
1. Introduction
The linear exciting force exerted by water waves on a floating body is proportional

to the wave amplitude A, and acts with the same frequency w. Quadratic nonlinear
interactions at second order result in a steady 'mean drift force' of order A2 which
is independent of time. More generally, in a realistic spectrum of ocean waves, slowly
varying second-order forces occur at the differences u = w1w51 between the
frequencies (Wt, wj) of each pair of spectral components. (Second-order interactions
also cause high-frequency forces which are important for certain types of offshore
platforms, cf. Lee et al. 1991, but these are quite different in their character, and are
not considered in the present work.)

Vessels moored in deep water can experience resonant low-frequency motions in
the horizontal plane, due to excitation from the slowly varying second-order wave
forces. Important practical examples are moored ships, where the mooring system
has a relatively small linear restoring force, and tension-leg platforms which are
Similar dynamically to an inverted pendulum with the buoyancy force directed
upwards. The resonant response of these vessels is limited only by the relevant
hydrodynamic damping mechanisms.

At low frequencies the conventional linear damping of body motions due to wave
radiation is negligible. For example, the horizontal exciting force acting on a fixed
threedimensional body in long wavelengths is proportional to the pressure gradient
of the incident waves, or 0(u2) for waves of unit amplitude and low frequency u. It
follows from the Haskind relations (cf. Newman 1977) that the horizontal damping
Coefficients are 0(u7). On the other hand, the second-order wave force acting on the
body tends to a finite limit equal to the mean drift force, as the difference-frequency
tends to zero. Thus, in the absence of more significant damping effects, resonant
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Wave-drift damping results from low-frequency oscillatory motions of a floating
body. in the presence of an incident wave field. Previous works have analysed this
effect in a quasi-steady manner, based on the rate of change of the added resistance
in waves, with respect to a small steady forward velocity. In this paper the wave-
drift damping coefficient is derived more directly, from a perturbation analysis where
the low-frequency body oscillations are superposed on the diffraction field. Unlike
the case of body oscillations in calm water, where the damping due to wave radiation
is asymptotically small for low frequencies, the superposition of oscillatory motions
on the diffraction field results in an order-one damping coefficient. All three degrees
of freedom are considered in the horizontal plane. The resulting matrix of damping
coefficients is derived from pressure integration on the body, and transformed in
special cases to a far-field control surface.
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second-order motions would occur with velocity proportional to O(o7) a
. amplitude proportional to O(o8).

An obvioua alternative source of damping is viecous drag. However, the quaj.steady drag force is proportional to the square of the relative velocity between th8body and eurrounding fluid. From an equivalent-damping synthesis (cf. Faltinsi 991 ) the resultant damping coefficient is formally of order q.
The relevance of ' wave-drift damping ' wa suggested in an experimental study byWichers & van Sluijs ( I 979), where the o8cillatory surge motions were measurej otwo ship models restrained by spring moorings. Comparisons of the extinction rain calm water and in waves of differing heights clearly indicated the presence of adamping force proportional to the square of the wave height. (See also Faltinsen

1991, figure 5.20, and Chakrabarti & Cotter 1992, figure 11.)
These experimental observations have been explained in a qua8i-steady manner1by considering the added resistance in waves due to steady translation of the body

with small velocity U. This force is proportional to the square of the incident-wave
amplitude, tending to the zero-speed mean drift force as U-+0, with the leadinè
order correotion proportional to U. The derivative with respect to U, evaluated aU 0, represents a force proportional to the velocity, which is interpreted as adamping coefficient.

This quasi-steady explanation has been used as the basis for several theoretical
and computatìonal studies where the diffraction problem is solved for a body moving
with a steady forward velocity U, in the presence of incident waves. The derivative
of the resulting mean force with respect to U is derived analytically, using pertinent
asymptotic analysis for U 4 1 (Nossen, Grue & Palm 1991; Emmerhoff & Sclavounos
1992). Alternatively, in the approach followed by Zhao & Faltinsen (1989), the
damping coefficient is evaluated by numerical differentiation from computations.
with small non-zero velocity.

In the present paper the phenomenon of wave-drift damping is considered in amore direct manner, without introducing a steady forward velocity. Our approach is
motivated by the conditions of the experimental observations. Whereas the dampingdue to wave radiation is asymptotically small with respect to the frequency of bodyoscillations in calm water, a more significant damping force occurs in the presence of
an incident wave field. This suggests the use of perturbation methods to analyse the
higher-order interaction between low-frequency body motions with frequency q, and
the diffraction problem for the fixed body in incident waves of frequency w. The
analysis is simplified by assuming that q 4 w. In this respect the formulation is
similar to that of Agnon & Mei (1985), who employ the method of multiple scales toanalyse the corresponding two-dimensional problem for a rectangular body iIi
shallow water.

One feature of the present approach is that, like the conventional linear analysis
of floating-body motions, it is possible to consider not only the force due to
longitudinal surge motions, but also the more general case of arbitrary motions with
multiple degrees of freedom. In practice the most important modes are translations
in the horizontal plane (surge and sway), and rotation about the vertical axis (yaw).
Our principal objective is to evaluate the three-by-three matrix, of the components
of the wave-drift damping horizontal force and vertical moment, due to low-
frequency oscillatory motions in the corresponding modes.

