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Abstract: A recently introduced model-based deep learning (MoDL) technique successfully incorpo-
rates convolutional neural network (CNN)-based regularizers into physics-based parallel imaging
reconstruction using a small number of network parameters. Wave-controlled aliasing in parallel
imaging (CAIPI) is an emerging parallel imaging method that accelerates imaging acquisition by
employing sinusoidal gradients in the phase- and slice/partition-encoding directions during the
readout to take better advantage of 3D coil sensitivity profiles. We propose wave-encoded MoDL
(wave-MoDL) combining the wave-encoding strategy with unrolled network constraints for highly
accelerated 3D imaging while enforcing data consistency. We extend wave-MoDL to reconstruct
multicontrast data with CAIPI sampling patterns to leverage similarity between multiple images to
improve the reconstruction quality. We further exploit this to enable rapid quantitative imaging using
an interleaved look-locker acquisition sequence with T2 preparation pulse (3D-QALAS). Wave-MoDL
enables a 40 s MPRAGE acquisition at 1 mm resolution at 16-fold acceleration. For quantitative
imaging, wave-MoDL permits a 1:50 min acquisition for T1, T2, and proton density mapping at 1 mm
resolution at 12-fold acceleration, from which contrast-weighted images can be synthesized as well.
In conclusion, wave-MoDL allows rapid MR acquisition and high-fidelity image reconstruction and
may facilitate clinical and neuroscientific applications by incorporating unrolled neural networks
into wave-CAIPI reconstruction.

Keywords: parameter mapping; model-based deep learning; wave-encoding; wave-MoDL

1. Introduction

MRI has been widely used to provide structural and physiological images; however, its
efficiency has been limited by an inherent tradeoff between scan time, resolution, and signal-
to-noise ratio (SNR) [1]. MRI repeatedly excites and collects the signal while encoding the
signal to visualize the acquired data as images, which often takes a long scan time. To
mitigate the encoding burden of MRI scans, parallel imaging (PI) techniques have been
developed to accelerate various sequences through the use of multiple receiver coils for
image encoding. Sensitivity encoding (SENSE) [2] and generalized auto-calibrating partially
parallel acquisition (GRAPPA) [3] have been widely used to reconstruct data in the image
domain and k-space, respectively, and the recent ESPIRiT technique [4] has bridged the gap
between these two domains. A number of techniques have been proposed to improve the
conditioning of PI acquisition to enable higher accelerations. Controlled aliasing in parallel
imaging (CAIPI) [5] modifies the appearance of aliasing artifacts during the acquisition to
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improve the subsequent PI reconstruction for multislice imaging. Application of interslice
shifts to three-dimensional (3D) imaging forms the basis of 2D-CAIPI [6], wherein the phase
(ky) and partition (kz) encoding positions are modified to shift the spatial aliasing pattern
to reduce aliasing and better exploit the variations in coil sensitivities.

Wave-CAIPI is a more recent controlled aliasing method that can further reduce noise
amplification and aliasing artifacts in highly accelerated acquisitions [7,8]. It employs
extra sinusoidal gradient modulations in the phase- and the partition-encoding directions
during the readout to better harness coil sensitivity variations in all three dimensions
and achieve higher accelerations. Wave-encoding also incorporates 2D-CAIPI interslice
shifts to improve the PI conditioning [6] and has found applications in highly accelerated
gradient-echo (GE), MPRAGE, fast spin-echo, and echo-planar imaging acquisitions [8–12].

Compressed sensing (CS) and low-rank reconstruction using annihilation filters fur-
ther improved the MR reconstruction [13–18]. In the last decade, combined PI and CS
techniques have resulted in substantial improvements in acquisition speed and image qual-
ity. Although the PI–CS combination can achieve state-of-the-art performance [17,19–22],
designing effective regularization schemes and tuning hyperparameters are nontrivial, and
it often requires a relatively long reconstruction time.

