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Wave dispersion and attenuation in

viscoelastic split Hopkinson pressure bar
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A viscoelastic split Hopkinson pressure bar intended for test-

ing soft materials with low acoustic impedance is studied.

Using one-dimensional linear viscoelastic wave propagation

theory, the basic equations have been established for the de-

termination of the stress–strain–strain rate relationship for

the tested material. A method, based on the spectral analysis

of wave motion and using measured wave signals along the

split Hopkinson pressure bar, is developed for the correction

of the dispersion and attenuation of viscoelastic waves. Com-

putational simulations are performed to show the feasibility

of the method.
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1. Introduction

The split Hopkinson pressure bar (SHPB) is one of

the best available and most widely accepted techniques

for the determination of the stress–strain characteris-

tics of materials at high stain rates [6–8]. A basic SHPB

consists of a striker bar, an incident bar and a transmit-

ter bar, as shown in Fig. 1. The specimen to be tested is

placed between the incident and transmitter bars. Usu-

ally, both incident and transmitter bars are made of the

same high-strength elastic materials, such as steel or

aluminium. While the specimen of the tested material,

usually of lower strength, may deform non-elastically,

the bars remain in an elastic state. Therefore, it is gen-

erally assumed that elastic waves propagate through

the incident and transmitter bars.

According to the theory of wave propagation in

solids [9], the strength of the transmitted wave sig-

nal depends on the difference between the acoustic

impedance ρC0 (where ρ is the density of the mate-

rial and C0 is wave velocity) of the bars and the tested

material. The greater the difference between them, the

weaker the transmitted wave signal. If the acoustic

impedance of the tested material is much lower than

that of bars, the transmitted wave signal will be too

weak to be measured with sufficient accuracy. There-

fore, the difference between the acoustic impedance of

bars and the material to be tested should be kept within

a reasonable range. For instance, the SHPB made of

aluminium alloys or other materials with ρC0 of the or-

der of 10 MPa s/m was successfully used in the stud-

ies of the nonlinear viscoelastic behavior of engineer-

ing plastics with ρC0 of the order of 1 MPa s/m at

high strain rates, but was not suitable for testing ma-

terials with ρC0 of the order of 0.1 MPa s/m or lower

[13]. In order to test soft materials with low acoustic

impedances at high strain rates by the SHPB, it has

been suggested [13] that the bars be made of viscoelas-

tic materials, such as polymers, which have relatively

low acoustic impedance.

2. Problems with viscoelastic SHPB

For the specimen tested using the SHPB, as shown

in Fig. 1, the average strain rate, strain, and stress can

be expressed as

ε̇s(t) =
v(xs2, t) − v(xs1, t)

ls

=
vt(xs2, t) − vi(xs1, t) − vr(xs1, t)

ls
,

εs(t) =

∫ t

0

ε̇s(t) dt

(1)

=
1

ls

∫ t

0

[vt(xs2, t) − vi(xs1, t) − vr(xs1, t)] dt,

σs(t) =
A

2As

[

σ(xs1, t) + σ(xs2, t)
]

=
A

2As

[

σi(xs1, t) + σr(xs1, t) + σt(xs2, t)
]

,

Shock and Vibration 5 (1998) 307–315

ISSN 1070-9622 / $8.00  1998, IOS Press. All rights reserved



308 Z.Q. Cheng et al. / Wave dispersion and attenuation in viscoelastic split Hopkinson pressure bar

Fig. 1. Schematic diagram of the SHPB.

where ls is the length of the specimen; A is the cross

sectional area of incident and transmitter bars; As is

the cross sectional area of the specimen; v(xs1, t) and

v(xs2, t) are the particle velocities at the left and right

interfaces of the specimen; σ(xs1, t) and σ(xs2, t) are

the stresses at the interfaces; and the subscripts i, r, and

t denote the corresponding quantities of incident, re-

flected, and transmitted waves, respectively.

For the elastic SHPB, assume that a longitudinal

elastic wave propagates through the bars, and define

that the incident pulse and transmitted pulse are for-

ward waves and the reflected pulse is a backward wave.

Then

vi(xs1, t) = −C0εi(xs1, t),

vt(xs2, t) = −C0εt(xs2, t),

vr(xs1, t) = C0εr(xs1, t).

(2)

Here C0 =
√

E/ρ0, where E is the Young’s modulus

and ρ0 is the density of the bar material; and

σ(xs1, t) = σi(xs1, t) + σr(xs1, t)

= E
[

εi(xs1, t) + εr(xs1, t)
]

, (3)

σ(xs2, t) = σt(xs2, t) = Eεt(xs2, t).

