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Abstract 

The physical roughness (canopies) formed by organisms within aquatic ecosystems (e.g., seagrass, 

kelp, mangroves, etc.) modifies the local wave-driven hydrodynamics within coastal and estuarine 

regions. In wave-dominated environments, an understanding of the mean wave-driven flows 

generated within and above canopies is important, as it governs material transport (e.g., of nutrients, 

sediment and biota). However, until recently the effect of submerged canopies on wave-current 

interactions and the resulting mean (wave-averaged) flow dynamics has received relatively little 

attention. In this study, a combination of wave flume experiments and numerical modelling is used to 

investigate the wave-induced mean flow profiles in the presence of a submerged canopy. The 

measured velocities and vegetation forces were used to derive bulk drag and inertia coefficients, and 

to validate a non-hydrostatic 2DV wave-flow model. The numerical model results were used to 

conduct an in-depth analysis of the mean horizontal momentum terms responsible for driving the 

mean (horizontal) flow within and above the submerged canopies. We show that the mean canopy 
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hydrodynamics are driven by vertical gradients in wave and turbulent Reynolds stresses, balanced by 

the mean canopy drag forces. The wave Reynolds stress gradient is the dominant force driving the in-

canopy mean flow and is directly related to the vorticity that is generated when the wave orbital 

motions become rotational near the canopy interface. This study provides new insight in the 

mechanisms responsible for wave-driven mean flows within submerged canopies and guidance for 

how these hydrodynamics can be predicted in coastal wave-circulation models. 

 

Plain Language Summary 

Aquatic plants that grow in estuaries and coastal oceans (such as seagrass, kelp and mangroves) 

have a considerable influence on water flow (currents) and on waves propagating towards the shore.  

However, mean flows generated by the waves interacting with aquatic vegetation (with timescales 

much longer than the individual wave periods) have not been comprehensively studied. This study 

provides a description of how submerged vegetation alters the mean wave-driven flow structure. A 

combination of detailed experiments conducted in a wave flume and numerical simulations are used 

to show that the mean flow just above the vegetation is relatively strong (up to 20 to 50% of the 

maximum wave velocity above the canopy), while it is considerably weaker inside the vegetation. We 

identified three forces that govern the mean current profile: the wave Reynolds stress gradient, the 

turbulent Reynolds stress gradient and the vegetation drag force. These forces are usually not 

accurately described in larger-scale computer simulations of coastal processes. However, reliable 

simulation of processes in the coastal ocean such as sediment transport and nutrient exchange 

requires an accurate prediction of mean flows, and thus these forces need to be properly incorporated 

in computer models when applied to regions with aquatic vegetation. 

1. Introduction 

Improving predictions of wave-vegetation interactions has been an increasing focus of coastal 

research over the past decade [e.g., Nepf, 2012], which is often motivated by the desire to quantify 

This article is protected by copyright. All rights reserved.



3 
 

the coastal protection services provided by aquatic vegetation [e.g., Borsje et al., 2011; Tang et al., 

2013]. Attenuation of wave energy due to different species of vegetation has been studied both 

experimentally [e.g., Fonseca and Cahalan, 1992; Möller et al., 2014] and in the field [e.g., Möller and 

Spencer, 2002; Paul and Amos, 2011], and analytical models have been developed based on 

conservation of wave energy to predict wave attenuation across a given aquatic vegetation canopy for 

both monochromatic [Dalrymple et al., 1984; Kobayashi et al., 1993] and irregular waves [Mendez 

and Losada, 2004; Suzuki et al., 2012, Jacobsen et al., 2019]. In the case of emergent vegetation 

and/or nonlinear waves, vegetation can contribute to a reduction in wave setup (wave-induced mean 

water levels) [Dean and Bender, 2006], and aquatic canopies have also been found to reduce wind-

induced storm surge levels by slowing storm surge advance [e.g., Sheng et al., 2012]. Although wave-

induced flows are typically assumed to be depth-uniform in shallow coastal waters, the presence of 

submerged aquatic canopies generally results in strong vertical gradients in the wave velocities [Lowe 

et al., 2005; 2008; Pujol et al., 2013, Jacobsen, 2016] and localised increases in turbulence 

production [e.g., Neumeier and Amos, 2006].  

Wave-induced mean currents within aquatic vegetation canopies have received relatively little 

attention to date. The vertical gradients in wave-driven mean flow within submerged canopies are 

thought to enhance vertical mixing of nutrients between the canopy and its surroundings [e.g., 

Abdolahpour et al., 2016], and on longer timescales drive local morphological changes to seabeds 

with canopies. Luhar et al. [2010; 2013] observed that wave-averaged mean flows were generated 

inside a submerged canopy formed by flexible vegetation and derived a theoretical model to quantify 

the magnitude of the depth-integrated wave-driven mean transport within a canopy. Their model 

proposes that the mean flow is induced by a nonzero wave stress, similar to streaming observed in 

wave boundary layers [e.g., Longuet-Higgins, 1953]. The wave stress (〈𝑢𝑤𝑤𝑤〉, where 〈. . 〉 denotes 

time average) becomes nonzero when the horizontal (𝑢𝑤) and vertical (𝑤𝑤) wave velocities are no 

longer perfectly out of phase due to the difference in horizontal wave velocity inside and above the 

canopy due to canopy drag forces. The model assumes that wave energy is predominantly 
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transferred from the above canopy region into the canopy through the work done by the wave-induced 

pressure at the top of the canopy, and that the energy transfer is balanced by the in-canopy energy 

dissipation dominated by work done due by the drag forces. Using linear wave theory, the governing 

energy balance for a canopy is then given by:  

𝜌〈𝑢𝑤𝑤𝑤〉 = − 𝑘𝜔 〈∫ 𝑓𝑑𝑢ℎ𝑣0 𝑑𝑧〉,         (1) 

[Luhar et al., 2010], where ρ is the water density, k is the wave number, ω is the wave angular 

frequency, hv is the vegetation height, fd is the vegetation drag force, u is the horizontal velocity, and z 

is the vertical coordinate with origin at the seabed. Furthermore, Luhar et al. [2010] derived a time-

averaged horizontal momentum balance by assuming that the momentum transfer into the canopy is 

balanced by the time-averaged drag force. To derive a formulation for the mean in-canopy flow 

magnitude, they further assumed that: i) the drag force can readily be decomposed in a mean and 

wave component with drag coefficients of comparable magnitude, ii) wave energy dissipation is 

dominated by the wave component of the drag, iii) the mean canopy drag is dominated by the mean 

current in the canopy, and iv) the mean flow magnitude is constant over the height of the canopy. 

With these assumptions, they derived the following formulation for the depth-integrated in-canopy 

mean flow speed (um,can): 

𝑢𝑚,𝑐𝑎𝑛 = � 43𝜋 𝐶𝐷𝑤𝐶𝐷𝑐 𝑘𝜔 𝑢𝑤,𝑐𝑎𝑛3,         (2) 

[Luhar et al., 2010], where CDw and CDc are drag coefficients associated with waves and currents 

respectively, and uw,can is the in-canopy wave velocity magnitude.  

While the model by Luhar et al. [2010] treats the wave-induced mean flow profile inside a canopy as 

approximately depth-uniform, Abdolahpour et al. [2017] found relatively strong vertical gradients in the 

wave-induced mean velocity for submerged canopies. They also proposed a Lagrangian framework 

and kinematic arguments to derive an empirical relation to predict the peak value of the mean velocity 

near the top of a submerged canopy. Their model relies on a moving (Lagrangian) reference frame 
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and thus accounts for the additional depth-varying mass flux (Stokes drift) that appears when 

accounting for vertical variation in the wave orbital particle motion [e.g., Phillips, 1977]. Although it is 

well-established that the total (Lagrangian) mass flux governs the transport of dissolved and 

particulate material, it can be difficult to measure Stokes drift experimentally as it requires particle 

tracking or use of tracers. Instead, Abdolahpour et al. [2017] validated their model using 

measurements from fixed (Eulerian) instruments and found a good agreement, hence suggesting the 

Stokes drift contribution was relatively small. However, due to the nature of their model, a clear 

distinction between the (Eulerian) streaming and (Lagrangian) Stokes drift influence is missing. As a 

consequence, a full description of the Stokes drift profile in case of submerged canopies, as well as 

the relative contribution to the overall wave-averaged flow dynamics is still lacking.  