The perturbation expansion for the velocity potential is postulated in §2, and
appropriate boundary conditions are derived. In §3 the low-frequency approximation
is introduced to simplify the free-surface boundary conditions for the required

Wave-drift damping of floating bodies 243

bigber0r potentials. In §4 the hydrodynamic force acting on the body is
ezpres in an analogous perturbation expansion, and the wave-drift damping

fficient is derived from pressure integration as the component of the force in phase
with the body's velocity which is proportional to the square of the incident wave
51plltude. Integral relations are used in §5 to replace local integration over the body

free surface by integrals over a control surface in the far field. Comparisons are
made with the results of the quasi-steady analyses by Emmerhoff & Sciavounos
(1892) and by Grue & Palm (1993). In §6 the present results are discussed from the
standpoints of physical interpretation and computational implementation. Various
integral relations used in the analysis are derived in the Appendix.

2. ExPansion of the velocity potential and boundary conditions
Consider the diffraction problem, resulting from the interaction of monochromatic

incident waves with frequency w and amplitude (i1, and also the radiation problem
resulting from oscillatory body motions (t) In the horizontal plane with frequency
o.. Three separate modes of motion are included : surge (parallel to the x-axis), sway
(parallel to the y-axis), and yaw (rotation about the vertical z-axis). An judicial
notation (j = 1,2,6) is used to denote each of these three modes of motion,
respectively, with the corresponding oscillatory displacement , sin (cfi and velocity

Since the wave-drift damping force and moment are linear in these
displacements, it is sufficient to considera single degree of motion without regard for
nonlinear interactions between different modes. The phase of the incident wave is not
restricted, hence there is no loss of generality in defining the body motions to be in
phase with sin (ct); similarly, when a complex representation is adopted for the
oscillatory time dependence, it will be assumed that is a real coefficient. Later it
will be assumed that the frequency of the body motions is much less than that of the
incident waves, i.e. o. 4 w.

The fluid is considered to be infinitely deep, and the flow is assumed to be
irrotational. For the above inputs the appropriate perturbation expansion for the
velocity potential can be expressed in the form

(x,t) =

+ (ç, eb0 + + ç e'trei4a + e«' +...]). (2.1)

Here the potentials çd and Ç6mj depend on the space coordinates x. The first subscript
refera to the order of magnitude in A, and the second subscript refers to the mode of
'notion. Thus çS,.,, = O(A) are the components of the diffraction solution, and Çbmg are
potentials of the same order in A, due to the body motions. Superscripts are used
when necessary to denote harmonic time dependence in the respective frequencies.
The symbol Re denotes the real part of the complex expression. Without loss of
generality the potential çS°, the component of the second-order diffraction solution
Which is independent of time, is assumed to be real. The remaining potentials
displayed on the right-hand side of (2.1) are complex. Terms which are conjugate to
those in (2.1) can be neglected, hence it is permissible to include only the complex
exponentials which have a positive imaginary argument when w» q > 0.

The functions q,, and in (2.1) are governed by Laplace's equation in the fluid
domain, with appropriate boundary conditions specified on the body and free
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surface. The boundary conditions are completed by requiring each potential
vanish at large depths below the free surface. Except for the incident-wave potent

ç5 (2 2

which is a specified component of the first-order diffraction solution ç, ea
potential in (2.1) muBt satisfy the radiation condition of outgoing waves in the f
field. In (2.2) g is the gravitational acceleration, K = w2/g is the wavenumber, and fidenotes the angle of incidence relative to the positive x-axis. Since the phase h
unrestricted, the amplitude A is complex.

The first-order diffraction potential çS is subject to the boundary conditions

çb1=O OflSb, (23)
and = O on z = 0. (2.4)

Here S is the submerged portion of the body surface, in its mean position. The
subscript n denotes the normal derivative, with the unit normal vector n defined
the positive sense to point out of the fluid domain, and hence into the interior of the
body. Subscripts (x,y,z,t) denote partial differentiation with respect to the
corresponding variables. -1

The first-order radiation potential satisfies the boundary condition

= an1 on 8, (2.5)

where the three components of the vector {n5} are defined by

n1 = n, n2 = ni,, n = xn5yn. (2 6

The appropriate free-surface boundary condition is

Yojz2#oj = O on z = 0. (2.1)

The higher-order potentials in (2.1) satisfy inhomogeneous boundary conditions on
the body and/or the free surface. In the analysis to follow it will be necessary to
consider various products of the time-dependent potential (2.1) and its derivatives.
These products can be expressed in a similar form, with appropriate coefficients.
Thus, if two functions A(t) and B(t) are represented as in (2.1) with corresponding'
coefficients 0mfl and bmn, the product C = AB can be represented in the same forni.
The relevant low-frequency components of C are as follows:

The coefficients of triple products can be derived by repeated application of the sama
relations.