Recently, image reconstruction with deep learning approaches has been explored [23–25]
to overcome the hurdles faced by existing reconstruction techniques such as long recon-
struction time, residual artifacts at high acceleration factor, and oversmoothness. A few
studies have shown deep learning methods outperforming conventional regularization-
and/or optimization-based techniques in various applications. PI reconstruction has been
implemented with multilayer perceptron [23] and the variational network incorporating the
unrolled network during conjugate gradient updates [24]. Some of the studies trained neu-
ral networks in k-space to exploit the features in the spatial frequency domain [25–28], as
many PI techniques have been implemented in k-space. In recent works, the wave-encoding
strategy was successfully combined with the variational network [29] and scan-specific
image reconstruction [30,31] to provide high-quality images at high acceleration.

Recently developed model-based deep learning (MoDL) improves image reconstruc-
tion by leveraging an unrolled convolutional neural network (CNN) and PI forward model
to help denoise and unalias undersampled data [32]. MoDL consists of unrolled CNN and
data consistency blocks and updates the image by iteratively passing the data through
both blocks. The sharing of network parameters across iterations enables MoDL to keep
the number of learned parameters decoupled from the number of iterations, thus pro-
viding good convergence without increasing the number of trainable parameters. Such
smaller number of trainable parameters also translates to significantly reduced training
data demands, which is particularly attractive for data-scarce medical-imaging applications.
MoDL has been further applied to multishot diffusion-weighted echo-planar imaging [33].
This work successfully replaced the multishot sensitivity-encoded diffusion data recovery
algorithm using structured low-rank matrix completion (MUSSELS) [18] with the hybrid
MoDL-MUSSELS approach which employs CNNs in both k-space and image domains.
MoDL-MUSSELS was able to yield reconstructions that are comparable to state-of-the-art
methods while offering several orders of magnitude reduction in run time.

Quantitative MRI estimates tissue parameters quantitatively, enabling the detection
of, e.g., microstructural processes related to tissue remodeling in aging and neurological
diseases [34]. Advanced image reconstruction could benefit high-resolution quantitative
imaging as well, which often requires lengthy acquisitions because a multidimensional sig-
nal space needs to be sampled to enable parameter quantification. The 3D-QuAntification
using an interleaved Look-Locker Acquisition Sequence with T2 preparation pulse (3D-
QALAS) acquires high-resolution images with five different contrasts and enables simul-
taneous T1, T2, and proton density (PD) parameter mapping [35–37]. However, encoding
limitations stemming from multicontrast sampling at high resolution substantially lengthen
3D-QALAS acquisitions, e.g., 11 min for 1 mm iso resolution at R = twofold acceleration [38].
The combination of PI with CS has recently enabled a 6 min scan at R = 3.8 [38]. Unfor-
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tunately, pushing the acceleration further is hampered by g-factor penalty and intrinsic
SNR limitations.

In this study, we propose to combine wave-encoding and MoDL synergistically and
demonstrate a rapid, 16-fold accelerated MPRAGE acquisition with high image quality.
We further propose to expand our earlier work presented as an abstract [39] by using
wave-MoDL to enable highly accelerated, high-resolution multiecho and multicontrast
imaging with joint reconstruction. We first demonstrate the application of this in multiecho
MPRAGE (MEMPRAGE) [40] imaging employed in the Human Connectome Project (HCP)
at 0.8 mm isotropic resolution and jointly reconstruct four echoes at R = ninefold accelera-
tion. Moreover, we make use of controlled aliasing by shifting the sampling patterns across
the echoes, thereby increasing the collective k-space coverage. Finally, we demonstrate the
ability to perform joint multicontrast reconstruction with wave-MoDL on the 3D-QALAS
sequence. We pushed the acceleration to R = 12-fold to provide a 1:50 min comprehensive
quantitative exam by jointly reconstructing multicontrast 3D-QALAS images with wave-
MoDL, thereby minimizing the g-factor loss using wave-encoding and boosting SNR with
MoDL. From this rapid 1:50 min 3D-QALAS scan, wave-MoDL allows for the estimation of
high-quality T1, T2, and PD parameter maps, which can be used for synthesizing standard
contrast-weighted images that lend themselves to clinical reads or subsequent analysis
using image analysis software (e.g., FreeSurfer) [41,42].