Other recent studies have also investigated the mean flows generated by waves interacting 

submerged canopies using numerical simulations [e.g., Ma et al., 2013; Chen et al., 2019]; however, 

these studies focused on validating the performance of specific models, and not a detailed description 

or explanation of the hydrodynamic mechanisms responsible for driving the flows. Although these 

studies have contributed to a better understanding of mean current generated through wave-canopy 

interaction, a comprehensive understanding of the hydrodynamic forces that governs wave-driven 

mean flows in submerged canopies is currently lacking. 

This paper aims to increase understanding of wave-driven mean flow dynamics within submerged 

canopies using a combination of experimental observations and numerical modelling. In particular we 

aim to: i) determine the stress distributions and forces that control the mean (wave-averaged) 

horizontal momentum balance, ii) derive a simplified model that could replicate the vertical structure of 

the mean flow, iii) evaluate the contribution of Stokes drift on the mean flow dynamics, and iv) provide 

guidance for how these flows can be simulated within coastal scale models using wave-averaged 

descriptions of the hydrodynamics. 
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2. Background: the mean horizontal momentum balance 

The two-dimensional cross-shore (2DV) wave-averaged horizontal momentum equation governing the 

mean flow through a canopy can be derived by applying averaging operations to the Navier-Stokes 

equations [e.g., Nielsen, 1992]. First the velocity signal is decomposed, which for the horizontal 

component is defined as  

𝑢 = 〈𝑢〉 + 𝑢� + 𝑢′,           (3) 

where 〈𝑢〉 is the wave-averaged flow velocity, 𝑢�  is the wave orbital velocity and 𝑢′ is the turbulent 

velocity component. Next, the terms in the Navier-Stokes equations are time-averaged over a wave 

cycle (denoted by <…>) and then spatially averaged over the fluid region (i.e., neglecting the solid 

canopy elements): 

𝜕〈𝑢〉2𝜕𝑥 +
𝜕〈𝑢〉〈𝑤〉𝜕𝑧 +

𝜕〈𝑢�2〉𝜕𝑥 +
𝜕〈𝑢�𝑤�〉𝜕𝑧 +

𝜕〈𝑢′2〉𝜕𝑥 +
𝜕〈𝑢′𝑤′〉𝜕𝑧 − 𝜈 �𝜕2〈𝑢〉𝜕𝑥2 +

𝜕2〈𝑢〉𝜕𝑧2 �+
1𝜌 𝜕〈𝑝〉𝜕𝑥 − 1𝜌 〈𝑓𝑣,𝑥〉 = 0,    (4) 

where x and z are the horizontal and vertical coordinates, respectively, ν is the kinematic viscosity, ρ 

is the density, p is the (total) pressure and 〈𝑓𝑣,𝑥〉 is the wave-averaged vegetation force.  

The wave-averaged pressure contains a hydrostatic and non-hydrostatic component (〈𝑝〉 = 〈𝑝ℎ〉 +〈𝑝𝑛ℎ〉), where the hydrostatic part is given by: 

〈𝑝ℎ〉 = 𝜌𝑔(〈𝜁〉 − 𝑧),          (5) 

where g is the gravitational acceleration, and 〈𝜁〉 is the mean (wave-averaged) water surface 

elevation. Spatial gradients in hydrostatic pressure, i.e.  𝜕〈𝑝ℎ〉/𝜕𝑥, are therefore associated with mean 

water level (e.g., wave setup) gradients. The non-hydrostatic pressure comprises a contribution due 

to the flux of vertical momentum from the vertical fluid motion and a contribution of the wave-averaged 

horizontal derivative of the vertically integrated shear stresses: 
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〈𝑝𝑛ℎ〉 = −𝜌�〈𝑤� 2〉+ 〈𝑤′2〉�+
𝜕𝜕𝑥 〈∫ 𝜌(𝑢�𝑤� + 𝑢′𝑤′)𝑑𝑧𝜁−𝑧 〉,     (6) 

which is obtained through a vertical integration of the vertical momentum equation [Svendsen, 2006]. 

For clarity, all terms contributing to the wave-averaged normal (𝜎𝑥𝑥) and shear (𝜏𝑥𝑧) stress can be 

aggregated as: 

𝜎𝑥𝑥 = 𝜌 �𝜈 𝜕〈𝑢〉𝜕𝑥 − 〈𝑢�2〉 − 〈𝑢′2〉� − 〈𝑝𝑛ℎ〉 ,       (7) 

𝜏𝑥𝑧 = 𝜌 �𝜈 𝜕〈𝑢〉𝜕𝑧 − 〈𝑢�𝑤�〉 − 〈𝑢′𝑤′〉�,        (8) 

where each of the first three terms in Eqs. (7) and (8) represent the viscous, wave-driven and 

turbulent contributions to the normal and shear stress, respectively. Based on these definitions, Eq. (4) 

can be rewritten as: 

𝜕〈𝑢〉2𝜕𝑥 +
𝜕〈𝑢〉〈𝑤〉𝜕𝑧 − 1𝜌 �𝜕𝜎𝑥𝑥𝜕𝑥 +

𝜕𝜏𝑥𝑧𝜕𝑧 − 𝜕〈𝑝ℎ〉𝜕𝑥 + 〈𝑓𝑑,𝑥〉� = 0.      (9) 

The mean horizontal momentum balance (i.e., Eq. 4 and 9) defines the general force balance that 

governs the mean (wave-averaged) flow profile. 

Both viscous stresses and the turbulent normal stress 〈𝑢′2〉 are generally expected to be relatively 

small in cross-shore (2DV) coastal applications [e.g., van der Werf et al., 2017]. The wave 

contribution to the normal stress 〈𝑢�2〉 is directly related to momentum associated with wave orbital 

motions and is often represented as the wave radiation stress through depth-integration. The wave 

shear stress 〈𝑢�𝑤�〉 (also referred to as the wave Reynolds stress) is zero for irrotational waves and is 

therefore often neglected in coastal models. However, in many cases waves become rotational (for 

example, within wave boundary layers) as a result of horizontal and vertical orbital velocities being no 

longer 90° out of phase, leading to a nonzero wave Reynolds stress [Longuet-Higgins, 1953]. 

Turbulence generated by vertical gradients in the mean flow generate turbulent shear stresses 〈𝑢′𝑤′〉 
(also known as the turbulent Reynolds stresses). 
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The final term, the mean horizontal vegetation force 〈𝑓𝑣,𝑥〉, is generally described by the (wave-

averaged) Morison equation: 

〈𝑓𝑣,𝑥〉 = 〈𝑓𝑑,𝑥 + 𝑓𝑖,𝑥〉 = 〈12𝜌𝐶𝐷𝑑𝑣𝑁𝑣𝑢|𝑢| + 𝜌𝐶𝑀𝑁𝑣𝐴𝑣 𝜕𝑢𝜕𝑡〉,    (10) 

where 𝑓𝑑,𝑥 and 𝑓𝑖,𝑥 are the drag and inertial force respectively, CD is the drag coefficient, dv is the 

canopy element diameter, Nv is the number of canopy elements per unit area, CM is the inertia 

coefficient (CM = 1 + Cm, where Cm is the added mass coefficient) and Av is the plan surface area of a 

single element (for cylindrical elements, 𝐴𝑣 = 𝜋 𝑑𝑣2 4⁄ ). Although previous studies have often neglected 

the inertial force term, Suzuki et al. [2019] showed that its influence on wave dynamics may become 

significant for relatively high canopy densities. 