On the exact oscillatory position 5b of the body surface the kinematic boundary
condition is

(P(x,t) = (2.12)

Boundary conditions for the potentials in (2.1) on the mean body surface are derived
by Taylor series expansion of the left-hand side of (2.12) to the mean position 8b' 8od
accounting for the rotation of the body-fixed normal vector n. The appropriate
modification of (2.12) follows from the analysis outlined by Newman (1978, equation

c°1 = ÌRe{aib'}, (28)

(29)
= j(a1b,+ab1), (2.10)

c = a°1b0, + a01b» +è(ab' +a' b + aj)* b1 + a1 (2.11)
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3.28). Neglecting terms of order yields the following boundary conditions for the
three separate modes of motion:

'tirn = i(t)nz_j(l)tixn, (2.13)

2n = 2(t)n-2(t)'P20, (2.14)

6(t) (xn5 - yn1) - (t) (xø65 - y1) + (t) (n1 sy - y per) 8. (2.15)

The last pair of terms in (2.15) accounts for the rotation of the coordinate system.
The other terms in (2.l3)(2.15) are the results of Taylor expansion between the
oscillatory and mean body surfaces.

The boundary conditions (2.13)(2.15) can be expressed on the unified form

= ,(t)n5-1(t)24(øj) on 5b' (2.16)

where 2(ç5) = ç5, (ç) = ,, () = xç11yçb. (2.17)

Since V2ç1 = 0, each of the three functions defined by (2.17) is harmonic. Normal
derivatives of the same functions are denoted by

in(ç) = zn, n(1) = Çyn' (Ç) = Xyn 1+n1Çb (2.18)

When applied to the potential for steady-state translation of the body, the normal
derivatives (2.18) are equivalent to the so-called 'rn-terms' which appear in the
quasi-steady analyses (Nossen el al. 1991; Emmerhoff & Sclavounos 1992). In the
present work the operators (2.17) are applied in a different manner, to the diffraction

F solution with the body fixed.
Collecting the terms of the same order in (2.16) and using (2.8)(2. 11), the following

boundary conditions are derived on the mean position of the body:
(2.19)

(2.20)=
(2.21)A)°) -Y'ljn -

Next we consider the free-surface condition, which is expressed in exact form as

= _V2_V.V(V2) on z = (2.22)

where V = V is the fluid velocity vector. This boundary condition is transferred to
the mean free surface z = O using the following expansion for :

_!p) =

(2.23)=

Using (2.23) in the Taylor-series expansion of (2.22) about z = O,

_!( , _r) (1 +g) + zzz)

FÇ+ V. JÇ)_V.V(V2)+O() on z = 0. (2.24)



246 J.N.Newman

For the same potentials associated with (2.19)-(2.21) the corresponding fr
surface boundary conditions can be written in the forms

A(0) - f(0)
gt'2z 12

g-(w±o)2 fjt),
gçu2ç =ír on z = 0.

The inhomogeneous function on the right-hand side of (2.25) is

f(0) = Re{ie41}. (2.28)

Here (2.4) has been used to eliminate the imaginary contribution from the firt
derivative. The right-hand side of (2.26) can be evaluated in the form

fj) = ç5( - °Ç5OJZ +g01) ± (ç)( _Ø2 +gç5) - i(u± o) Vç1 . V(0,)±.

(2.29

Here the superscript (±) following a function in parentheses denotes the function or
ita complex conjugate, respectively. The corresponding result for the right-hand side
of (2.27) will be derived in §3, under the approximation of small o.

The boundary condition (2.25) implies that °' is non-wavelike. In deep water, the
right-hand side of (2.28) is o( I/B), for large horizontal radius R, since the terms in
parentheses vanish for plane waves. A more careful analysis in the Appendix shows
that q5» = O(R°).

3. Low-frequency analysis
It is appropriate to consider the asymptotic forms of the potentials for g w and

o1 4 g, where ¡ is the characteristic lengthscale of the body and w°l/g = 0(1) Is
implied. In the limit = 0, (2.7) reduces to the rigid-free-surface condition. In view
of the boundary condition (2.5) the potential is re-scaled in the form

c'o, O7)j, (3.1)

where the canonical potentials q are real and satisfy the boundary conditions

= n, on Sb, (3M

Pjz = on z = 0. (3.3)

These are the velocity potentials for translation or rotation of the body, with unit

velocity, in the presence of the 'rigid' free surface. For small values of oi/g, (3i)
applies throughout an inner domain which is large compared to ¡ and the wavelengt1
2ig/w2 of the diifraction problem, but small compared to the wavelength 2ltg/o" of

the low-frequency oscillations. Hereafter our attention will be restricted to this inner
region. From the free-surface condition (2.7) it follows that the imaginary part of Ñ
is of order o.