Substituting Eqs (2) and (3) into Eq. (1) leads to the

conventional equations for the elastic SHPB [8]:

ε̇s(t) =
C0

l0
(εi − εr − εt),

εs(t) =
C0

ls

∫ t

0
(εi − εr − εt) dt,

σs(t) =
EA

2As

[

εi + εr + εt

]

.

(4)

Usually, these strains are not measured directly at

the interfaces. Instead, they are measured by strain

gages placed away from the specimen, as shown in

Fig. 1, where εi and εr are measured by the strain gage

at station sg1, and εt is measured by the strain gage

at station sg2. This is considered to be acceptable pro-

vided that the ratio of the bar radius to the wave length

does not exceed 0.1 [2,3,12]. However, a longitudinal

wave is dispersive. A wave, or a stress pulse, will be

distorted as it travels along the bars. Therefore, some

methods have been proposed for the correction of the

dispersion of waves in the elastic SHPB [3–5,11,15].

There are two significant differences in the use of

the viscoelastic SHPB relative to the use of the elas-

tic SHPB. One is that as a viscoelastic wave propa-

gates through the bars, it will attenuate and disperse

[10], so that the stresses and particle velocities at the

two interfaces of the specimen cannot be directly deter-

mined from the measurements of strain stations away

from the specimen. The correction of the dispersion

and attenuation is necessary for the use of a viscoelas-

tic SHPB. Another problem is that since Eqs (2) and (3)

are not valid for viscoelastic waves, Eq. (4) can not be

used to calculate the stress–strain–strain rate relation-

ship for the tested material. While Eq. (1), as a funda-

mental equation describing the stress–strain–strain rate

relationship for the specimen, is valid for the viscoelas-

tic SHPB, it is necessary to establish a relationship for

the specimen which connects the measured strains with

the stresses and particle velocities.

To assist in the use of SHPB with viscoelastic bars,

an analytical method was employed [13] to address the

two questions. The method was based on a constitu-

tive equation of viscoelastic material and characteris-

tics theory of one-dimensional linear viscoelastic wave

propagation. However, there are some limitations with

this approach.

• Although the constitutive relationships for vis-

coelastic materials were represented by a three

parameter model (standard model), which can be

considered as a Maxwell model with an auxiliary

spring in parallel as shown in Fig. 2, it is only

able to describe the mechanical properties of vis-

coelastic materials over a very narrow frequency

range [10].

• As pointed out for the elastic SHPB, the longitu-

dinal wave is dispersive. One-dimensional linear

viscoelastic wave propagation theory on which

the approach was based does not account for the

dispersion of the longitudinal wave.

• Support and boundary conditions of the bars,

which were not taken into account in the ap-

proach, may contribute to wave dispersion and at-

tenuation [1].

An alternative approach, using a spectral analysis,

will be employed in this paper to develop a method for
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Fig. 2. Maxwell model with an auxiliary spring in parallel.

the generalization of the SHPB from elastic bars to vis-

coelastic bars. The development of this method begins

with one-dimensional linear viscoelastic wave propa-

gation theory. This method is, however, experimentally

based.

3. Dispersion and dissipation of viscoelastic waves

in SHPB

3.1. Linear viscoelastic wave propagation equation

Since the bar deformation in SHPB should be small,

the characteristic of the bar material can be described

by a one-dimensional linear constitutive law [10]

σ = E0ε+

∫ t

−∞

ψ̄(t− τ )
∂ε

∂τ
dτ , (5)

where σ is the one-dimensional stress; ε is the one-

dimensional strain; E0 is referred to as the “instanta-

neous” modulus and is related to Lamè’s constants λ
and µ; and ψ̄(t) is a memory function or stress relax-

ation function with the properties

ψ̄(t) = 0 if t 6 0,

lim
t→∞

ψ̄(t) = 0.
(6)

The equation of motion for a thin bar is

ρ0
∂

2u

∂t2
=

∂σ

∂x
, (7)

where u = u(x, t) is the displacement of the particles

at the position of x. The relationship between the strain

ε and the displacement u(x, t) is

ε =
∂u(x, t)

∂x
. (8)

Thus,

∂v

∂x
=

∂ε

∂t
, (9)

where v is the velocity of the particles at x, and

v =
∂u(x, t)

∂t
. (10)

Substituting Eqs (5) and (8) into Eq. (7) leads to

C2
0

∂
2u

∂x2
+

∫ t

−∞

ψ̄0(t− τ )
∂

3u

∂τ∂x2
dτ =

∂
2u

∂t2
, (11)

whereC0 =
√

E0/ρ0, and ψ̄0(t) = ψ̄(t)/ρ0. This is the

one-dimensional linear viscoelastic wave propagation
equation [14].

