structure.

Green’s function is known, but the sources intensity doesn’t. The source function G in two dimension

was given by Wehausen & Laitone (1960). To compute f (η, ζ), we assign the normal velocity on the

structure contour to be equal to zero on the same contour:

−

1

2
f (x, y) +

1

4π

∫

l

f ′(ξ, η)
G(x, y; ξ, η)

∂n
dl = −

1

k

∂φi

∂n
. (4)

Since we are not able to solve Eq. (4) analytically, we recurr to a numerical approach, generally known as

boundary element method (BEM). For numerical solution, Eq. (4) is replaced by a sequence of algebraic

equation, obteined subdividing the submerged contour of the structure in a finite number of segments, each

of them characterized by the size, the barycentre coordinate and the direction cosines of the normal pointed

outward the body contour. So, the position of each source is identified by the barycentre position of each

element, in accordance with the geometric scheme represented in Fig.1.

Figure 1: Reference scheme of the structure. Points represent the position of sources located on the body

contour.

We define respectively G̃ as the real part and F̃ as the imaginary part ofΦW +ΦS . So, that Eq. (1) can

be rewritten in the form

Φ (y, z, t) = g
H

2
ω−1
{

[G̃(y, z)cos(ωt) + F̃(y, z)sin(ωt)] + i[G(y, z)sin(ωt) + F(y, z)cos(ωt)]
}

. (5)

The physical meaning of Eq. (5) is attribuited to its real part.
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RESULTS OF THE BEM ANALYSIS

Whenever a wave train attacks a piercing vertical wall, we assist to a phenomenon known as reflection.

The reflected wave train superimposes with the incident waves generating a standing wave field in front

of the breakwater wall. This is characterized by the presence of ’nodes’, which are points where the free

surface elevation is always zero, and ’antinodes’, where the free surface elevation are maxima (both positive

and negative). In this wave field there is no energy transfer from one place to another. This phenomenon

appears when two progressive waves with the same frequency and amplitudes, travelling in opposite direc-

tions, superimpose in opposite phases. The resulting wave field obtained by the interaction between the

progressive wave train and the submerged breakwater is a quasi-standing field, characterized by the pres-

ence of ’pseudo-antinodes’ and ’pseudo-nodes’. The latters denote the energy transferring in the lee of the

breakwater. Fig. 2 shows the envelope of the free surface displacement forming a quasi-standing field.

Figure 2: Envelope of free surface displacement around the submerged breakwater.

The wave reflection in front of a submerged breakwater is partial, because a share of the incident

energy is trasmitted in the lee of the breakwater. The reflection coefficient R (and transmission coefficient

T), represents the ratio between the reflected wave height (transmitted wave height) and the incident wave

height. R and T was evaluated as suggested by Chakrabarti, (1994), and are equal to 0.256 and 0.96

respectively. The Healy’s (1952) formula to evaluate R, gives:

R =
Hv − Hn

Hv + Hn

, (6)

where Hv and Hn (see Fig. 3) are the quasi-antinode and the quasi-node height, respectively. They are equal

to 2.5 m and to 1.46 m, respectively, giving R = 0.26, in perfect agreement with the value obtained through

the BEM formulas (Chakrabarti, 1994). This allows us to utilize Eq.(6) in the next section to evaluate R.

Figure 3: Particular of the envelope shown in Fig. 2.

THE CFD MODEL

Layout and model of the numerical experiment

In order to analyse the wave field around the submerged breakwater, we carried out an experiment

in a numerical wave flume equipped by a piston type wavemaker. The wave flume is 1 km long and the
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submerged breakwater is placed at the middle of the domain. As shown in Fig. 4, the water depth is 10

m and the structure is 22.5 m long and 7 m high (Filianoti & Piscopo, 2015). The length of the numerical

flume has been chosen in order to have many wave lengths in front of and behind the submerged breakwater,

where stationary condition are well established.

Figure 4: Sketch of the computational domain.