2. Theory
2.1. Wave-CAIPI

Wave-encoding employs additional sinusoidal gradients during the readout to take
better advantage of 3D coil sensitivity profiles [7,8,10,43]. Wave-encoding modulates
the phase during the readout and incurs a corkscrew trajectory in k-space. This spreads
the aliased signal into the readout direction, thereby employing an additional sensitivity
profile for image reconstruction. The wave-encoded signal, s, can be explained using the
following equation.

s(t) =
∫

x,y,z
m(x, y, z) · e−2πi(kx(t)x+kyy+kzz) · e−γi

∫ t
0 (gy(τ)y+gz(τ)z)dτdxdydz

=
∫

x,y,z
m(x, y, z) · e

−2πi
(

kx(t)
(

x+
γ
∫ t

0 (gy(τ)y+gz(τ)z)dτ

2πkx(t)

))
· e−2πi(kyy+kzz)dxdydz

(1)

where m is the magnetization, γ is the gyromagnetic ratio, and g is the time-varying
sinusoidal wave gradient. Voxel spreading by wave-encoding is a function of readout time
and the position in the y- and z-dimensions (kx-y-z hybrid domain). The reconstruction of
standard wave-CAIPI is described as follows:

m = argmin
m

∥∥WFyPFxCm− s
∥∥2

2

= argmin
m
‖A(m)− s‖2

2

(2)

where m is the reconstructed image, W is the subsampling mask, F is the Fourier transform
operator, P is the wave point spread function in the kx-y-z hybrid domain (correspond-
ing to

∫ t
0 (gy(τ)y + gz(τ)z)dτ in Equation (1)), C is the coil sensitivity map, and s is the

subsampled k-space data.

2.2. 3D-QALAS

Figure 1a shows the sequence diagram of 3D-QALAS that enables high-resolution
and simultaneous T1, T2, and PD parameter mapping. The 3D-QALAS is based on a
multiacquisition 3D gradient echo sequence, with five acquisitions equally spaced in time,
interleaved with a T2-preparation pulse and an inversion pulse. The first readout succeeds
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a T2-preparation module, and the remaining four readouts follow an inversion pulse that
captures T1 dynamics. The estimated parameter maps will provide the ability to synthesize
standard contrast-weighted images, thus allowing the sequence to be used in a more
traditional way for clinical reads. We used a standalone version of SyMRI (SyntheticMR,
Linköping, Sweden) to generate quantitative parameter maps and synthetic images.

Figure 1. (a) 3D-QALAS sequence diagram. Five turbo-flash readout trains are played repeatedly
until all k-space is acquired. The first readout succeeds a T2-preparation module, and the remaining
four readouts follow an inversion pulse that captures T1 dynamics. (b) Wave-MoDL diagram for
multicontrast joint reconstruction. A = WFyPFxC presents the forward model of wave-encoding.
Convolutional regularizers are applied in both image- and k-space, which are combined with data
consistency (DC) layers in an unrolled network structure. The model is trained in a supervised
manner where the loss function measures the fidelity with respect to high-quality reconstructions at
mild R = twofold acceleration.

3. Methods
3.1. Wave-MoDL

We propose wave-MoDL incorporating the wave-encoding strategy into MoDL image
reconstruction to improve the PI condition and high-resolution images with high image
quality. For single-image contrast, wave-MoDL reconstruction can be described as follows.