Apply the Fourier transform to this equation, giving

[

C2
0 + iωΨ̄0(ω)

]∂
2U (ω)

∂x2
= (iω)2U (ω), (12)

where

Ψ̄(ω) = F
[

ψ̄0(t)
]

,

U (ω) = F
[

u(t)
]

.
(13)

Here F [·] denotes the Fourier transform.
Define

B2(ω) =
(iω)2

C2
0 + iωΨ̄0(ω)

, (14)

then

∂
2U (ω)

∂x2
= B2(ω)U (ω). (15)

Thus

U (ω) = Ae±B(ω)x, (16)

where A is the amplitude spectrum, and the minus

sign corresponds to forward waves and the plus sign to
backward waves. Denote

B(ω) = α(ω) + ik(ω), (17)

where k is the wave number related to wave dispersion

and α is the attenuation factor related to wave attenu-
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ation. Both of them depend on material properties and

are functions of frequency ω. That is, k = k(ω),α =

α(ω). The particle displacementu(x, t) can be obtained

from Eq. (16) using the inverse Fourier transform

u(x, t) = F−1
[

U (ω)
]

= F−1
[

Ae±B(ω)x
]

, (18)

where F−1[·] denotes the inverse Fourier transform.

For a monochromatic wave,

u(x, t) = Ae±B(ω)eiωt. (19)

3.2. Basic relations for viscoelastic SHPB

One of advantages of using the elastic SHPB is

that only strain signals need to be measured and these

can be easily recorded by strain gages located away

from the specimen. This advantage should be retained

for the viscoelastic SHPB. For the viscoelastic SHPB,

Eqs (2) and (3) no longer hold, so that Eq. (4) is not

applicable.

From Eqs (5), (8), (10) and (16),

E(x,ω) = ±B(ω)U (x,ω)

= ±AB(ω)e±B(ω)x, (20)

and

Σ(x,ω) =
−ρ0ω

2

B2(ω)
E(x,ω),

V (x,ω) = ∓
iω

B(ω)
E(x,ω),

(21)

where in the signs of ± and ∓, the minus sign corre-

sponds to forward waves and the plus sign to backward

waves. Here

E(x,ω) = F
[

ε(x, t)
]

,

Σ(x,ω) = F
[

σ(x, t)
]

,

V (x,ω) = F
[

v(x, t)
]

.

(22)

The inverse Fourier transform of this equation gives

ε(x, t),σ(x, t), and v(x, t).
Equation (20) describes the dispersion and attenu-

ation relations of strain signals. Using this equation,

the strains at the interfaces of the specimen can be de-

termined from those measured at strain stations away

from the specimen. Then, using Eq. (21), the stresses

and particle velocities at the interfaces can be ob-

tained, and the stress–strain–strain rate relationship of

the tested material can be determined by Eq. (1).

Theoretically, if the constitutive law of the bar ma-

terial, as described by Eq. (5), is known, the function

B(ω) of Eq. (14), or, equivalently, the attenuation fac-

torα(ω) and wave number k(ω) can be determined, and

hence the correction of the dispersion and attenuation

of stress waves propagating in the viscoelastic SHPB

can be accomplished. However, as has been stated pre-

viously, there are some problems with the function

B(ω) when it is determined theoretically. Therefore,

in this paper, with the basic relations for viscoelastic

SHPB being described by Eqs (1) and (21), the deter-

mination of the function B(ω), i.e., the correction of

the dispersion and attenuation of viscoelastic waves in

the SHPB, is treated by a more general method.

4. Correction of dispersion and attenuation by

spectral analysis

4.1. Spectral analysis of viscoelastic waves

According to the theory of spectral analysis of wave

motion, a one-dimensional wave can be expressed by

its spectrum decomposition form [1]

u(x, t) =

∑

n

Fn

{

G1n +G2n + · · ·
}

eiωnt

=

∑

n

FnGneiωnt, (23)

where Gjn (j = 1, 2, . . .) is a transfer function of the

jth mode, a function of position x and frequency ωn;

Fn is the amplitude spectrum, which is known from

the input conditions or from some measurement. Thus,

FnGn is recognized as the Fourier transform of the

wave. It is generally assumed that only the first mode

is excited in longitudinal wave propagation. Therefore,

u(x, t) =

∑

n

FnG1neiωnt. (24)

For one-dimensional linear viscoelastic wave prop-

agation, from Eqs (16) and (17),

G1n = e−(αn+ikn)x, (25)

where only the forward wave is considered.
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4.2. Identification of wave number and attenuation

factor

Suppose at x1 and x2, the measured wave signals are

u(x1, t) and u(x2, t), respectively. Using a fast Fourier

transform (FFT), their corresponding spectrums are

U1(ω) = FFT
[

u(x1, t)
]

=
∑

n
U1neiφ1n ,

U2(ω) = FFT
[

u(x2, t)
]

=
∑

n
U2neiφ2n .