Next we consider (2.26) and the associated functions (2.29), which define the free-
surface boundary conditions for the potentials ç5. In the low-frequency analysiS It

is convenient to define the auxiliary potentials
A(+) A(-) = p (3.4)
'iJ Wu

+ = qQ1. (3.5)

(2.25

(2.26

(2.27)
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yrom (2.20), the corresponding boundary conditions on the mean position 5b of the

bodY surface are = i(1), (3.6)

= 0. (3.7)

jmilarly, using (2.26) and (2.29) on z = 0, and neglecting terms of order .2,

(3.8)

gQ1 - w2Q, = 2wP5 + - 2iwVqS1 . Vq. (3.9)

Since the boundary conditions (2.20) and (3.6) do not involve q, it follows that the
functions Q and F defined by (3.4) and (3.5) also are independent of q The error in

neglecting o is a factor 1 +O(2).
A potential which satisfies theboundary conditions (3.6) and (3.8) is easily

constructed in the form ¡ = i(q51), but this violates the radiation condition since
the incident wave is part of Forj = 1,2 this problem can be overcome simply by

adding an extra term proportional to , with the results

P1 = iç-Kcosfiq1, P2 = iq10-Ksinfi1. (3.10)

For j = 6 the appropriate extra term involves the derivative with respect to the

wave heading angle fi:
P0 = i6(1)+iç51. (3.11)

To confirm these solutions, note that each sum vanishes for the incident-wave
potential (2.2), hence (3.10) and (3.11) satisfy the far-field radiation condition. In
view of the boundary condition (2.3) there is no contribution from the second terms
to the boundary condition (3.6), and thus the validity of (3. 10)-(3. Il) is established.

In the analysis of Q, attention is first given to the term 2wF on the right-hand side
of the free-surface boundary condition (3.9). The general solution can be expressed

in the form
Q, = (2w/g)P+q1, (3.12)

where the subscript K denotes differentiation with respect to the wavenumber. The
potential q, is subject to the boundary conditions

q1,, = -(2w/g)PK,, 8b (3.13)

and gq1,-w2q5 = iw1q,00-2iwV1'Vp, on z = 0. (3.14)

Since 1', is a solution of the homogeneous free-surface condition, its effect on the
right-hand side of (3.9) is secular. For large values of the horizontal radius R the
radiation condition implies that P, Re_Il, and thus the solution (3.12) is non-
uniform in the far field, with the asymptotic behaviour Q -R1e"5. This does not
result in practical difficulties in the analysis to follow, provided the domain

considered is suitably restricted.
Since q'1 is asymptotic to a Rankine dipole, the right-hand side of (3.14) is of order

1fR1 in the far field. The solution of this boundary condition is non-trivial, but
uniform at infinity with the same far-field form as a first-order radiating wave.
Thus the conventional far-field radiation condition is applicable for the regular

Component q1.
Next we consider the functionfj1 defined by (2.27). The possible contributions are

Indicated from the complete third-order free-surface condition (2.24), and involve the

following combinations of lower-order potentials and their drivatives:

('' #u)' (' to,)'
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Only the first combination is independent of çS,», and hence of order one as
After substituting the potentials q and ç!4 with appropriate time-dependent \
factors in the terms on the first line of the right side of (2.24), and collecting
components with the time dependence ebol, the limit forf.i71 as o-.0 is obtained in the
form

f(0) _(+)
.i2j a i rija , ifzzi ,

_ç1(Kç)* _#.()*lia *'lIzz

iw[ !z+IMrP P* +P* çS1].I jR j

In the far field the second derivatives in (3.15) can be replaced by K2, and it follows
that = o(l/R). Thus in the limit as o-*0 the boundary condition (2.27) implies
that ç is non-wavelike, vanishing algebraically in the far field in the saine manner
as4°.

The solutions (3.10) can be substituted in (3.15) forj = 1,2 with the result i
= i(f°). (3.16)

Thus, in the limit -i.0, the potentials

= jJ(ç(Ol) (3.17)

are solutions of the boundary conditions (2.21) and (2.27) for (j = 1,2). Similarly, for
j = 6,

128 (3.18)

and = i0(4°içS2,,. (3.19)

4. The hydrodynamic pressure force and damping coefficients
Perturbation expansions similar to (2.1) can be assumed for the pressure and the

resulting force (and moment) acting on the body. The appropriate terms to consider
for the component of the force or moment in the same direction as the mode , dué
to the diffraction field, the oscillatory motion in the mode , and their interaction,
are 1) = Re {F e' + F» F1 e2' +...

+ ,[Fe, e0 +FW e1'1 +F et
+Fj e'°t + F7) euaTht + F1 e'"t +. . .J). (4.1)

Here F1 is the first-order exciting force and is the second-order mean drift force
for the fixed body. F, is the first-order force due to a unit motion ,, which can be
expressed in the usual form

= (io2Á011+irB01), (4.2)

where the real coefficients A5 and B0, are the added-mass and damping coefficients.
The higher-order force component Fj can be expressed in the analogous form

FV (io2A211+oB211). (4.3)

(3.15)

This force is of second order in the wave amplitude, and first order in the motiOfl
amplitude.
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For asymptotically small values of the frequency a, A01, = 0(1), whereas B01,
O(o) as noted in the Introduction. By comparison, the highest-order added-mass
coefficient A21, is of secondary importance, but the corresponding damping coefficient
B1, is significant since is asymptotically small.