3. Methods 

3.1. Wave flume experiments 

Experiments were conducted in a 35-m-long, 1.2-m-wide and 1.2-m-deep wave flume at the 

University of Western Australia (Figure 1). The flume was equipped with a piston-type wave maker 

positioned at the upstream end of the flume with a 1:10 slope at the downstream end. The slope was 

covered by dense polyurethane filter foam sheets, anti-fatigue rubber mats with holes and finally flat 

hollow concrete elements. With this approach, the slope was used as a passive wave energy 

absorber as waves experience progressively decreasing porosity, thereby gradually losing their 

energy. In a similar study in the same facility, it was found that this approach ensures wave reflections 

from the downstream slope are sufficiently small, with reflection coefficients < 6% [Abdolahpour et al., 

2016].  

A rigid submerged canopy was constructed using a staggered array of dowels (6.4 mm diameter) that 

were 30 cm high at a density of ~3100 units per m2, representing a relatively high-density canopy 

(λp=0.1, where λp is the canopy element plan area per unit bed area). To ensure fully developed 

canopy flow conditions, the length of the canopy (Lc = 2.5 m) was chosen such that Lc >> 𝐴∞, where 
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𝐴∞ = 𝑢�𝑚𝑎𝑥,∞/𝜔 is the undisturbed above-canopy wave orbital excursion length, 𝑢�𝑚𝑎𝑥,∞ is the 

maximum free-stream horizontal wave orbital velocity measured just below wave trough level. 

Furthermore the length of the canopy was much greater than the canopy drag length scale (Ld) 

defined as 𝐿𝑑~2ℎ𝑣�1− 𝜆𝑝�/𝜆𝑓, where hv is the vegetation height and λf is the canopy element 

frontal area per unit bed area [e.g., Lowe et al., 2005]. Preliminary numerical modelling (presented in 

Section 4, e.g. Figure 5) indicated that, in all cases, edge effects were negligible at a point 1 m into 

the canopy, further validating the choice of canopy length. 

The experimental program included six regular wave conditions with varying wave height H and wave 

period T (Table 1) in constant water depth (h = 0.75 m). The Keulegan-Carpenter number (𝐾𝐶 =𝑢�𝑚𝑎𝑥,∞ 𝑇 𝑑𝑣−1) is a commonly used parameter in wave-canopy interaction studies, and is often used to 

distinguish characteristic canopy flow regimes and to provide an indication of the relative contribution 

of canopy drag over inertial forces [e.g., Etminan et al., 2019]. Moreover, several studies have shown 

that canopy drag coefficients depend on KC [e.g., Ozeren el al., 2014]. We therefore ensured that the 

experimental wave conditions covered a range of KC (51-230, see Table 1), which is considered 

representative for many coastal wave conditions and aquatic vegetation commonly found in nature 

(e.g., assuming 𝑢�𝑚𝑎𝑥,∞ ~ 0.1 – 0.4 m/s, T ~ 3 – 8 s and dv ~ 0.01 m resulting in KC ~ 30 - 320). In 

addition, the wave conditions cover a range of nonlinear shallow to intermediate wave conditions that 

are typical of areas with aquatic vegetation. Based on these conditions, the waves would generally be 

expected to be defined by cnoidal wave theory [Le Méhauté, 1976]; however, we note that two of the 

cases (R1 and R2), technically just fall within the limits of Stokes 2nd order wave theory. Nevertheless, 

for convenience across all runs, the wave maker was forced using prescribed time series of the 

horizontal displacement of the wave paddle following the cnoidal wave generation method outlined by 

Goring [1979] and Cho [2003]. As a check of this approach, additional numerical model simulations of 

cases R1 and R2 confirmed that imposing Stokes 2nd order wave theory had no noticeable effect on 

the results relative to cnoidal wave theory.  
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Velocity measurements at 25 Hz were obtained above and within the canopy by vertically traversing a 

Nortek Vectrino Acoustic Doppler Velocimeter (ADV) at a location at the cross-shore mid-point of the 

canopy region (Figure 1). To accommodate the ADV within the canopy, a small (<5 cm diameter) area 

was cleared. Velocity measurements were conducted at 20 vertical positions, each for the duration of 

150 wave periods. The velocity signals were decomposed by averaging the velocity signal over the 

total experimental duration to obtain the mean component, and subsequently ensemble averaging the 

velocity signal over the wave period to obtain the wave component. To assess the convergence 

properties (uncertainties) in the flow statistics, the flow statistics were analysed over a running interval 

over the experiment duration [e.g. Ting and Kirby, 1994]. For cases where the mean and turbulent 

flow statistics did not converge sufficiently (i.e., >5 % difference after 100 wave periods compared to 

statistics obtained after 150 wave periods) the data points were not included in the subsequent 

analysis.  

To directly measure drag forces on an individual canopy element, time-series of horizontal forces 

exerted on a representative canopy element (aluminium dowel) was measured at 25 Hz using a one-

dimensional load cell with 2 N capacity (Uxcell, Hong Kong) connected to a load cell amplifier (RW-

ST01A, SMOWO, China). The load cell itself was placed in a circular hole that was drilled inside the 

wave tank concrete floor. The force measurement procedure and instrument calibration are explained 

in detail in van Rooijen et al. [2018].  

The measured time-varying depth-integrated vegetation force (Fx,m) acting on an individual canopy 

element and the measured horizontal velocity were evaluated using the vertically integrated Morison 

equation over the height of the canopy element to estimate drag and inertia coefficients. Recent 

studies have shown this method provides more accurate drag coefficient estimates compared to the 

conventional calibration method that is based on wave height observations [e.g., Hu et al., 2014; 

Chen et al., 2018]. Bulk (i.e., averaged over time and canopy element height) values for the drag (CD) 

and inertia (CM) coefficients were obtained by applying the least-squares method (e.g. Sumer and 

Fredsøe [2006]). To verify whether the use of constant coefficients can explain the variation in 
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vegetation force within a wave cycle (as is assumed in the numerical modelling below), the ensemble-

averaged force signal was reconstructed using the measured velocity and the derived constant drag 

and inertia coefficients. The reconstructed force signal showed good agreement with the measured 

signal (R2 > 0.93 for all cases), particularly during periods of maximum force (Figure 2). However, the 

offshore-directed peak in the measured force is underpredicted, primarily due to a lack of an 

equivalent strongly-defined peak in the measured horizontal velocity when the oscillatory flow is 

directed offshore (and hence the reconstructed force signal). The estimated bulk drag coefficient (CD) 

decreases with increasing 𝑅𝑒 and 𝐾𝐶 (Figure 3; Table 1), consistent with many other studies [e.g., 

Ozeren et al., 2014]. The optimal inertia coefficients (CM), showed a relatively large scatter (mean 

value of 3.05, standard deviation of 2.06). This scatter was attributed to the relatively small 

contribution of the inertial force to the total vegetation force (Figure 2), generally <10%, leading to 

relatively high uncertainty in reconstructing the inertial force. In fact, additional analysis showed that 

the least-square error value is nearly insensitive to variations in CM; therefore, a constant value of CM 

= 2 was assumed throughout this study. 

