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ABSTRACT

We present a wave-equation-based method for seismic il-
lumination analysis. A one-way wave-equation-based, gen-
eralized screen propagator is used to extrapolate the wave-
fields from sources and receivers to the subsurface target. A
local plane-wave analysis is used at the target to calculate lo-
calized, directional energy fluxes for both source and receiver
wavefields. We construct an illumination matrix using these
energy fluxes to quantify the target illumination conditions.
The target geometry information is used to manipulate the
illumination matrix and generate different types of illumina-
tion measures. The wave-equation-based approach can pro-
perly handle forward multiple-scattering phenomena, in-
cluding focusing/defocusing, diffraction, and interference
effects. It can be directly applied to complex velocity models.
Velocity-model smoothing and Fresnel-zone smoothing are
not required. Different illumination measurements derived
from this method can be applied to target-oriented or volu-
metric illumination analyses. This new method is flexible
and practical for illumination analysis in complex 2D and
3D velocity models with nontrivial acquisition and target
geometries.

INTRODUCTION

The illumination of a subsurface target is affected by many fac-
tors, e.g., the limited acquisition geometry, the complex overburden
structure, and the reflector dip angle. An uneven illumination causes
a distorted image. Seismic illumination analysis quantifies such im-
age distortion and has many applications in seismic migration/imag-
ing. The effect of acquisition geometry can be evaluated by calculat-
ing illuminations of different shooting patterns. More accurate am-
plitude variation with angle �AVA� or amplitude variation with offset
�AVO� may be obtained if the observation is corrected with angle-
dependent illumination.

In the past, the illumination estimate was based simply on the ac-
quisition geometry at the surface under the assumption of a homoge-
neous velocity model, horizontal targets, and symmetric raypaths
�Hoffmann, 2001�. These assumptions may be invalid for complex
structures under realistic situations. To properly calculate the target
illumination, we have to extrapolate the wavefield between sources,
targets, and receivers. In order to calculate the angle-dependent illu-
mination, we also need directional information from the wavefield.

Traditionally, illumination and resolution analyses have used the
ray-based method �Schneider and Winbow, 1999; Bear et al., 2000�.
The ray-based method can provide both intensity and directional in-
formation carried in the wavefield. Dynamic ray tracing is used to
calculate energy propagation along the source-target-receiver path
using the smoothed velocity model. The common reflection point
�CRP� gathers �ray amplitude, hit count, offset coverage, etc.� on the
target are used for the illumination measurements. A Fresnel-zone
smoothing is usually applied to obtain smoothly distributed cover-
age on the target horizon �Muerdter and Ratcliff, 2001a, b�. These
procedures have been discussed by Muerdter and Ratcliff �2001a, b�

and Muerdter et al. �2001�, who made a comprehensive demonstra-
tion of the application of ray-based illumination analysis in the sub-
salt region. Using common focusing point �CFP� analysis, Berkhout
et al. �2001� and Volker et al. �2001� investigated the effect of acqui-
sition geometry on target illumination and migration resolution.
Hoffmann �2001� used the illumination information for resolution
analysis. Based on the illumination analysis in the local-angle do-
main, Gelius et al. �2002� and Lecomte et al. �2003� defined a resolu-
tion function and discussed the effect of a complex velocity model
on the illumination and resolution.

Although the ray-based illumination analysis can handle both ir-
regular acquisition geometry and laterally varying velocity models,
the high-frequency asymptotic approximation and the caustics in-
herent in ray theory may severely limit its accuracy in complex re-
gions �Hoffmann, 2001�. While the ray-based method is relatively
efficient for target-oriented analysis, it is still not a cost-effective ap-
proach for full-volume 3D illumination analysis. Attempts have
been made to apply the wave-equation-based method to seismic illu-
mination and resolution analysis. Schuster and Hu �2000� derived an
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analytical solution for target point-scatter responses by assuming a
homogeneous velocity model with continuously distributed sources
and receivers. Rickett �2003� developed a normalization scheme to
compensate for the effect of irregular illumination. However, these
results were usually restricted to simple geometries or did not pro-
vide directional information that is crucial for target-oriented illumi-
nation.