The most direct approach to evaluate FJ is from pressure integration on the bo4y.
The analysis is carried out for a fioatin body with a time-varying wetted surface 8b'
wean surface 5b' waterline contour Ch, and mean waterline contour Cb, with the
restriction that the body surface is smooth and vertical at the waterline. Integration
around the closed contour Ch is defined in the positive sense with respect to the
enclosed boundary surface 8b' i.e. in the counter-clockwise direction when viewed
from above the origin. For a submerged body the integrals over the waterline can be
neglected. Ultimately a fixed control surface S,, also will be used, which surrounds the
body in the far field. The portion of the mean free surface between 8b and S will be
denoted S1. The intersection of S and S is the contour C.

The horizontal components of the pressure force and the vertical component of the
moment are evaluated using Bernoulli's equation, in the form

Fi(t)=JJnids=_pJJ(ci+W.Vc5+z)nids (i= 1,2,6). (4.4)

As in the case of the body boundary condition (2.13), the pressure is transferred from
8b to its mean yosition 8b In addition, the contribution from the time-varying
intersection of 8b with the free surface z = is expanded as a tine integral on Cb.

The contribution from the transfer of the pressure involves the expansion

=
The linear correction does not affect the damping coefficients in (4.2) or (4.3) since it
is out of phase with the body velocity, and the hydrostatic pressure does not
contribute to (4.4). Thus the only contribution from integration over the mean
surface is

PJJ(øi +Vq. Vçl)n1dS. (4.5)

The contribution from the contour Cb includes the vertically integrated hydrostatic
pressure contribution pg, and the Taylor expansion of the dynamic pressure.
The resulting line integral is

.+g]n1dl

= (4.6)

The last term in the first integral accounts for the integrated hydrostatic pressure;

The last term in (4.6), which contributes terms of order oçb., = 0(0.2) to (4.3), is
in the second integral (2.23) is used. Terms of higher order than (4.3) are neglected.

neglected hereafter.
Our objective is to evaluate B211, the wave-drift damping coefficient in the direction

¡due to a velocity in mode j. It is convenient to simplify the notation by defining the
new coefficients

= B213/p. (4.7)

P1.5 249
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Considering only the real part of the force coefficient F, and aubstituting the
appropriate components of the velocity potential (2.1) in (4.5)-(4.6),

= Re JJ (iç + Vq5°8 . Vip, + Vç' . VQ,) n8 d9

Hereafter the symbol Re is deleted, with the understanding that the real part is
implied in all of the following equations.

Equation (4.8) provides an explicit relation foi the wave-drift damping coefficients.
The principal difficulty is in evaluating the various higher-order potentials including
¡, Q,, çS°, and The dependence on the last two can be removed by further
analysis, using Green's and Stokes' theorems together with appropriate boundary
conditions on the body and free surface. After substituting the boundary condition
(3.2) in the first term of the surface integral, and Stokes' theorem in the form (A 2)
for the second and third terms,

= JJ.
(jç5) q'8,, +ip, ,,(40)) +Q ,,(çS')) dS

Sb

1w
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Substituting these results in (4.9),

gli, = JJ Q,24,, thS+1e+iJJ (q',)1dS
sr

1 W ! IfqS(I

The integrand in the last integral vanishes for j = 1,2, as a result of (3.16). For
j 6, it follows from (3.18) that

i
f1 q'8(ifj+94(f°)))dS= ffg

. s,

AW a ij ipg'66 = _iiiJÍ ç51Vç5-Vq'1dS, (4.14)
219afi ,

2 98ß s,

where (2.28) and (A 3) have been used.
Comparing (4.13) and (4.14) with the original expression (4.8), integrals over the

free surface are introduced but the higher-order potentials have been removed
and the second-order diffraction potential ç5'» only contributes via the dipole
moments in the evaluation of from (A 16). The latter contribution is present
only for the coefficients 9' 28 and The special role of O) has been
emphasized by Grue & Palm (1992, 1993) with respect to the coefficients , 26.

5. Far-field analysis
Momentum relations have been used in the quasi-steady analyses by Grue & Palm

(1992, 1993) and Emmerhoff & Sclavounos (1992), to relate the wave-drift damping
coefficients to integrals over a control surface S in the far field. Similarly, in the
present analysis of unsteady body motions, energy conservation could be used to
relate the work done by the damping coefficients to the rate of energy flux in the far
field. However, higher-order potentials and higher-order terms in the low-frequency
approximation must be considered in both the momentum and energy approaches.
Alternatively, integral theorems can be applied to the results of4 with the objective
of replacing integrals in the near field, over the body and free surface, by integrals
over S,,. This analysis is carried out below.

From the boundary condition (3.7) and Green's theorem, the integral over S, in
(4.13) can be expressed as

Jf (,,(ç5') Q, ...Ç(çS') Q,,,)dS = !
fJ

(,,(çb) Q1-(ç5) Q',,) dIS. (5.1)
31+80

Invoking the inhomogeneous condition (3.9) for Q,, the contribution from S is

=i Ifg ,
(5.2)

g ,

9-2

- - Re Q+P,-iVç,.Vq',)n8dl.2g JC2
(4.8) 2g Cb

- iVqS -vip,) fl dl q'8(if1 ,(fO))) dIS. (4.13)
g

g C
[q'f0) - wç5(P,- 1VØ1 . Vip,)] n dl. (4.9)

To evaluate the contribution from the first term in the surface integral of (4.9),
Green's theorem is applied using the boundary conditions (2.21), (2.27), and (3.3),
with the result

fJ (iç'q,,, +rp ,a(Ç2o1))
J 3b

1.=

where the integral which remains over 8b is defined as

= JJSb (ip,,, (°>) ip,, ,(çS°1)) dS.