3.2. Numerical model description 

3.2.1. Governing equations 

The non-hydrostatic (RANS-based) wave-flow model SWASH (version 5.01) was used, which is 

effectively a direct numerical implementation of the three-dimensional Navier-Stokes equations within 

a terrain following framework [Zijlema et al., 2011; Smit et al., 2013; Rijnsdorp et al., 2017]. Here, the 

model was used in 2DV mode, for which the governing equations (momentum and continuity) are 

given by: 

𝜕𝑢𝜕𝑡 +
𝜕𝑢𝑢𝜕𝑥 +

𝜕𝑤𝑢𝜕𝑧 +
1𝜌 𝜕𝑝ℎ𝜕𝑥 +

1𝜌 𝜕𝑝𝑛ℎ𝜕𝑥 =
𝜕𝜕𝑥 �𝜐ℎ 𝜕𝑢𝜕𝑥�+

𝜕𝜕𝑧 �𝜐𝑣 𝜕𝑢𝜕𝑧�+
1𝜌 𝑓𝑣,𝑥,    (11) 

𝜕𝑤𝜕𝑡 +
𝜕𝑢𝑤𝜕𝑥 +

𝜕𝑤𝑤𝜕𝑧 +
1𝜌 𝜕𝑝𝑛ℎ𝜕𝑧 =

𝜕𝜕𝑧 �𝜐𝑣 𝜕𝑤𝜕𝑧�+
𝜕𝜕𝑥 �𝜐ℎ 𝜕𝑤𝜕𝑥�,      (12) 

𝜕𝑢𝜕𝑥 +
𝜕𝑤𝜕𝑧 = 0,           (13) 
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𝜕𝜁𝜕𝑡 +
𝜕 ∫ 𝑢𝜁−ℎ𝜕𝑥 = 0,           (14) 

where 𝑓𝑣,𝑥 is the (instantaneous) vegetation force, and ζ is the water surface elevation. Within the 

canopy, the horizontal vegetation force (fv,x) is computed using the Morison equation based on the 

known vegetation canopy properties and the local instantaneous horizontal velocity [Suzuki et al., 

2019]: 

𝑓𝑣,𝑥 =
12𝜌𝐶𝑑𝑑𝑣𝑁𝑣𝑢|𝑢| + 𝜌𝐶𝑀𝑁𝑣𝐴𝑣 𝜕𝑢𝜕𝑡 .        (15) 

The canopy porosity is accounted for by using a pore velocity inside the canopy, i.e. the spatially 

averaged velocity takes into account the space occupied by the canopy [see Suzuki et al., 2019, for 

details].  

In SWASH, the turbulent stresses (i.e., first and second terms on the RHS of Eqs. (11) and (12)) are 

approximated using the eddy viscosity concept, where 𝜐𝑣 and 𝜐ℎ are the vertical and horizontal eddy 

viscosity, respectively. The vertical eddy viscosity (𝜐𝑣) is obtained using a turbulence closure (k-ε) 

model extended with vegetation effects. The k-ε equations (which include vegetation effects) are 

given by: 

𝜕𝑘𝜕𝑡 +
𝜕𝑘𝑤𝜕𝑧 =

𝜕𝜕𝑧 �𝜐𝑣𝜎𝑘 𝜕𝑘𝜕𝑧�+ 𝑃𝑘 + 𝐶𝑓𝑘𝑃𝑣 − 𝜀 ,       (16) 

𝜕𝜀𝜕𝑡 +
𝜕𝜀𝑤𝜕𝑧 =

𝜕𝜕𝑧 �𝜐𝑣𝜎𝜀 𝜕𝜀𝜕𝑥�+ 𝐶1𝜀 𝜀𝑘 �𝑃𝑘 + 𝐶𝑓𝜀𝑃𝑣� − 𝐶2𝜀 𝜀2𝑘 ,      (17) 

where the vertical eddy viscosity is computed as: 

𝜐𝑣 = 𝐶𝜇 𝑘2𝜀 .           (18) 

The turbulence production consists of a component due to shear (Pk) and due to vegetation, which 

only considers production by drag forces (Pv): 

𝑃𝑘 = 𝜐𝑣 �𝜕𝑢𝜕𝑧�2,           (19) 
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𝑃𝑣 = 𝑓𝑑𝑢 =
12𝐶𝑑𝑑𝑣𝑁𝑣|𝑢|3.         (20) 

The model contains a number of universal constants (i.e., Cμ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1 and 

σε = 1.3) which were derived by Launder and Spalding [1974]. The coefficients related specifically to 

vegetation drag (Cfk and Cfε), can be set by the user and are discussed in the next section. To allow 

for horizontal turbulent mixing, the Prandtl mixing length approximation is used to estimate the 

horizontal eddy viscosity 𝜐ℎ, with the mixing length taken as equal to the wave height [as per Zijlema 

et al., 2011]. 

In this study, the traditional cell-centred arrangement for the non-hydrostatic pressure variables 

combined with the central difference scheme for the vertical non-hydrostatic pressure gradient was 

used.  In the case of fine vertical resolutions (>10 layers) as used in this work, this numerical scheme 

allows the wave characteristics to be captured (e.g., wave dispersion and wave nonlinearity) with 

sufficient accuracy [e.g., Smit et al., 2013] and is preferable over the Keller-Box method [e.g. Zijlema 

et al., 2011] due to its computational efficiency. 

3.2.2. Model schematization 

A horizontally uniform computational grid resolution of 0.1 m was used along the model domain (32 m) 

to ensure a minimum of 50 grid points per wavelength were resolved when simulating each 

experimental case. The water column was resolved using 40 vertical computational layers with a 

varying resolution of 0.06 m (near bottom) to 0.001 m (near the top of the canopy interface). To 

minimise interpolation inaccuracies during the post-processing of the model results when computing 

the contributions to the mean momentum balance, the vertical profile was resolved using a 

combination of layers with fixed (i.e., z-layers) and variable thicknesses (i.e., sigma-layers). A total of 

36 z-layers were located between the bottom (z = 0 m) and z = 0.5 m (i.e., 0.2 m above the canopy), 

with the remaining part of the water column was resolved using 4 equidistant sigma-layers. Initial grid 

sensitivity testing showed that this vertical resolution was required for accurate results, while a higher 

resolution did not improve the results substantially. 
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The canopy was specified within the SWASH vegetation module by replicating the canopy height (hv = 

0.3 m), canopy element diameter (dv) and density (Nv) that were used in the experiments. The drag 

force coefficients were obtained from the experimental measurements, whereas for the inertia 

coefficients we assumed default values (CM = 2) given the small relative magnitude of inertial forces 

that made quantifying CM in the experiments difficult (see Section 3.1). The turbulence model requires 

two empirical coefficients (Cfk and Cfε) related to the energy transfer from mean and oscillatory flow 

into turbulent energy due to vegetation drag. Here, we used the values as recommended by López 

and García [1997; 1998] for vegetated flows (i.e. Cfk = 1 and Cfε = 1.33), values that were also used 

by Ma et al. [2013] who applied (similar) non-hydrostatic wave-flow model to study turbulence and 

wave damping induced by submerged canopies.  

3.2.3. Boundary conditions and modelling procedure 

To reproduce the waves within the experiment, second-order cnoidal wave theory was used to force 

the model wave maker, consistent with the method used for the physical wave maker. At the bottom 

boundary the logarithmic wall law option was used assuming a smooth bed. The model was 

subsequently run for each experimental case (Table 1) for a duration equal to 150 wave periods 

(equal to the measurement duration). To allow the hydrodynamics to spin up to a steady state, only 

the last 100 wave periods were used when analysing both measurements and model results.  

3.2.4. Lagrangian particle tracking model 

To study the Eulerian and Stokes drift contribution to the Lagrangian transport, we used high-

resolution output from SWASH in combination with an offline coupled particle tracking model 

(described in Appendix A) to simulate the Lagrangian particle trajectories. Over 100 particles were 

released across the water column with highest density around the top of the canopy for a fixed (mid-

canopy) horizontal location. The time step was set to 0.01 s to obtain accurate simulation of particle 

trajectories. The wave-averaged (horizontal) Lagrangian velocity profile was obtained by computing 

the vector displacement of each particle over a wave cycle. The resulting mean velocity profile was 

mildly sensitive to the moment of particle release with respect to the wave phase. Hence, to provide a 
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robust measure of the mean transport, each particle tracking simulation was repeated 50 times (with 

release times distributed uniformly over the wave cycle), with results from the 50 simulations 

subsequently averaged.  