The numerical approach is based on a two-dimensional CFD simulation using the Euler-Euler ap-

proach, implemented in the commercial code Ansys Fluent 17.0, Academic Version. To represent the

air-water interface we used the volume of fluid (VOF) model in which two or more fluids (or phases) are

not interpenetrating between each other. In order to obtain the spatial discretization of the convection terms

in the governing equations, we used the Green-Gauss Cell-Based method to gradient evaluation and the

PRESTO! (PREssure STaggering Option) scheme for pressure equation. The other convection-diffusion

equations (e.g. momentum or energy equation) were discretised by means of the Second Order Upwind

scheme. In this work, we use the all ”triangles mesh” method, exept near the air-water interface, where

the mesh adopted is rectangular. This choice is made to achieve a better resolution of the instantaneous

free surface displacement. The size of mesh is variable according to geometrical needs. In particular, we

adopted a ticker mesh near the structure edges than elsewhere in the domain. In order to match the behavior

of a physical wave flume, we have to set smooth no-slip wall boundary conditions to all solid walls, whilst

the upper domain boundary is defined as a pressure outlet with zero-gauge pressure. The wave-flume has

a piston-type wavemaker placed on the left extremity of the computational domain. Starting from rest, the

wave generation process has been simulated assigning a sinusoidal velocity to the left wall of the wave

flume, by means of a User Defined Function (UDF). The Fluent dynamic mesh feature has been used for

both the wall motion and the deformation of the neighboring cells. The wave field generated is characterized

by 4.8 s of wave period T, and 1.5m of wave height H.

The wave field in front of and behind the breakwater

Fig. 5 shows the envelope of the surface displacement in front of the breakwater, obtained overlapping

several snapshots taken every 1/20 of the wave period T. As we can see, the successive wave profiles form

the typical envelope of a progressive wave train, propagating in a flume initially at rest. The wave height is

practically constant in the tail of the wave train (near the wavemaker) and it reduces gradually to zero at the

head of the wave train.

Figure 5: The progressive wave field propagating towards the submerged breakwater, in the flume initially

at rest.

Moreover, we can appreciate the expansion of the quasi-standing wave field towards the wavemaker.

Indeed, Fig. 6 shows the envelope of the free surface after the wave train have impacted the submerged
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barrier. As we can see, in front of the structure the wave field is the superimposition of two wave train:

the incoming and the reflected one. The sum produces a quasi standing field which expands towards the

wavemaker. The arrow shows the transition between the incoming waves and the quasi stationary waves.

Figure 6: The superimposition of two wave train in front of the submerged breakwater.

The wave motion in the lee of the breakwater is shown in Fig. 7. The enevelope lines are not straight,

because of the wave breaking occurring over the roof of the breakwater. Fig. 8 shows the water surface

displacement, taken at four successive time instants and reveals how waves break as the pass over the roof

of the breakwater.

Figure 7: The wave field behind of the submerged breakwater.

Figure 8: The breaking of waves passing over the roof of the submerged breakwater.

The reflection coefficient

In Fig. 9 there is a detailed view of the wave envelope of the quasi-standing wave field of Fig 6, in

which Hv and Hn are the quasi-antinode and the quasi-node height, respectively. The reflected wave height

Hr, can be calculated by means of Healy’s (1952) formula:

Hr =
Hv − Hn

2
, (7)

Hv and Hn being equal to 1.77 m and to 1.18 m, respectively. It follows, Hr =0.30m and R = 0.2.
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Figure 9: Wave envelope of the quasi-standing wave field in which Hv is the quasi-antinode height and Hn

is the quasi-node height.

The transmission coefficient

The ratio between the height of the wave trasmitted behind the breakwater and the height of the incident

waves is the transmission coefficient, T . As we can see in Fig. 10, despite the irregular shape of the envelope

of the free surface displacement, the wave height remains quite constant along the channel. After a few

wavelenght far from the breakwater, the wave shape tends to became more regular, assuming the classic

form of progressive field formed by regular waves (see Fig.11). The average wave height is equal to 1.05

m. Therefore the transmission coefficient is equal to 0.7.

Figure 10: The wave field behind the submerged breakwater. Zoom to the first part of the envelope.

Figure 11: The wave field behind the submerged breakwater. Zoom to the last part of the envelope.
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The wave energy flux and balances

To verify the share of the incident wave energy transmitted in the lee of the submerged breakwater,

we calculated the energy flux Φ at different vertical sections along the wave flume. To evaluate the energy

flux crossing an assigned vertical cross section we evaluate the pressure fluctuation ∆p and the horizontal

velocity vy, in nearly 24 points along the vertical section. The points are taken every 0.5m, starting from

the bottom, (z = 0) up to the free surface displacement η. The mean energy flux is evaluated as:

Φ̄(y) =
1

T

∫ T

0

∫ η

0

∆p(y, z, t)vy(y, z, t)dzdt. (8)

Figg. 12, 13 and 14 show the energy flux versus time at the three different abscissas shown in Fig. 15.