Various alternative formulae for evaluating (4.11) are given in the Appendix. The
only non-zero elements are I, '26' ¡, and '62

The contribution from the last integral of (4.10) is

g ,
JJ (q'8(f°1)-q',(f°8))d8

= !Jf (q'g94(fO))+4(q,,)fO))ds_!f q',f°n8dl
g 3

! ff [q8 (fm) diS + iw(q,) 'r - q,,fO)i dl,

where (A 4) and (2.28) have been used.

(4.10)

(4.11)
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The last term In (5.2) can be transformed using (A 3). With the substitutions

5
çS, (ç5') and %fr = q,, and the boundary condition p, = O imposed (5.2) is equal to

(f

ft ((ç) VØ, Vç,-ç V24(ç'). Vq) dB
g ,
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+ Jj (q5) P dS2i () ç, n dl. (5.3)

In the contour integral (3.2) has been used, and there is no contribution from C0 sinceq, is o(1/R) in the far field. After substituting (5.1) and (5.3) in (4.13),

+iff ç5 V .V(qj)dB+ii' çVç61Vq,n,dlg , Y Cb

+.!JJ q,(if»
Y

if (() Vç . Vq - ç5 V(çt') . Vq,) dB
g ,

+ jj() 2
Y 1C',

(i(1) n-J n,) dl. (5.4)

Here in the first integral over S, (A 3) has been used, together with the boundary
eondjtjoun (2.3) and (3.3).

After using Stokes' theorem in the form (A 4) to transform the two contourintegrals over Cb,

= - fi Q, -(ç6') Q,) d.S+1,, +1fJ q,(if" +9(f)))

if +i,)
9 8

- L. «(i() n -P n,) dl.

The first integral over 8, vanishes forj = 1,2, as noted following (4.13). Similarly,after using (3.10) to evaluate P,, the second integral over 8, vanishes for i 1.2. Fori = 6 the contribution from the second integral cancels ¡,, except for the last twoterms in (A 16). Forj 6 the first integral over 8, must be evaluated using (4.14),
and (3.11) may be used to evaluate 1. The final result for all cases except i =j = 6can be expressed in the form

=
IL, Q,) dS-_

L, (i(ç,)n,_Pn,) dl

+ (ô -
(

(u)dl+2( P ))+a i (z. (5.6)

(5.5)
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fiere 8,, is the Kroenecker delta function, equal to one if i = j and zero otherwise, and
are the horizontal components of the effective dipole moment associated with

the potential ç5° as defined by (A 13). Except for this dipole moment, (5.6) depends
only on the first-order diffraction potential , and on the interactions (3.4)-(3.5)
between çf and q,. The same dependence was noted at the end of §4, with respect to
the near-field analysis.

Finally, in the case i =j = 8,

=
- JL.

0,,(q Q8-6

(5.7)

Note that in (5.6) the only integrals which remain are in the far field, but in (5.7)
an integral remains over the free surface.

If i = j + 6, (5.6) reduces to the form

" - ifs,
Q,)dS- cK(cosfl)(Ç

sinß ,

After applying Stokes' theorem over 8,, in a form analogous to (A 2),

= 115, ((ç6) Q,,, + q',, (Q,) - V VQ, n,) dB

+ -°Kf q [Q_() ç n]dl

where (2.4) is used. Except for differences of notation this formula is identical to
equation (72) of Emmerhoff & Sclavounos (1992).

Another variant of the far-field representation is derived by using the function P,
in place of (çS) in (5.1). For i =j this leads to the relatively simple result

= _iJj(P,*nQ_PQin)ds, (5.10)

which is valid for all three values of i. A feature of (5.10) is that the contribution from
the secular component of (3.12) can be evaluated by differentiation of a non-singular
integral:

= _iJJ (Ptd_P?q()dS_iJJ (PIK-P'PKfl)d8

= _lsifJ (P,*,,q,_P,*q,)d8_i (5.11)

In this form explicit dependence on the derivatives P,5 and P,5,, is removed, but the
latter derivative still must be evaluated on the body surface in the boundary
Condition (3.13). Since the functions which remain in the integrand of (5.11) satisfy
the radiation condition, far-field asymptotic approximations can be substituted for

'.1

Li

(5.8)

(5.9)
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steady rotation of the body. Unlike the conventional added-mass and damping
coefficients in (4.2), the matrix of wave-drift damping coefficients .4j derived here
appears to be asymmetrie, and there is no obvious way of relating the forces due to
yaw motions to the corresponding moments due to surge or sway.

Our results for yaw ((4. 14) and (5.6)-(5.7)) involve differentiation of the first-order
diffraction solution with respect to the angle of incidence ß; this can be interpreted
in the quasi-steady sense as the correction of the incidence angle due to the bodys
yaw oscillations. Equation (5.7), for the yaw damping momeit, includes an integral
over the free surface, but the same coefficient is expressed completely in terms of a
far-field integration in the forms (5.10)-(5.lI). The latter formulae do not involve
explicit differentiation with respect to the heading angle, but this is implicit via the
functional P defined by (3.11).