4. Results 

4.1. Mean, wave and turbulent velocities 

The measured and modelled velocities were decomposed into mean, wave and turbulence 

contributions, and normalised by 𝑢�𝑟𝑚𝑠,∞, i.e., the measured root-mean-square wave velocity at a 

reference elevation z= 2hv above the canopy (Table 1). The vertical structure of the unsteady wave 

component of the horizontal velocity (represented by the root-mean-square value 𝑢�𝑟𝑚𝑠) modelled with 

SWASH agrees well with the observations (Figure 4, top panels). The wave orbital velocities are 

substantially attenuated within the canopy (typically by 40-60%), whereas there is a localised peak in 

velocity located just above the canopy characteristic for oscillatory boundary layer flow. The 

measured mean velocity profile 〈𝑢〉 is generally well-captured by the model (Figure 4, bottom panels) 

with a region of enhanced onshore flow near the top of the canopy that is also consistent with 

previous experimental studies [e.g., Abdolahpour et al., 2017]. Within the canopy, mean flow 

velocities are nearly zero (R1-R3) to slightly negative (offshore directed, R4-R6), while far above the 

canopy an offshore directed mean current is found in all cases. Near the top of the canopy, the mean 

flow velocity is relatively high in direction of wave propagation, reaching values of up to 20 to 50% of  𝑢�𝑟𝑚𝑠,∞.  

The spatial distribution of the cross-shore mean velocity field across the canopy is further explored 

using the model results for case R3 (see Figure 5). Both offshore and onshore of the canopy region, 

the mean flow was directed opposite to the direction of wave propagation and is mostly uniform over 

the depth. At the leading edge of the canopy, a counter-clockwise eddy forms (centred 0.2 m offshore 

the canopy) that causes an upward flow at the leading edge. At about 0.5 m upstream of the canopy, 
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the mean flow changes direction and increases in strength, while far above the canopy the flow is still 

directed against the direction of wave propagation. Within 1 m downstream of the canopy leading 

edge, the relatively strong mean flow on top of the canopy is formed which persists until the trailing 

edge of the canopy. At this trailing edge, a clockwise rotating eddy forms with opposite direction and 

with a centre slightly below the top of the canopy.  

Finally, we can also compare the measured in-canopy depth-integrated mean velocities with the 

values predicted by the analytical model given by Eq. (2) [Luhar et al., 2010] (see Table 1). For all 

cases the in-canopy mean flow velocity is overestimated, while for case R2-R5 the depth-integrated 

mean flow is even offshore directed. This may be due to the generation of a return current (undertow) 

in the wave flume, which was found negligible in the experiments by Luhar et al. [2010]. Another 

explanation may be the fact that the analytical model does not have any dependencies on canopy 

properties, such as canopy density. The current experiments use a relatively high canopy density, 

which may be violating some of the assumptions in the derivation of Eq. (2). Finally, it may be the 

case that the height of the flexible canopy (6 cm to 10 cm) in Luhar et al. [2010] is simply small 

compared to the thickness of the streaming layer, which is why the relatively strong onshore-directed 

mean flow induced by wave-canopy interaction can penetrate a larger fraction of the canopy. In the 

present study, the canopy was high at 30 cm. 

4.2. Lagrangian transport and the effect of Stokes drift 

Based on the particle motions computed by the particle tracking routine, the mean Lagrangian velocity 

profile 〈𝑢〉𝐿 follows a similar pattern to the fixed-reference (Eulerian) mean velocity profile 〈𝑢〉𝐸 (Figure 

6). This indicates the Langrangian transport is dominated by the Eulerian contribution over most of the 

water column, whereas the Stokes drift effect 〈𝑢〉𝑆 (obtained by subtracting the Eulerian from the 

Lagrangian mean velocity) is relatively small. Locally just below the top of the canopy, the Stokes drift 

velocity is seen to have a considerable contribution to the total transport velocity. The Stokes drift 

velocity generally shows a slightly increasing magnitude from bottom to the water surface, except for 

the area near the top of the canopy. Just below the top of the canopy there is a peak in the Stokes 
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drift, which is consistent throughout all six cases. For reference, the maximum mean flow velocity as 

predicted by Abdolahpour et al. [2017] is plotted as well (Figure 6). Their model is able to accurately 

predict the maximum mean velocity for case R1, R2, R3 and R5, while it substantially overestimates 

the flow for case R4 and R6. For both cases, the return current is relatively strong within the canopy 

compared to the other cases (where the return flow is relatively strong above the canopy), and it 

appears that this current may be responsible for diminishing the streaming just above the canopy. 

Given that the total (Lagrangian) mass flux is dominated by the Eulerian contribution (the latter is the 

direct output from both measurements and the wave model), the subsequent analysis focuses on 

investigating the Eulerian mean flow dynamics in further detail. 

4.3. Contributions to the wave-averaged horizontal momentum balance 

To investigate the mechanisms responsible for the wave-induced mean (Eulerian) velocity profile, we 

evaluated all terms in the momentum balance per Eqs. (4) and (9). Since our experimental 

measurements do not contain observations at different horizontal locations across the canopy, for this 

analysis we focus on using the validated model results to interrogate the spatial distribution of the 

individual momentum terms. In the following, case R3 is used to highlight results representative for all 

cases.  

All terms in Eq. (4) were computed and plotted over depth at a location (x = 1.75 m) far enough from 

the leading edge to avoid edge effects (Figure 7). For all cases, the shear stress gradient 𝜕𝜏𝑥𝑧/𝜕𝑧 is 

the dominant term, and is comprised of both wave and turbulent Reynolds stress gradients 

(−𝜕〈𝑢�𝑤�〉 𝜕𝑧⁄  and −𝜕〈𝑢′𝑤′〉 𝜕𝑧⁄ , respectively). The two dominant force contributions (i.e. the Reynolds 

stress gradients) are balanced by the wave-averaged drag forces within the canopy while balancing 

each other above the canopy. Note that in this case one term (wave normal stress gradient, 𝜕〈𝑢�2〉 𝜕𝑥⁄ , grey line in Figure 7) appears non-negligible further above the canopy.  The relatively large 

wave normal stress gradient is, however, not representative for the other runs as will be shown in the 

following. While the residual mean momentum in this analysis is considerably smaller than each of the 
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dominant momentum terms, it is not exactly zero, which is likely due to a combination of numerical 

inaccuracies and vertical interpolation in the post-processing.  

Figure 8 reveals the spatial variability in the wave-averaged normal and shear stress gradients, 𝜕𝜎𝑥𝑥/𝜕𝑥 and 𝜕𝜏𝑥𝑧/𝜕𝑧, respectively, over the domain. Offshore of the canopy, the normal stress 

gradient is relatively small and depth uniform (Figure 8A); whereas, a relatively strong negative 

normal stress gradient develops just offshore of the leading edge of the canopy, which appears to 

drive the counter-clockwise eddy that forms locally (Figure 5). Within the canopy, the normal stress 

gradient is relatively large over only a small portion (<1 m) near the leading edge, which is due to 

relatively strong wave energy attenuation that is generally known to follow an exponential decay [e.g., 

Kobayashi et al., 1993]. While the normal shear stress gradient also appears relatively strong near the 

trailing edge, within the interior region of the canopy its magnitude is small. Above the canopy the 

normal stress gradient is relatively small and may drive the return flow over the canopy (Figure 5). 