(26)

From Eqs (24) and (25), we have the following rela-

tions:

U1neiφ1n = Fne−(αn+ikn)x1 ,

U2neiφ2n = Fne−(αn+ikn)x2 .
(27)

Then, the attenuation factor αn and wave number kn
can be identified from the measured wave signals at x1

and x2

α̂n =
lnU1n − lnU2n

x2 − x1

, (28)

and

k̂n =
φ1n − φ2n

x2 − x1

. (29)

However, since φ1n and φ2n come from the Fourier

transform of the wave signals, it is probable that

φ1n = φ′1n + 2l1π,

φ2n = φ′2n + 2l2π,
(30)

where φ′1n and φ′2n are the original phases of the

components; and l1n and l2n are integers. Substituting

Eq. (30) into Eq. (29) yields

k̂n =
φ′1n − φ′2n + 2(l1n − l2n)π

x2 − x1

. (31)

Let

kn =
φ′1n − φ′2n
x2 − x1

(32)

be the original value of the wave number. In general,

l1n 6= l2n, so that k̂n 6= kn. This is a problem of

the loss of phase information due to the Fourier trans-

form. To solve this problem, it was suggested that the

values of (l1n − l2n) must be chosen so that Eq. (31)

gives a reasonable phase velocity and frequency re-

lationship [15]. However, this condition is difficult to

employ in practical computations.

However, if we let

x = l · ∆x, (33)

where x is the position of the wave to be corrected or

predicted, l is an integer, and ∆x = x2 − x1, then, ac-

cording to Eqs (31) and (32), the identified wave num-

ber k̂n can be used to replace the original wave number

kn for the purposes of the correction of the dispersion.

If more than two stations are available, the least

square estimate of α̂n is

α̂n =
[

{xk − xj}T{xk − xj}
]−1

×{xk − xj}T{lnUjn − lnUkn}, (34)

{j = 1, 2, . . . ,M − 1; k = j + 1, j + 2, . . . ,M},

where M is the number of stations.

4.3. Correction procedures

1. Use a proper time window and sampling rate to

digitize the wave signal from each strain gage

station. Impose the FFT on the digitized wave

signal to obtain its frequency spectrum.

2. Identify the attenuation factor and wave number

for each frequency component of the wave using

Eqs (28) or (34), and (29).

3. Suppose the wave at the position of xc needs to be

corrected or predicted from the measured wave at

the position of xr. Construct the frequency spec-

trum of the wave to be corrected or predicted us-

ing the following equation

Uc(x,ω) =

∑

n

Urneiφrne−(αn+ikn)∆xc , (35)

where

∆xc = xc − xr,

and Urneiφrn is obtained from the FFT of the

wave signal at xr.

4. Obtain the corrected or predicted wave signal us-

ing the IFFT

uc(x, t) = IFFT
[

Uc(x,ω)
]

. (36)
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Fig. 3. Propagation of viscoeleastic waves.

5. Numerical simulations

Both the incident and transmitted bars are made
of plastic. Its characteristics can be described by the
Maxwell model with a spring in parallel, as shown in
Fig. 2, having the parameters Ea = 3.14 GPa, Em =

3.98 GPa, ηm = 0.268 MPa s and ρ = 1.2×103 kg/m3.
The wave number k and attenuation factor α can

be theoretically determined by the following equations
[13]:

k2
=
ρω2

2Ea

{[

1 + ω2θ2
2

1 + (1 +Em/Ea)2ω2θ2
2

]1/2

+

1 +

(

1 +Em/Ea

)

ω2θ2
2

1 +

(

1 +Em/Ea

)2

ω2θ2
2

}

, (37)

and

α2
=
ρω2

2Ea

{[

1 + ω2θ2
2

1 +

(

1 +Em/Ea

)2

ω2θ2
2

]1/2

−
1 +

(

1 +Em/Ea

)

ω2θ2
2

1 +

(

1 +Em/Ea

)2

ω2θ2
2

}

, (38)

where θ2 = ηm/Em.