In the present work it is assumed that the unsteady iiiotions (t) are sufficiently
small to justify perturbation expansions about the stationary mean position of the
body. This assumption is not made explicitly in the quasi-steady analyses, which
assume only that the corresponding velocities (t) are small. At first glance this
distinction appears to be significant, since low-frequency horizontal excursions of
offshore platforms generally occur with substantial amplitudes. However, in the
context of deriving only the wave-drift damping coefficients, i.e. the component of
the total hvdrodynamic force which is linear in (t), the magnitude of ¿(t) is

irrelevant. Thus, despite the different initial assumptions concerning the order of(t),
our results (5.8)-(5.9) are identical to those of Einmerhoff & Sclavounos (1992).

Far-field integration is generally considered to be simpler or more accurate than
direct pressure integration on the body or intermediate results such as (4.13).
Asymptotic relations can be used to evaluate the components of the velocity
potential, and integrals over the control surface S, can be reduced to azimuthal
integrals in terms of the far-field scattering amplitude. A more specific advantage of
the far-field evaluations here is that the secular component of the higher order
potential Q3 can be evaluated as the derivative of an integral with respect to the
wavenumber, as in (5.11). On the other hand, the most difficult task envisaged in
numerical implementation is the evaluation of the potential q,, as the solution of the
boundary conditions (3.13)-(3. 14). Even in the far-field analysis this solution is
required locally on the body, in order to evaluate the far-field scattering amplitude.
Thus there is no obvious advantage in evaluating the wave-drift damping coefficients

in the far field, and direct use of (4.13) may in fact be simpler. Numerical
implementation of the present analysis is required to confirm this conjecture, and to
demonstrate the practical value of our results.

Several restrictions should be recognized in the present analysis. These include the

assumptions of infinite fluid depth, no first-order body motions, and the consideration
of low-frequency motions only in the horizontal plane (modes j = 1,2,6). The effects

of finite depth are relatively simple to account for, including the second-order

component of the incident-wave potential required in the diffraction solution. First-
order body motions can be accommodated by including the corresponding linear
radiation potentials in ç, but the boundary condition (2.3) must be modified and
this will affect much of the subsequent analysis. Low-frequency vertical motions of

the body may be important in certain applications; the principal difficulty

anticipated in this extension of the analysis is that the corresponding components of
the operator (2.17), including vertical derivatives, will complicate the reduction of
the integrals over the free surface. Each of these possible extensions will be useful in

Practical applications.
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each pontial ¡n the same manner as in the evaluation of the mean drift force (cf.
Newman 1967).

Collectively, (5.6) and (5.10) can be used to evaluate all of the damping coefficien
, from far-field integrations. However the apparent computational advantage of

these relations over (4.13) is offset by the fact that, regardless of which approach i
followed, the higher-order potentials q3 must be evaluated on the body surface.

6. Discussion
The approach followed in the present work is to consider the low-frequency motion

of a floating body as a perturbation of the incident-wave diffraction problem where
the body is fixed in position. Two timeseales are involved one associated with the
body motions at the frequency cr and the other corresponding to the incident wave
frequency (û. The analysis is based on the assumptions that the incident-wave
amplitude A and body motionB are both small, and that o w. Unlike other works
which use a quasi-steady analysis, the relevant damping force acting on the body is
derived without introducing a vanishingly small forward velocity of the body and
considering the derivative of the force with respect to this velocity.

The resulta confirm that, whereas low-frequency oscillations in calm water result
in wave radiation and damping asymptotically small with respect to the frequency
o, the same quantities are of order one in o if the oscillations are superposed upon
an incident-wave field. More specifically, for horizontal low-frequency oscillations of.
the body, the matrix of calm-water damping coefficients B0, = O(o7), whereas the
analogous wave-drift coefficient B2, = O(A2). Thus the relative importance of these
two damping coefficients is in proportion to the ratio cr7/A2. The small value of the
calm-water damping coefficient can be associated with the fact that the far-field
energy flux is associated with long waves, the amplitude of which is negligible due to
their asymptotically large lengthscale relative to the body. The situation is different
in the presence of the diffraction field, where the basic wavelength is comparable to
the body scale and the interaction of these waves with the body motions leads to a
modification of the energy flux associated with the scattered field.

It is intereting to compare the present analysis with that of the quasi-steady
approach, e.g. the work of Emmerhoff & Sclavounos (1992). The linear potentials ç3
and are the same, but the interaction potential ç5, is somewhat different. In the
quasi-steady analysis the difference component (3.4) does not appear, and the
interaction potential is formally equivalent to (3.5). Although the potential P is
absent, an equivalent term is included in the inhomogeneous free-surface condition
(3.9) to account for the effect of steady forward velocity on the frequency of
encounter. As shown in §5 the final results for the wave-drift damping coefficients
and arc equivalent in these different approaches.