The shear stress gradient term is, apart from a small region near the leading edge of the canopy, only 

dominant near the top of the canopy (Figure 8B), and is responsible for the strong mean current just 

above the top of the canopy (Figure 5). In this study, we are particularly interested in fully developed 

mean canopy hydrodynamics (i.e., no leading or trailing edge effects, e.g. 1 m < x < 2 m) for which 

Figure 8 suggests that the normal stress gradients are relatively small compared to the shear stress 

gradients. However, the simulations are based on experiments with a relatively short canopy (2.5 m) 

carried out in a closed wave flume which may result in return flows that are less likely in open coast 

field settings. To verify these results for more realistic (unconfined) field conditions, we also 

conducted three additional simulations based on case R3 but with a total numerical flume length of 

100 m, a canopy length of 20 m (about 2.5 times the wave length) and an absorbing wave boundary 

downstream of the canopy, which shows a very similar spatial distribution of normal and shear stress 

gradients (see Supporting Information), and thus confirms the dominance of the shear stress gradient 

near the top of the canopy. 
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After dividing the water column into an area within the canopy and above the canopy, the momentum 

terms were further integrated over the depth of each region and normalized with the total mean drag 

force providing a clear summary of the governing forces in the wave-averaged momentum balance for 

all six cases (Figure 9). Although there is some variation among the cases, generally it is found that 

the drag within the canopy is almost completely balanced by the shear stress gradient (consisting of a 

wave and a turbulent Reynolds stress gradient). Above the canopy the wave Reynolds stress gradient 

is equal and opposite to the turbulent Reynolds stress gradient. Other momentum terms also become 

non-negligible in specific cases; for example, the normal stress gradient (case R2 and R3), and both 

the hydrostatic (case R1 and R3) and non-hydrostatic pressure gradients (case R1). However, no 

consistent pattern was found in the response of these terms, and could also change sign depending 

on the case (Figure 9). The hydrostatic pressure term (most substantial in case R1 and R3) is related 

to a gradient in the mean water level along the length of the canopy (i.e. any gradients in wave setup).   

5. Discussion 

The results provide insight into the wave-averaged force balances that are responsible for 

determining the mean wave-driven flow inside and just above the canopy generated through 

interactions with the canopy. The analysis revealed that the force balances within and just above the 

canopy were dominated by three terms: the wave and turbulent Reynolds stress gradients and the 

mean canopy drag forces, thus equivalent to: 

𝜕〈𝑢�𝑤�〉𝜕𝑧 +
𝜕〈𝑢′𝑤′〉𝜕𝑧 − 1𝜌 〈𝑓𝑣,𝑥〉 = 0.         (21) 

This balance is analogous to the balance found for unidirectional submerged canopy flows [e.g., 

Ghisalberti, 2010], but with the inclusion of a wave Reynolds stress gradient term. In the following 

sections the physical significance of each force term will be discussed in more detail. Although the 

wave Reynolds stress gradient was found to be the dominant driving force, the turbulent Reynolds 

stress gradient was often still important and hence incorporated. 
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5.1. The wave Reynolds stress: relationship to vertical wave motions and vorticity 

at the canopy interface 

The wave Reynolds stress is the dominant driver of the mean flows generated within the submerged 

canopies. Luhar et al. [2010] derived their expression for depth-integrated in-canopy mean flow by 

assuming that the turbulent stress is negligible and that linear wave theory is valid. By combining 

expressions for 〈𝑢�𝑤�〉 from energy and force balances (i.e., assuming that the wave Reynolds stress 

gradient balances drag), their method does not require explicit computation of the wave Reynolds 

stress gradient in to determine the mean velocity. This method only provides a prediction for the 

depth-integrated mean velocity (and wave Reynolds stress), and does not predict the vertical profile, 

and hence the flow maxima observed near the top of the canopy. In order to be able to predict the 

vertical variation in wave-averaged canopy flow, i.e. 𝜕〈𝑢〉 𝜕𝑧⁄ , the vertical distribution of the mean 

wave Reynolds stress (𝜕〈𝑢�𝑤�〉/𝜕𝑧) is needed. 

The appearance of the wave Reynolds stress gradient as dominant term can be shown to be directly 

related to the vorticity generated when wave orbital motions become rotational once they interact with 

the discontinuity in drag at the canopy interface. Rivero and Arcilla [1995] derived a general analytical 

expression for the vertical distribution of 〈𝑢�𝑤�〉 in relation to the (wave) normal stresses (〈𝑢�2〉 and 〈𝑤�2〉) 
and the vorticity of the oscillatory flow (𝜔�): 

𝜕〈𝑢�𝑤�〉𝜕𝑧 = 〈𝑤�𝜔�〉 − 12 𝜕�〈𝑢�2〉−〈𝑤�2〉�𝜕𝑥 ,         (22) 

where the oscillatory vorticity is given by: 

𝜔� =
𝜕𝑢�𝜕𝑧 − 𝜕𝑤�𝜕𝑥 .           (23) 

Several studies have used the relationship in Eq. (22) to predict mean velocity profiles (e.g. due to 

undertow [e.g., Garcez Faria et al., 2000; Guannel and Özkan-Haller, 2014]). However, expressions 

are typically derived by assuming that linear wave theory is valid and that waves are irrotational, 

hence 𝜔� ≈ 0, which allows for the vorticity term (first term on RHS of Eq. (22)) to be neglected. The 
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remaining term (i.e., the second term on the RHS of Eq. (22)) can then readily be obtained from any 

wave theory (e.g., linear wave theory). 

Since, by definition, the wave-averaged values 〈𝑢�〉 and 〈𝑤�〉 equal zero, the wave-averaged value of 

the oscillatory vorticity 〈𝜔�〉 also equals zero. However, as seen in Eq. (22), it is the quantity 〈𝑤�𝜔�〉 that 

is directly related to the vertical distribution of the wave Reynolds stress [Rivero and Arcilla, 1995]. 

The vorticity term determines the wave Reynolds stress gradient near the top of the canopy, while the 

contribution of the wave normal stress gradient (second term on RHS of Eq. (22)) is negligible (Figure 

10A-C, representative for all cases). So in order to further study the contributions to the vorticity effect 

near the top of a submerged canopy, Eq. (22) can be rewritten as: 

𝜕〈𝑢�𝑤�〉𝜕𝑧 ≈ 〈𝑤�𝜔�〉 = 〈𝑤� 𝜕𝑢�𝜕𝑧 − 𝑤� 𝜕𝑤�𝜕𝑥〉 = 〈𝑤� 𝜕𝑢�𝜕𝑧〉 − 〈𝑤� 𝜕𝑤�𝜕𝑥〉.       (24) 

As may be expected for canopy flows with strong vertical gradients in the horizontal orbital velocity 

(Figure 4), the first term on the RHS of Eq. (24) dominates the vorticity effect on the wave shear 

stress (Figure 10D,E). Hence, this shows that the vertical gradient in wave stress can be 

approximated by: 

𝜕〈𝑢�𝑤�〉𝜕𝑧 ≈ 〈𝑤�𝜔�〉 ≈ 〈𝑤� 𝜕𝑢�𝜕𝑧〉.          (25) 

where the horizontal and vertical orbital velocity components may be obtained from 1DV models [e.g., 

Zeller et al., 2015; Jacobsen, 2016], which can therefore provide a means to predict wave-driven 

mean flow profiles within coupled (phase-averaged) wave ocean circulation models (see section 5.4). 

Note that the term 〈𝑤� 𝜕𝑤� 𝜕𝑥⁄ 〉 may be more important than shown in the present case for larger non-

dimensional water depths (𝑘ℎ) and away from the top of the canopy. 