The time span in each abscissa is chosen in order to show:

(i) in Fig. 12, the energy flux of the incoming wave train (i.e. the waves generate by the wavemaker)

at section AB;

(ii) in Fig. 13, the energy flux of the wave field before the submerged breakwater, at section EF (it is

a superimposition of the incoming wave field and reflected wave field);

(iii) in Fig. 14, the energy flux transmitted in the lee of the structure, at section GH.

Figure 12: Energy flux of the incident waves.

Figure 13: Energy flux of the quasi standing field in front of the submerged breakwater.

Figure 14: Energy flux behind the submerged breakwater.



8 COASTAL ENGINEERING 2018

In Fig. 15, three control volumes for energy balance check are shown. The mean value of the incident

wave power is Φ̄in=9.4kW/m. It is the same value obtained in section CD. This energy is partially reflected

by the submerged breakwater and partially transmitted in the lee of the structure. The mean energy con-

tained in the volume ABCD, in the time interval shown in Fig. 12, is constant because, as said, the mean

energy flux crossing section CD is equal to the mean energy flux through section AB. On the contrary,

the energy content of volume CDEF, during the time interval shown in Fig. 13, varies in time due to the

expansion of the reflected wave field, towards the wavemaker. The energy flux Φ̄0, crossing the section EF

is equal to 8.7 kW/m. This is the energy flux of the quasi standing field. Finally, the flux Φ̄tr crossing the

section GH , of the progressive waves leaving the back side of the breakwater, is equal to 3.9 kW/m. The

difference Φ̄0 - Φ̄tr = 4.8kW/m represents the energy dissipated by breaking over the breakwater roof.

Figure 15: Control volumes for energy balance check. Φ̄in is the mean energy flux per unit length of the

incoming waves; Φ̄0 is the mean energy flux per unit length of waves before the submerged breakwater

(incident + scattered), and Φ̄tr is the mean energy flux transmitted behind the breakwater

DISCUSSION ON NUMERICAL RESULTS: BEM VS CFD

The flow motion obtained whit BEM is ideal. Therefore, it cannot account for any energy dissipation in

the field. The most relevant occurs over the breakwater roof, affecting the energy balance between reflected

and trasmitted waves. In the ideal flow condition, we have

T 2 + R2 = 1, (9)

while in a dissipative medium:

T 2 + R2 + L2 = 1 (10)

where L2 is the wave energy lost by waves by breaking and frictions on the roof. This dissipation affects

mainly the transmission of energy. It emerges clearly comparing between themselves the transmitted energy

obtained with the two numerical methods:

T 2 =















0.92 BEM,

0.41 CFD.

As we can see, without the dissipation, the energy transmitted in the lee is 2.25 times greater. In term of

transmission coefficient, this means:

T =















0.96 BEM,

0.7 CFD.

The wave breaking produces a significant disturbance on the shape of the transmitted waves, which

need many wavelenghts of travelling distance away from the edge of the breakwater to assume a regular

profile. The quasi standing wave field before the breakwater is less affected by wave breaking for what

regards both the amplitude and the shape of the waves. Indeed the reflection coefficient is

R =















0.26 BEM

0.20 CFD

with a ratio R(BEM)/R(CFD)=1.3.
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CONCLUSIONS

Submerged breakwaters are commonly used for coast protection. Usually, they are rubblemound break-

water with crest above or belove the mean water level. Energy dissipation on the slope and berm of sub-

merged or low-crested breakwaters plays a fundamental role in reducing the energy transmitted in the lee.

In this work, we invistigated the wave field around a REWEC1 submerged barrier, in ”non-active”

configuration. In this operational condition, the barrier can be assimilated to an impermeable submerged

breakwater having a rectangualre vertical section. We followed two approach: the diffraction of linear

waves in the framework of potential theory; the Reynolds-averaged Navier-Stokes equations (RANS). The

velocity potential of scattered waves was obtained by means of the boundary element technique. The RANS

were been solved by means of the Euler- Euler approach implemented in the Ansys Fluent code, where the

air-water interface was resolved through the Volume of Fluid model (VoF). The comparison among results

obtained with the two different methods highlights the relevance of dissipative phenomena. They occur

essentially over the roof of the breakwater, where waves break because of the abrupt reduction of the

water depth. On the other hand, the wave field in front of the breakwater, obtained by means of BEM is

in agreement with those obtained by CFD analysis. In front of the breakwater the wave field is a quasi-

standing field, formed by the superimposition of the progressive wave moving to the breakwater and the

reflective wave field moving backwards. Behind the breakwater, both the models show the existence of a

progressive wave field moving away from the breakwater. However, shape and amplitude of these waves

are remarkably different among them because of the dissipation.
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