The quasi-steady analysis of Nossen a al. (1991) is somewhat different. Instead of
the first inhomogeneous term on the right-hand side of (3.9), the secular component
of the interaction potential appears as a consequence of differentiating the zero-speed
Green function to obtain a linearized correction for forward velocity. This
construction was first suggested by Huijemans & Hermane (1985). It has been
extended by Grue & Palm (1992, 1993) to include the coeflucient.s and with
similarities to the present results for these coefficients.

A significant feature of the present method is the ability to include angular (yaw)
oscillations of the body, about the vertical axis. This mode of motion cannot be
accounted for in the quasi-steady approach, except possibly by considering a slow
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Appendix
A variant of Stokes' theorem (Milne Thomson 1955, § 2.51) can be applied in the

form

Here S is an open surface, C the boundary contour, and the integration around Gis
in the positive (counterclockwise) direction with respect to the normal vector n.

For application to the second and third terms in the surface integral of (4.8) the
substitution q = is made, with (A 1) applied on the body surface S and thecontour Cb in the plane z O. The x,y-components of (A 1) are then given
respectively by setting i 1,2 in the equation

fJSb

(VçS . Vfr)
ffSb [QJ(S) + ,,(çlt)] dS

fCb ç5k n dl.

Here it is assumed that V2fr = O. To verify that (A 2) also holds in the case i = 6, theproducts yç5 and are substituted for with i = 1,2, respectively; the difference
between these two results is equivalent to setting i = 6 in (A 2).

Alternativély, consider the vertical component of (A 1) on the free surface,

ff(Vc6.V1(F)d9=Jf (fr)dS+fJ51 Cb+C,

In the contour integral the normal derivative is directed out of 5r in the same plane.
This integral is to be evaluated over both contours Cb and C0 in the positive direction
(counterclockwise when viewed from above).

In the special cases where fr x, (A 3) is reduced to the more familiar form of
Stokes' theorem,

ff(c6)dS=fS

This formula also can be extended to include the case i = 6, using the same proced
described following (A 2).

Next we consider the integrals as defined by (4.11). From the boundary
conditions (3.2),

'u = fi
J J Sb

The integrals '11' '22' and ¡ are obviously equal to zero. For '21 the integrand in (AS)is equal to the vertical component of n x Vç°1, and the integral vanishes by another

(Al)

(A 2)

(A 3)

(A4)

(A 5)
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variant of Stokes' theorem (Milne Thomson 1956, §2.51, equation 2). Thus '21 =
= 0. The only non-zero cases are

(1
I)

= JJ (n16(/4°')n54(ç5»))dS'62 = '26 5b

= JJSb(

nU)(0)
= fJ(

P2)5O)J5 (A 6)

Here Stokes' and Green's theorems have been used, together with the boundary
conditions (3.2) and (3.3). After reversing the signs for the lower elements of (A 6)
and using (A 3) with the boundary conditions (2.3), (2.25) and (2.28),

= ReiJJ()izdS= ReiJJciVc5'.V()dS. (A 7)

An alternative representation can be derived by applying Green's theorem to q»
and (p6x6), for i = 1,2. Since both potentials satisfy homogeneous Neumann
conditions on the body,

q5j?(q1z1)dS+ fi
JJSt JJSc

The asymptotic form of is required to ascertain the contribution from the last
integral in (A 8). For this purpose it is convenient to assume that S is a circular
cylinder of large radius R about the vertical axis. If tile divergence theorem is used
with the boundary conditions (2.19) and (2.25),

if c5dS=JJ dS
JJS,, st

=ReiJJ#i#* =_'-Reif 1rdI,106 2g ,

where (A 3) is used to derive the last contour integral. To estimate this contour
integral Green's theorem is applied to ç and its conjugate. Since the boundary
conditions on the body and free surface are homogeneous,

Reiff q51çdS0.
J J s

In the far field the asymptotic form of q is such that, for large R,

1(R,O,z) = çS1(R,O,0)e+O(R_3). (A li)

Here the estimate of the error follows from the spherical-harmonic 'wave-free'
Potentials (Havelock 1955, equation 8), and from the far-field asymptotic expansion
of the corresponding Green function (Newman 1985, equation 6). With (A 11)
Substituted in (A 10), the vertical integration over S can be performed, with the
resulting estimate

Reiç61ç6dl = O(R2). (A 12)

(A 8)

(A 9)

(A 10)
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Thus (A 9) is of order (R2), implying that 4°) behaves like a Rankine dipole in the
far field, with the asymptotic approximation

4O) -p.V(1/r). (A 13)

Here p is the dipole and r = (R2+22)i. The only non-vanishing contribution to the
integral in (A 8) over S,, as the radius of the control surface is increased to infinity,
is

(q°n - ç x) dS = - 2itp1.

Evaluating the last integral in (A 8) and using (A 3),

px)dß = Rei fj (qx)ç1dS2g j s,

- - Re i1w 1f 2itc. (A 15)2g us, 2g
Substituting (A 15) in (A 7) gives the alternative expressions

('61 = Ii8' = f 15ds+2ij/.2)I\155 '126) g jj,xJ
=

J_J.
9i (Y)di+2(a) (A 16)

g
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