5.2. Turbulent Reynolds stress 

For unidirectional flows, the vertical gradient in turbulent Reynolds stress is generated by the shear at 

the top of the canopy and is known to drive the in-canopy flow together with the horizontal pressure 

gradient [Nepf and Vivoni, 2000]. In this present study of wave-driven flows, we found that the 
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turbulent Reynolds stress was consistently smaller than the wave Reynolds stress, but is still an 

important force that contributes to the structure of the wave-averaged mean flow profile. However, we 

also acknowledge that these results may depend to some degree on the k-ε turbulence closure model 

in SWASH that relies on two empirical vegetation coefficients. Prior studies have generally used two 

different sets of coefficients to account for vegetation effects in k-ε models [see discussion by Defina 

and Bixio, 2005]. Some authors use the values recommenced by Lopez and Garcia [1997, 1998] 

where Cfk = 1 and Cfε = 1.33 (as in this study), others apply the values as proposed by Shimizu and 

Tsujimoto [1994] (Cfk = 0.07 and Cfε = 0.16). To study the sensitivity of the model results to these 

coefficients, simulations were repeated for two additional cases: (i) with the alternative coefficients 

suggested by Shimizu and Tsujimoto [1994], and (ii) without the turbulence model. The resulting 

mean and RMS velocity in case of the alternative set of coefficients are nearly identical to the results 

obtained when not using a turbulence model at all (see example for case R3 in Figure 11). The 

above-canopy peak in the mean velocity using the original turbulence settings is smaller and overall 

the turbulent Reynolds stress appears to diminish the peak velocity (Figure 11A). The peak in RMS 

velocity just above the canopy is also smaller compared to the peak obtained for the alternative 

turbulence settings or no turbulence model at all (Figure 11B). In all cases, the mean momentum 

balance is dominated by the wave Reynolds stress gradient (Figure 11C) balanced by the canopy 

drag forces (Figure 11E), while the turbulent Reynolds stress gradient is smaller (Figure 11D). With 

the original settings a smoother transition of both wave and turbulent Reynolds stresses from the 

location with the largest shear (top of the canopy) to the regions inside and above the canopy is 

obtained, resulting in smoother velocity profiles. Although these results do not affect the overall 

conclusions of the present work, further research on the turbulent Reynolds stress in wave-driven 

canopy flows would be helpful in order to reduce uncertainty in estimating its relative contribution on 

canopy flow dynamics. Recent studies on wave-canopy interaction using more detailed wave models 

that are less reliant on turbulence parameterizations [e.g., Chakrabarti et al., 2016; Etminan et al., 

2019] have the potential to partly fill this gap, particularly in combination with ever-increasing 

computational capabilities. 
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5.3. Wave-averaged canopy drag force 

In wave-only conditions, the wave-averaged drag force in a submerged canopy is zero for linear 

(sinusoidal) waves and is consequently often ignored in phase-averaged wave modelling studies. 

However, in practice a nonzero wave-averaged drag force appears when mean flows are present or if 

the waves are nonlinear [Dean and Bender, 2006]. Moreover, an additional, and potentially 

considerable wave-current interaction term emerges from the full decomposition of the mean drag 

force and subsequent wave-averaging (accounting for the absolute velocity functionality in the total 

drag formulation): 

〈𝑓𝑑,𝑥〉 = 𝛽〈𝑢|𝑢|〉,  

            = 𝛽〈(〈𝑢〉+ 𝑢�)|〈𝑢〉+ 𝑢�|〉,  
           = 𝛽 �〈 𝑢

|𝑢|
〉 〈𝑢〉|〈𝑢〉| + 〈 𝑢

|𝑢|
𝑢�|𝑢�|〉+ 2 〈 𝑢

|𝑢|
〈𝑢〉𝑢�〉�,      (26) 

where 𝛽 =
1

2
𝜌𝐶𝐷𝑑𝑣𝑁𝑣. In previous studies on drag due to combined wave-current flows interacting 

with canopies, studies have typically assumed that the interaction term (i.e., the third term on the RHS 

of Eq. (26)) is negligible and the total drag can be readily decomposed into mean and oscillatory drag 

components [e.g., Zhou and Graham, 2000; van Rooijen et al., 2016]. In the present work, it is found 

that when not accounting for the interaction components, the total simulated mean drag force may be 

overestimated in the lower part of the canopy and underestimated near the top of the canopy for 

some of the cases investigated (Figure 12A, B). The relative contribution of each component on the 

total (depth-integrated) drag (𝐹𝑑𝑟𝑒𝑙 = 𝐹𝑑𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡/𝐹𝑑〈𝑢|𝑢|〉) varies among the different cases. For instance, 

for case R1, R2 and R3 the mean drag is dominated by the wave and the interaction terms while the 

component associated with mean flow is negligible (as highlighted in Figure 12C for R3). However, for 

the remaining cases, both the (depth-integrated) mean and interaction terms are negligible 

contributions to the total depth-integrated canopy drag compared to the wave-related term (see 

example for R4 in Figure 12D). These results indicate that the interaction terms may not always be 
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negligible, or may even be dominant, and cannot be ignored when studying wave-averaged canopy 

flow dynamics.  

5.4. Implications for coupled phase-averaged wave ocean circulation models 

Although phase-resolving wave-flow models are increasingly being used on coastal scales, including 

3D and 2DV models with vertical resolution, they are still computationally too expensive for many 

practical broad-scale coastal applications. Phase-averaged wave models coupled to ocean circulation 

models are therefore still widely used to predict coastal flows, and such models are also the 

foundation for most coastal sediment transport applications (e.g., Delft3D, ROMS-COAWST). In this 

study, we identified three force terms that govern the vertical distribution of the momentum balances 

that determines the mean wave-driven mean flow inside and above the canopy. Although our study 

was limited to regular waves, this streaming effect is also expected to occur for irregular waves, which 

is consistent with observations reported in the field [Luhar et al., 2013]. While the development of 

analytical formulations for embedding wave-driven canopy flow interactions within coupled wave-

circulation models is beyond the scope of the present study, the results provide preliminary insight 

into how these hydrodynamics can be incorporated in large-scale, practical engineering models. This 

would allow for a better description of the mean transport processes within a range of coastal 

ecosystems that form submerged canopies, which in turn would help to provide more accurate 

prediction of processes as sediment transport and nutrient exchange. 

6. Conclusions 

In this study, the wave-averaged mean flow dynamics within submerged canopies were investigated 

using a combination of wave flume experiments and numerical modelling based on a multi-layered 

2DV non-hydrostatic (phase-resolving) wave model. Through direct measurement of flow velocities 

and forces exerted on a canopy element, drag coefficients were derived for each experimental case 

and used as input for the numerical model. The model was able to simulate the complex flow 

dynamics when waves interact with submerged canopies, including the vertical distribution of the 
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mean velocity profile, which contained a peak mean velocity just above the top of the canopy. A 

particle tracking routine was applied to evaluate the Lagrangian transport processes, which revealed 

that the relative contribution of Stokes drift is relatively small compared to the Eulerian flux over most 

of the water column, yet locally important adjacent to the top of the canopy. A wave-averaged 

momentum budget analysis demonstrated that the wave-driven mean flows inside and just above the 

canopy were driven by a combination of vertical gradients in the wave ⟨𝑢�𝑤�⟩ and turbulent ⟨𝑢′𝑤′⟩ 
Reynolds stresses, balanced by wave-averaged canopy drag forces. In order to model realistic 

approximations of the mean velocity profile in and above submerged canopies, these terms need to 

be accounted for in coastal models. However, due to the complexity involved in each individual term, 

analytical derivations are required to derive practical parameterizations that can be implemented in 

large scale (phase-averaged) coastal models. 