Recently developed dual-domain, one-way wave-equation-based
methods �e.g., Stoffa et al., 1990; Ristow and Ruhl, 1994; Xie and
Wu, 1998, 2005; Jin et al., 1998, 2002; Huang et al., 1999; Xie et al.,
2000; Wu and Chen, 2001; and Biondi, 2002� provide propagators
for seismic-wave extrapolation in complex velocity models. Al-
though these propagators neglect reverberations between heteroge-
neous layers, they properly handle forward multiple-scattering phe-
nomena, including focusing/defocusing, diffraction, and wave-in-
terference effects. These algorithms alternate between the space do-
main and wavenumber domain using the fast Fourier transform
�FFT�. These methods make optimal operations in each domain, re-
sulting in a fast and accurate extrapolation of the wavefield. This
makes them suitable for seismic forward modeling and migration/
imaging. However, the inability to provide localized-angle informa-
tion prevents them from being used for directional illumination cal-
culations.

There have been attempts to calculate angle information using the
wave-equation-based methods. The offset plane wave and related
offset angle generated from offset-domain migration have been used
in the velocity updating �Prucha et al., 1999; Mosher et al., 2001�.
Such angle information does not directly relate to the wave-propaga-
tion direction and cannot be used in illumination analysis. To extract
angle information from the wavefield, Xie and Wu �2002� proposed
an approach based on a local plane-wave analysis. Through local
slant stacking or a windowed Fourier transform, the approach pro-
vides localized-angle information. Xie et al. �2003� tested the local
plane-wave analysis method in illumination analysis. Wu and Chen
�2002, 2003� and Wu et al. �2003� used wavelet-transform theory
�Gabor-Daubechie frame� to decompose the wavefield into compo-

nents with localized angles for illumination analysis. Jin and Wal-
raven �2003� applied the directional illumination to investigate the
causes of subsalt-imaging shadows.

In this research, we present an illumination-analysis method using
the generalized screen propagator �Xie and Wu, 1998� and the local
plane-wave analysis �Xie and Wu, 2002; Xie et al., 2003�. The wave-
equation-based propagator extrapolates the wavefields from sources
and receivers to the target region. Local plane-wave analysis is con-
ducted at the target position to obtain localized, directional energy
fluxes for both source and receiver wavefields. From these energy
fluxes, we construct a local illumination matrix to describe the target
illumination. By manipulating the illumination matrix, different il-
lumination measures can be calculated. We use several 2D and 3D
numerical examples to demonstrate the potential applications of
these illumination measurements.

METHODS

Consider using a survey system composed of a source located at rs

and a receiver located at rg to investigate a small, subsurface target
region V�r� in the vicinity of location r �see Figure 1�. The source
sends a seismic wave to the target. Within the target region, the inci-
dent wave interacts with the reflector and generates a reflected or
scattered wave that propagates from the target to the receiver. Using
the multiple forward-scattering/single-backscattering approxima-
tion, the seismic wave at the receiver can be expressed as

u�r,rs,rg� = 2k0
2�

V

m�r��G�r�;rs�G�r�;rg�dv�, �1�

where r� is a local coordinate within V�r�, m�r�� = �c/c�r�� is the
velocity perturbation, c�r�� is the velocity, k0 = �/c0�r� is the back-
ground wavenumber, c0�r� is the local background velocity inside
V�r�, � is the angular frequency, and G�r�;rs� and G�r�;rg� are
Green’s functions with sources at rs and rg, respectively. The reci-
procity theorem G�r�;rg� = G�rg;r�� has been used. For simplicity,
the apparent frequency dependence has been omitted from equation
1 and all the following equations. Considering that V is small and the
Green’s functions mostly propagate in the background-velocity me-
dium, we choose to use one-way wave-equation-based propagators
�Xie and Wu, 1998� to calculate these Green’s functions.

Applying the local plane-wave decomposition �Xie and Wu,
2002; Xie et al., 2003� within V, the Green’s functions are decom-
posed as

G�r�;rs� = � G�K,r;rs�e
ik·r�dK ,

G�r�;rg� = � G�K,r;rg�eik·r�dK . �2�

By substituting equation 2 into equation 1, we have

u�r,rs,rg� = 2k0
2 �� G�Ks,r;rs�G�Kg,r;rg�

� m�r,kg + ks�dKgdKs, �3�

whereFigure 1. Diagram of the coordinate system.
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m�r,kg + ks� = �
V

m�r��ei�kg+ks�·r�dv�. �4�

In equations 2–4, k = K + kzêz is the local wavenumber, K is the
horizontal wavenumber, kz is the vertical wavenumber, êz is the verti-
cal unit vector, ks = Ks + kszêz, and kg = Kg + kgzêz are local trans-
forms with respect to r� �not rs and rg�, and ksz and kgz are vertical
components of ks and kg, respectively. Subscripts s and g denote the
source-side and receiver-side wavefields, respectively. Given the lo-
cal reference velocity c0�r�, the components of the wavenumber are
not fully independent, i.e., kx