m = argmin
m

∥∥WFyPFxCm− s
∥∥2

2 + λ1‖Nk(m)‖2
2 + λ2‖Ni(m)‖2

2

= argmin
m
‖A(m)− s‖2

2 + λ1‖Nk(m)‖2
2 + λ2‖Ni(m)‖2

2

(3)
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where Nk and Ni represent residual CNNs in the k- and image-space, respectively.
Figure 1b shows the proposed network architecture of wave-MoDL reconstruction for
single/multicontrast images. The unrolled CNN block captures image features to help
the image reconstruction. We use unrolled CNNs to constrain the reconstruction in both
the image- and k-space, as it was shown previously that applying constraints in both
domains improves the performance of the entire network [26,33]. The data consistency
(DC) block enforces consistency with measured wave-encoded signals where wave point
spread function (wave-PSF) input is required to utilize the known forward model. At the
DC block, the resulting quadratic subproblem was solved using conjugate gradient (CG)
optimization. The residual CNN, N, can be explained by CNN, D, and the skip connection,
N(m) = m−D(m). We used the alternating recursive minimization-based solution as
described in [32,33], by which the network is unrolled. By substituting ηn+1 = Dk(mn+1)
and ζn+1 = Di(mn+1), where Dk and Di represent CNNs in the k- and image-space,
respectively, an alternating minimization-based solution can be described as follows.

mn+1 = (AHA + λ1I + λ2I)−1(AHs + λ1ηn + λ2ζn)

ηn+1 = Dk(mn+1)

ζn+1 = Di(mn+1)

(4)

where n is the iteration number and H is the Hermitian transpose.

3.2. Wave-MoDL for Multicontrast Image Reconstruction

We further extended single-contrast wave-MoDL to reconstruct multicontrast images,
m, from Equations (2) and (3), as follows.

m = argmin
m

L

∑
l

∥∥WlFyPFxCml − sl
∥∥2

2 + λ1‖Nk(m)‖2
2 + λ2‖Ni(m)‖2

2

= argmin
m

L

∑
l
‖Al(ml)− sl‖2

2 + λ1‖Nk(m)‖2
2 + λ2‖Ni(m)‖2

2

(5)

where L is the number of image contrasts, Wl is the subsampling mask for the l-th contrast,
ml is the l-th contrast image, and sl is the l-th subsampled k-space data, respectively. We
concatenate ml and create the variable m comprising all contrasts, and provide this as
the input channel of residual CNN, N. CAIPI sampling patterns were applied across the
contrasts to improve the reconstruction by increasing the collective k-space coverage [44].

3.3. Experiments

We trained, validated, and tested the wave-MoDL using three different databases
acquired on a 3T Siemens Prisma system equipped with a 32-channel head receive array.
Table 1 shows the acquisition parameters of the databases and the networks. Figure 2
shows the g-factor analyses of SENSE and wave-CAIPI, linear reconstructions with neither
network nor regularization, at the target acceleration for each database. We separated the
3D data into slice groups and trained on sets of aliasing slices to address the GPU memory
constraint. The number of slices of an input 3D batch image is equal to the acceleration
factor in the slice-encoding direction. For example, at Rz = 3, a batch contains three slices
that are aliasing on each other slice and need to be unaliased. Multiple contrast images were
concatenated in the input channel dimension of the network. The wave-MoDL network
updates the results during 10 outer iterations and takes 10 conjugate gradients per iteration
in the data consistency layers. The unrolled CNN has five hidden layers consisting of a
24-depth filter with a leaky ReLU activation per layer, and all network parameters were
zero-initialized. Coil sensitivity maps were calculated from external 3D low-resolution
gradient-echo-based reference scans using ESPIRiT [4]. Example code can be found at
https://github.com/jaejin-cho/wave-modl (accessed on 4 April 2022).

https://github.com/jaejin-cho/wave-modl
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Table 1. Parameters of database and network parameters.

MPRAGE MEMPRAGE QALAS

Imaging plane Sagittal Sagittal Sagittal
Voxel size [mm3] 1× 1× 1 0.8× 0.8× 0.8 1× 1× 1

FOV [mm3] 256× 256× 192 320× 300× 208 240× 238× 192
TR [ms] 2500 2500 4500
TI [ms] 1100 1000 -/100/1000/1900/2700
TE [ms] 2.28 1.81/3.60/5.39/7.18 2.35

Receiver bandwidth 200 Hz/pixel 744 Hz/pixel 347 Hz/pixel
Maximum wave gradient 8.80 mT/m 9.63 mT/m 16.51 mT/m

# of wave cycles 11 4 5
Acceleration 4× 4 3× 3 4× 3

Scan time 40 s 1 min 30 s 1 min 50 s
#/depth of hidden layers 5/24 5/24 5/24
# of network parameters 85,974 91,458 93,286

# of subjects
(train/validate/test) 8/1/1 22/4/4 8/1/1

Figure 2. g-factor analyses of SENSE and wave-CAIPI at the target acceleration.