APPENDIX A: LAGRANGIAN PARTICLE TRACKING MODEL 

A MATLAB-based particle tracking model was developed to compute the Lagrangian flow within and 

above a submerged vegetation canopy (see Section 4.2). The model is based on a 4th order Runge-

Kutta advection scheme, as commonly applied in ocean particle tracking models [e.g., North et al., 

2006]. Particles were released instantaneously at > 100 vertical locations for one fixed horizontal 

position at mid-canopy, and the model was run for a full wave cycle with a time step of 0.01 s. To 

provide a robust measure of the mean transport the simulations were repeated 50 times resulting in 

an ensemble of simulations differing T/50 in particle release time. The resulting particle vector 

displacements and Lagrangian velocities were then averaged over all ensemble simulations to obtain 

a representative Lagrangian mean velocity profile. Some additional details regarding the interpolation 

scheme and advection sub-model are provided in the following sections. 

The instantaneous horizontal and vertical (Eulerian) velocity computed by SWASH is used to 

calculate the particle trajectory after release at a certain (xp, zp)-position within the model domain. The 

velocities are interpolated to the initial particle locations using a cubic spline method. Since the 
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particle tracking time step (0.01 s) is smaller than the SWASH output time step (0.1 s), an 

interpolation in time is required as well. For this, the velocities are estimated at the particle location for 

the 5 consecutive SWASH output time points nearest to the current particle tracking time point. Next a 

cubic spline interpolation is applied to interpolate the velocities from the 5 (SWASH) time points to the 

time of particle motion.  

To calculate the movement of particles due to advection, a 4th order Runge-Kutta scheme in space 

and time is used. It uses velocities calculated by SWASH at previous and future times to provide a 

robust estimate of the particle motion throughout a wave cycle. The location of a particle at a certain 

time step is determined by the location at the previous time step plus the weighted average of four 

increments:  

𝑥𝑝,𝑛 = 𝑥𝑝,𝑛−1 +
16 �𝑘𝑢,1 + 2𝑘𝑢,2 + 2𝑘𝑢,3 + 𝑘𝑢,4�,       (27) 

𝑧𝑝,𝑛 = 𝑧𝑝,𝑛−1 +
16 �𝑘𝑤,1 + 2𝑘𝑤,2 + 2𝑘𝑤,3 + 𝑘𝑤,4�.       (28) 

The increments are based on the estimated slope between the previous and the current location, e.g.: 

𝑘𝑢,1 = ∆𝑡 ∙ 𝑢𝑝,𝑛−1�𝑥𝑝,𝑛−1, 𝑧𝑝,𝑛−1�         (29) 

𝑘𝑢,2 = ∆𝑡 ∙ 𝑢𝑝,𝑛−1 �𝑥𝑝,𝑛−1 +
𝑘𝑢,12 , 𝑧𝑝,𝑛−1 +

𝑘𝑤,12 �       (30) 

𝑘𝑢,3 = ∆𝑡 ∙ 𝑢𝑝,𝑛−1 �𝑥𝑝,𝑛−1 +
𝑘𝑢,22 , 𝑧𝑝,𝑛−1 +

𝑘𝑤,22 �       (31) 

𝑘𝑢,4 = ∆𝑡 ∙ 𝑢𝑝,𝑛−1 �𝑥𝑝,𝑛−1 +
𝑘𝑢,32 , 𝑧𝑝,𝑛−1 +

𝑘𝑤,32 �       (32) 

and equally so for the vertical component (kw,1 – kw,4). Here, n is defined as the current particle time 

point. 
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9.  Tables 

Table 1: Experimental conditions for all cases: offshore wave height (H) upstream of the canopy, 

wave period (T), Reynolds number (Re), Keulegan-Carpenter number (KC), drag coefficient (Cd) 

derived from combined force sensor and velocity measurements (Section 3.1), the above-canopy 

root-mean-square velocity (𝑢�𝑟𝑚𝑠,∞ ), the measured depth-integrated in-canopy mean flow velocity 

(〈𝑢〉𝑐𝑎𝑛), and the depth-integrated in-canopy mean flow velocity as predicted by Luhar et al. [2010] 

(〈𝑢〉𝑐𝑎𝑛,𝐿𝑢ℎ𝑎𝑟). 
Run 

ID 

H [m] T [s] Re KC Cd 𝑢�𝑟𝑚𝑠,∞  

[m s-1] 

〈𝑢〉𝑐𝑎𝑛  

[m s-1] 

〈𝑢〉𝑐𝑎𝑛,𝐿𝑢ℎ𝑎𝑟  
[m s-1] 

R1 0.14 2 1043 51 2.00 0.14 0.003 0.019 

R2 0.10 3 1009 74 1.84 0.13 -0.007 0.014 

R3 0.21 3 1845 135 1.14 0.28 -0.005 0.025 

R4 0.20 4 1727 169 0.95 0.29 -0.008 0.017 

R5 0.09 5 1182 144 1.22 0.13 -0.014 0.008 

R6 0.21 5 1887 230 0.85 0.26 -0.017 0.014 
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10. Figure captions 

Figure 1: Schematic diagram of experimental setup (with vertical scale exaggerated) with location of 

Nortek Vectrino Acoustic Doppler Velocimeter (ADV) and load cell (LC). 

 

Figure 2: Instantaneous vegetation force (ensemble-averaged by wave phase) from direct force 

measurement (Fm) and reconstructed using velocity measurements based on the optimal force 

coefficients CD and CM (Fr = Fr,d + Fr,i), including the separate contributions of the drag (Fr,d) and 

inertial (Fr,i) forces, shown for case R3. 

 

Figure 3: Drag coefficients (CD) derived from drag force and velocity measurement as function of (A) 

Reynolds number, and (B) Keulegan-Carpenter number. 

 

Figure 4: Dimensionless root-mean-square (top) and wave-averaged velocity (bottom) for cases R1 – 

R6 obtained from measurements (markers) and model (line). 

 

Figure 5: Modelled dimensionless wave-averaged horizontal velocity magnitude (color) and mean flow 

direction (vectors) around the canopy (dashed line) as function of x (where the leading edge of the 

canopy is at x = 0 m) and z (focused on the lower portion of the water column, i.e. below the wave 

troughs) for case R3. 

Figure 6: Simulated Eulerian (black), Lagrangian (orange) and Stokes drift (blue) mean velocity 

profiles for all cases R1-R6, as well as the values for the peak mean velocity as predicted by 

Abdolahpour et al. [2017, triangles].  

 

Figure 7: Wave-averaged mid-canopy (x = 1.3 m) momentum budget terms over depth for (case R3). 

All terms not listed in the legend are plotted in grey. 
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Figure 8: Modelled dimensionless wave-averaged (A) normal stress gradient 𝜕𝜎𝑥𝑥/𝜕𝑥, and (B) shear 

stress gradient 𝜕𝜏𝑥𝑧/𝜕𝑧 around the canopy (dashed line) as function of x (where the leading edge of 

the canopy is at x = 0 m) and z (focused on the lower portion of the water column, i.e. below the wave 

troughs) for case R3. 

 

Figure 9: Dimensionless wave-averaged mid-canopy momentum budget terms (following Eq. (1) and 

normalising with the wave-averaged depth-integrated canopy drag force) integrated over different 

regions of the water column (A) above canopy (z > hv) and (B) inside canopy (z < hv). 

 

Figure 10: Relationship between the (A) wave Reynolds stress and vorticity around the canopy 

(dashed line) as function of x and z for case R3, with (B, C) the two components on the RHS of Eq. 

(19) and (D, E) the two components on the RHS of Eq. (21). 

 

Figure 11: Sensitivity of (A) dimensionless mean velocity, (B) dimensionless RMS velocity, (C) wave 

Reynolds stress gradient, (D) turbulent Reynolds stress gradient, and (E) mean canopy drag force for 

varying turbulence model settings for case R3. 

 

Figure 12: Modelled (A, B) total mean drag force (black line) and contributions as function of depth, 

and (C, D) relative depth-integrated mean drag force contributions (Fd
rel = Fd

component / Fd
<u|u|>) for case 

(A, C) R3 and (B, D) R4.   
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