A pulse of trapezoidal shape is generated at the in-

put end of the incident bar, which is shown in Fig. 3

(x = 0). The duration of this pulse is T0 = 100µs. To

sample the pulse, choose sampling rate ∆t = 0.9766µs

and time window T = 1000µs. The size of the time

window is chosen so as not only to allow proper char-

acterization of the spectral content of the pulse, but

also to allow room for propagation of the signal [1].

The FFT is employed for a spectral analysis of the

signals. According to the sampling parameters of the

pulse, the fundamental frequency, i.e., the frequency

increment, is ω0 = 6280 rad/s.

From Eqs (37) and (38), the relationships of the

wave number and attenuation factor versus each fre-

quency component are shown in Figs 4(a) and (b), re-

spectively. As the pulse propagates forward through

the viscoelastic bars, it will be dispersed and at-

tenuated. Using the dispersion and attenuation re-

lations described by Eqs (37), (38) and shown in

Figs 4(a) and (b), the waves at the positions of x =

[0.1, 0.3, 0.6, 1.0, 1.5] m are calculated, as shown in

Fig. 3. These waves can be considered as the waves

predicted form the initial pulse, the wave at x = 0.

Now, suppose the wave signals shown in Fig. 3 are

the measured strain signals at the corresponding strain
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Fig. 4. Theoretical wave numbers and attenuation factors.

gage stations. The wave number and attenuation fac-

tor can be identified from these measurements. Us-

ing Eq. (29), wave numbers are identified, with the re-

sults shown in Fig. 5(a) for the case when the signals

at x = 0.3 m and x = 0.6 m are considered. Us-

ing Eq. (34), attenuation factors are identified which

are shown in Fig. 5(b). It can be seen by comparing

Fig. 4 and Fig. 5 that the attenuation factors identi-

fied are nearly identical to those theoretically calcu-

lated, but the wave numbers identified are very differ-

ent from those theoretically calculated. This, as stated

previously, is the result of the loss of phase information

during the FFT. Moreover, if signals from different sta-

tions are used in the identification, different identified

wave numbers will result.

Using identified wave numbers and attenuation fac-

tors, the waves at x = 0, x = 0.6 m, and x = 1.5
are corrected or predicted from the measured wave at

x = 0.3 m, as shown in Fig. 6. Comparing them with

those in Fig. 3 at the same positions, we find that as

soon as the condition of Eq. (33) is satisfied, the at-

Fig. 5. Identified wave numbers and attenuation factors.

tenuated and dispersed waves can be corrected or pre-

dicted accurately, though the identified wave numbers

are different from their real ones. But, if the condi-

tion of Eq. (33) is not satisfied, the corrected or pre-

dicted waves will be severely distorted. Such an exam-

ple is shown in Fig. 7, where the wave at x = 1.0 m

is predicted from the measured wave at x = 0.3 m

using identified wave numbers and attenuation factors.

The real shape of this wave is shown in Fig. 3 for

x = 1.0 m.

6. Concluding remarks

The generalization of the SHPB from elastic bars to

viscoelastic bars has been investigated. The main prob-

lem with this generalization is related to the attenua-

tion and dispersion of viscoelastic waves. A method for

the correction of the dispersion and attenuation of the

viscoelastic waves in the SHPB is developed based on

the spectral analysis of wave motion. From the analy-
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Fig. 6. The corrected and predicted waves.

Fig. 7. An incorrect predicted wave.

ses and computational simulation, the following con-

clusions are in order.

1. The generalization of the SHPB from the elastic

bars to the viscoelastic bars permits the testing of

soft material with low acoustic impedance.

2. The main advantages of the elastic SHPB can be

retained for the viscoelastic SHPB. Among them

is the contention that the stress–strain–strain rate

relationship of the tested material can still be ob-

tained from the measured strains at stations away

from the specimen.

3. The correction of the dispersion and attenuation

of the viscoelastic waves in the SHPB can be ac-

complished using identified wave numbers and

attenuation factors. It is not necessary to know

the bar material constitutive properties. With a

spectral analysis of measured wave signals, not

only the material dispersion, but the geometrical

dispersion as well can be corrected.

4. The measurement stations should be appropri-

ately positioned, in order to counter the effects of

the loss of phase information due to the FFT in

the identified wave numbers.

This paper is concerned primarily with the prob-

lem of the correction of the dispersion and attenua-

tion of waves in the viscoelastic SHPB. There are some

other difficulties with the application of the viscoelas-

tic SHPB, such as the effect of the rate-dependent prop-

erty of viscoelastic material, and the influence of the

noise in the measured signals on the identification.
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