3.3.1. MPRAGE Database

We acquired fully sampled T1-MPRAGE data on 10 healthy subjects at 1 mm isotropic
resolution to generate the database. We used a split of 8/1/1 subjects for training/validating/
testing the wave-MoDL network. The network had access to 384 slice groups during the
training, which should be a sufficient database size considering the number of network
parameters as detailed in [32]. We retrospectively subsampled the data at the acceleration
factor of R = 4 × 4, where wave-encodings were applied in both ky and kz directions with
8.8 mT/m of Gmax and 11 cycles [10]. The receiver bandwidth was 200 Hz/pixel. From
the g-factor analysis in Figure 2, we expect 2.5-fold averaged g-factor gain and 5.4-fold
maximum g-factor gain by incorporating wave-encoding strategy with respect to SENSE
image reconstruction at R = 4 × 4.
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3.3.2. MEMPRAGE Database

k-space data from four-echo MEMPRAGE scans were collected at the Massachusetts
General Hospital HCP-Aging site [45]. The database consists of 30 subjects at 0.8 mm
isotropic resolution and reduction factor 2. The network had access to 1892 slice groups
(22 subjects) during the training. To create a database comprising high-quality reference
images, we reconstructed images using GRAPPA on each of the four different echoes
separately [3,4]. We retrospectively subsampled the data to R = 3 × 3 and incorporated
CAIPI sampling patterns to use complementary information for the reconstruction across
the multiechos. Wave-encoding was applied in both ky and kz directions with 9.626 mT/m
of Gmax and four cycles at 744 Hz/pixel of receiver bandwidth. Incorporating wave-
encoding reduces the average g-factor by 13% and the maximum g-factor by 43% with
respect to SENSE at R = 3 × 3, as shown in Figure 2.

3.3.3. 3D-QALAS Database

We scanned 10 healthy subjects using the 3D QALAS sequence (Figure 1a) at 1 mm
isotropic resolution and reduction factor of 2. To avoid prohibitively long acquisition
times, data were acquired at R = 2 to limit the scan time to 11 min. High-SNR reference
images were reconstructed using GRAPPA [3] for the five different contrasts separately. To
train/validate/test the network, 8/1/1 subjects were used, respectively. The network had
access to 512 slice groups during the training. The data were retrospectively subsampled
to R = 4 × 3, corresponding to a 1:50 min quantitative exam, where 5-cycle cosine and
sine wave-encodings were applied in both ky and kz directions with 16.5 mT/m of Gmax at
347 Hz/pixel bandwidth. To take into account the signal intensity differences between the
contrasts, the contrast images were weighted by global scaling factors [3.26, 2.36, 1.57, 1.12,
1], calculated by the L2 signal norm ratio of each contrast image in the training database.
This allowed each contrast to contribute to the loss function in similar amounts. We applied
CAIPI sampling patterns across the multiple contrasts to use the complementary k-space
information from each other echo in the reconstructions using MoDL and wave-MoDL. A
fixed sampling pattern was applied to the five different contrasts for SENSE and wave-
CAIPI, since these algorithms reconstruct each image independently. Employing wave
gradients reduces the average g-factor by 20% and improves the maximum g-factor by
2.5-fold with respect to SENSE, as shown in Figure 2.

4. Results
4.1. MPRAGE at R = 4 × 4

Figure 3 shows the reconstruction results at R = 4 × 4 on the MPRAGE data. SENSE
suffered from residual folding artifacts and noise amplification. MoDL significantly miti-
gated the noise amplification and reduced NRMSE by 1.78-fold with respect to SENSE, but
still suffered from folding artifacts (as shown by the arrows). Wave-CAIPI reduces NRMSE
by 1.96-fold with respect to SENSE. Wave-MoDL further reduced the noise amplification
and decreased NRMSE to 7.20%, which is a 1.92-fold improvement with respect to wave-
CAIPI, and a 2.10-fold improvement over standard MoDL. Wave-MoDL thus provided
high-quality image reconstruction at R = 4 × 4-fold acceleration, allowing the acquisition
of whole-brain structural data in 40 seconds at 1 mm isotropic resolution.
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Figure 3. 40 s 1 mm MPRAGE image reconstruction at R = 4 × 4. The arrows point to the folding
artifacts and noise amplification.

4.2. MEMPRAGE at R = 3 × 3

Figure 4 shows the reconstruction results of MEMPRAGE at 0.8 mm isotropic voxels
and R = 3 × 3-fold acceleration. The images shown are the root mean squared (RMS)
combination of the four echoes. CAIPI sampling patterns across the echoes were applied to
MoDL and wave-MoDL for better use of the multiecho information, which in turn improves
the reconstruction. Moreover, fixed sampling patterns were applied in SENSE and wave-
CAIPI reconstruction since these algorithms independently reconstruct each echo image.
Figure S1 shows the sampling patterns and each echo image before the combination. SENSE
suffered from high noise amplification. Although MoDL mitigated the noise amplification,
the part of the folding artifacts still remains (as pointed out by the arrows). Since wave-
encoding was limited by a high receiver bandwidth [12], and wave-CAIPI also suffered
from some noise amplification and resulted in even higher NRMSE with respect to Cartesian
MoDL. Wave-MoDL shows improved reconstructions and reduced NRMSE to 11.18%. The
image reconstruction at R = 3 × 2 on the same database is shown in Figures S2 and S3.
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Figure 4. The proposed method on the MEMPRAGE database at R = 3 × 3-fold and 0.8 mm isotropic
voxel resolution. Echo images were combined by calculating the root mean squared image. NRMSEs
were calculated for the entire testing database.

4.3. 3D-QALAS at R = 4 × 3

Figure 5 shows the multicontrast images of the five 3D-QALAS readouts, recon-
structed using SENSE, MoDL, wave-CAIPI, and wave-MoDL at R = 4 × 3-fold acceleration.
SENSE suffered from aliasing artifacts and noise amplification, while MoDL mitigated
noise amplification and reduced the NRMSE significantly. Wave-CAIPI also improved the
reconstruction and reduced the NRMSE to 9.15%. Wave-MoDL further reduced NRMSE to
6.49%, which is a 1.4-fold improvement with respect to both standard Cartesian MoDL and
wave-CAIPI.

Figure 6 shows the T1, T2, and PD quantification results. To evaluate the accuracy,
we calculated averaged values and standard deviation in white matter (WM, brown) and
gray matter (GM, purple) segmented by FreeSurfer [41,42]. In the last column, we selected
50 brain regions, each including 5× 5× 5 voxels in WM and GM, and plotted the quantified
values using the wave-MoDL results over the reference R = 2 acquisition. The plotted
graphs demonstrate that the estimated T1, T2, and PD values are well aligned with the
reference QALAS acquisition. In GM, the estimated T1, T2, and PD were 1214 ± 477, 82 ± 50,
and 76 ± 10, respectively, whereas the reference T1, T2, and PD were 1190 ± 474, 83 ± 61,
and 76 ± 9, respectively. In WM, the estimated T1, T2, and PD were 839 ± 162, 67 ± 10, and
69 ± 6, respectively, whereas the reference T1, T2, and PD were 804 ± 162, 66 ± 9, and 68 ± 6,
respectively. R2 metrics were 0.956, 0.965, and 0.926 in T1, T2, and PD maps, respectively.
As shown in Figure 5, wave-MoDL mitigated the noise amplification in the parameter maps
as well.
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Figure 5. Multicontrast image reconstruction using SENSE, MoDL, wave-CAIPI, and wave-MoDL.
The results are 1:50 min scans at R = 4 × 3 and 1 mm isotropic resolution.

Figure 6. T1, T2, and PD maps were calculated using the wave-MoDL results. The last column shows
the correction between the reference (R = 2) and the quantitative values of wave-MoDL (R = 4 × 3) in
the randomly selected 5× 5× 5 boxes in gray matter (purple) and white matter (brown).

On the QALAS database, using NVidia Quadro RTX 5000, the whole brain image
reconstructions took 7:35, 8:11, 14:35, and 15:26 min for SENSE, MoDL, wave-CAIPI, and
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wave-MoDL, respectively. Most of the image reconstruction time came from the DC layers,
whereas unrolled networks took an additional 36 and 51 s in Cartesian and wave-encodings.

5. Discussion

We introduced the wave-MoDL acquisition/reconstruction strategy that synergisti-
cally combined wave-encoding with unrolled deep learning reconstruction and showed
markedly improved image quality at high acceleration rates. In vivo experiments show
its ability to provide anatomical images in 40 s using a 16-fold accelerated MPRAGE scan,
1:30 min submillimeter imaging with high fidelity with an MEMPRAGE, and quantitative
images using a 1:50 min 3D-QALAS acquisition. Though the current implementation
is not able to use the information from adjacent slices due to the limited GPU memory,
it significantly reduces the memory footprint and facilitates training with high channel
count data.

We employed CAIPI sampling patterns across the multiple echoes/contrasts to im-
prove the reconstruction by leveraging the similarity of the multiple images [44]. To
evaluate the efficiency of multicontrast information use, we reconstructed the images with
and without CAIPI sampling patterns on the QALAS data, and trained five independent
wave-MoDL networks to reconstruct each image separately, as shown in Figure 7. This
figure demonstrates that the use of CAIPI sampling patterns helps reconstruct the images
using shared information and reduces NRMSE from 7.38% to 6.49%. Wave-MoDL for
multicontrast reconstruction without the CAIPI sampling patterns has comparable NRMSE
with respect to independently trained networks for each echo while reducing the number
of network parameters by ~5-fold. Wave-MoDL with CAIPI sampling patterns across
contrasts improved the reconstruction while using a small number of network parameters,
as the network can obtain complementary information from each echo image.

Figure 7. (top) Five individual single-contrast wave-MoDL reconstructions for each contrast and
(middle, bottom) joint-wave-MoDL with and without CAIPI sampling pattern across contrasts. The
small pattern in the right bottom corner of each image shows the sampling in the ky and kz directions.

The 3D-QALAS can estimate the T1, T2, and proton density parameter maps; thus,
additional contrast-weighted images can be synthesized from the quantitative parameter
maps. Figure 8 shows the synthesized T1w, T2w, and FLAIR images using the quantified
T1, T2, and PD maps obtained using the SyMRI software tool. The results demonstrate
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that wave-MoDL can mitigate the noise amplification and provide synthetic images that
match well to the reference R = twofold accelerated data with higher fidelity than SENSE,
MoDL, and wave-CAIPI. The synthesized PDw, double inversion recovery (DIR), and
phase-sensitive inversion recovery (PSIR) images are shown in Figure S4.

Figure 8. The synthesized T1w, T2w, and FLAIR images at R = 4 × 3-fold acceleration.

The proposed wave-MoDL reconstruction method uses unrolled network constraints
and successfully improved image quality at high acceleration rates. In Figure S5, on the
MEMPRAGE database, we explored other image reconstruction constraints, low-rank
property over multiple echoes with the 3D wave-LORAKS strategy [11], and 2D U-net
denoisers, of which the inputs are four-echo wave-CAIPI images. With the mean squared
error, we trained two different U-net denoisers; one is a typical U-net and another one
is a small U-net that has a similar number of network parameters to the one of wave-
MoDL. Wave-LORAKS could improve both NRMSE and SSIM from the wave-CAIPI
result, but is still noisier than wave-MoDL. Compared with wave-MoDL, the first U-net
denoiser shows the best NRMSE on root mean squared images with 378 times more network
parameters. The second U-net denoiser comprises 15% more network parameters and
shows comparable NRMSE to wave-MoDL. However, SSIMs of the U-net denoisers are
worse than the results using other constraints. Wave-MoDL presents the best SSIM and
better NRMSE improvement per network parameter.

Because the networks were trained using databases that included only healthy subjects,
the trained networks’ ability to generalize can be improved by incorporating data from
pathological cases. Scan-specific models might help mitigate this concern on generalization
to unseen pathologies [27,46]. Recent work on wave-spark could achieve 1.2-fold NRMSE
reduction with respect to wave-CAIPI at R = 15 MPRAGE data [31], whereas our wave-
MoDL could obtain 1.9-fold NRMSE reduction with respect to wave-CAIPI for R = 16-fold
accelerated MPRAGE. This may suggest that database-trained models may provide higher
performance gains than scan-specific approaches, albeit at the potential cost of reduced
ability to generalize to unseen pathologies [47].
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As we train the network at specific reduction factors and using CAIPI sampling
patterns, the benefits including the NRMSE reduction can be decreased at different accel-
erations and/or CAIPI sampling patterns. In Figure 9, we reconstructed HCP images at
R = 3 × 3 using wave-CAIPI, wave-MoDL trained with data at the difference acceleration
factor of R = 3 × 2, and wave-MoDL trained with data at R = 3 × 3. Even though the net-
works of wave-MoDL were trained at a different reduction factor (R = 3 × 2) and sampling
patterns, the networks could denoise the image and reduce NRMSE with respect to wave-
CAIPI. However, it also generated amplified folding artifacts, as pointed out by arrows,
which are not present in the standard wave-CAIPI reconstructions or the wave-MoDL
results trained with R = 3 × 3 data. The networks trained at the same reduction factor
(R = 3 × 3) and sampling pattern show the best performance. Fine-tuning the network
with a couple of subject data might be required to use the network trained at a different
reduction factor or different sampling pattern.

Figure 9. Image reconstruction on HCP database subsampled at R = 3 × 3 using (left) wave-CAIPI,
(middle) wave-MoDL trained at R = 3 × 2, and (right) wave-MoDL trained at R = 3 × 3. NRMSEs
were calculated for the entire testing database. The network would not be generalized and required
to be fine-tuned at a different reduction factor or sampling pattern.

6. Conclusions

We showed that our proposed wave-MoDL method enables highly accelerated MR
scans that improve image fidelity and acquisition speed. Its application was demonstrated
in MPRAGE, MEMPRAGE, and 3D-QALAS sequences. Joint-wave-MoDL was introduced
to improve the reconstruction by employing the information from other echoes/contrasts
using CAIPI sampling patterns. Extension of joint image reconstruction using wave-MoDL
to 3D-QALAS enabled a high acceleration rate of R = 12 with a 32-channel coil array. This
permitted a 1:50 min 3D-QALAS acquisition at 1 mm isotropic resolution and simultaneous
T1, T2, and PD quantification as well as the synthesis of contrast-weighted images with
high fidelity.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9120736/s1, Figure S1: Each echo image of wave-
MoDL at R = 3 × 3-fold acceleration. Figure S2: The proposed method on the MEMPRAGE database
at R = 3 × 2-fold and 0.8 mm isotropic voxel resolution. Echo images were combined with root mean
squared. NRMSEs were calculated for the entire testing database. Figure S3: Each echo image of
wave-MoDL at R = 3 × 2-fold acceleration. Figure S4: The synthesized double inversion recovery
(DIR) and phase-sensitive inversion recovery (PSIR) images at R = 4 × 3-fold acceleration. Figure S5:
Wave-CAIPI, wave-LORAKS, U-net denoisers, and wave-MoDL on the MEMPRAGE database at
R = 3 × 3-fold and 0.8 mm isotropic voxel resolution. Echo images were combined with root mean
squared. NRMSEs and SSIMs were calculated for the entire testing database.
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