2 + ky
2 + kz

2 = k0
2, and kz can be deter-

mined from its horizontal component via kz = �k0
2 − K2. We retain

the parameter r in these equations to indicate the location of the tar-
get region. Equation 3 links the observation with the source and sub-
surface target and forms the basis of many seismic methods �e.g.,
seismic modeling, migration, inversion, and tomography�. Taking
equation 3 as the starting point, we adopt the mean square of the
Green’s function to define the illumination. Usually, a fictitious
plane reflector with a dipping angle and a unit �or constant� reflectiv-
ity is required for calculating the illumination �Muerdter and Ratc-
liff, 2001a�. To generalize this into an arbitrarily nonflat reflector, we
substitute m�r,kg + ks�, which can be regarded as a wavenumber-
domain local reflectivity, with its normalized amplitude spectrum.A
target illumination-response function is then defined as

D�r,rs,rg� = �� A�r,Ks,Kg;rs,rg�M�r,kg + ks�dKgdKs,

�5�

where M�r,k� = �m�r,k��, and

A�r,Ks,Kg;rs,rg� = 2k0
2I�Ks,r;rs�I�Kg,r;rg� �6�

is the local illumination matrix of the source-receiver pair �rs,rg�.
The equations

I�Ks,r;rs� = G�Ks,r;rs�G
*�Ks,r;rs� �7�

and

I�Kg,r;rg� = G�Kg,r;rg�G*�Kg,r;rg� �8�

are mean squares of the Green’s functions, which are proportional to
energy fluxes from the source and receiver to the target, respectively.
The superscript * denotes complex conjugation.

For a system composed of multiple sources and receivers, the illu-
mination response can be calculated by stacking contributions from
individual source-receiver pairs. From equation 5,

D�r� = �
rs

�
rg

D�r,rs,rg� = �� A�r,Ks,Kg�

� M�r,kg + ks�dKsdKg, �9�

where

A�r,Ks,Kg� = �
rs

�
rg

A�r,Ks,Kg;rs,rg� �10�

is the local illumination matrix for the entire acquisition system. The
summations over rs and rg are based on the acquisition geometry. In
equation 9, for a given acquisition geometry and background veloci-
ty model, the matrix A�r,Ks,Kg� is composed of all possible local

scattering events �ks,kg� that may contribute to the target illumina-
tion. For a particular local-target structure, M�r,k� provides the
mapping relationship between the incident and scattered waves and
manipulates energy within the local illumination matrix. The inte-
gral sums the energy that can actually contribute to the particular tar-
get and gives the illumination response at location r. The effects of
acquisition configuration, the background velocity model, and target
geometry are all included in the calculation. The illumination re-
sponse function is calculated using the mean square of the ampli-
tude. When the amplitude is preferred, the root mean square �rms� of
D�r� can be used.

For a 3D velocity model, equations 9 and 10 are defined in the ac-
quisition-wavenumber space �ks,kg�, resulting in a 4D illumination
matrix. The illumination matrix can be defined in the target-spec-
trum space through the transformations �see Figure 1�

kd = kg + ks,
kr = kg − ks, �11�

or

Kd = Kg + Ks,
Kr = Kg − Ks. �12�

Note that after the transformations, the lengths of vectors kd and kr

are no longer of constant value k0. To determine their vertical com-
ponents, we have to go back to ks and kg. The illumination matrix can
also be defined using two sets of directions �angles� ��s,�g�, where
�s = ��s,�s� and �g = ��g,�g� are incidence and scattering direc-
tions, and � and � are the corresponding dip and azimuth angles.
The relationship between the wavenumber and angles is k =
k0�sin � cos �êx + sin � sin �êy + cos �êz�. Therefore, equation 9
can be expressed using either �Ks,Kg�, �Kd,Kr�, or ��s,�g� with
proper Jacobians included.

For a locally planar, dipping structure �i.e., the Kirchhoff scatter-
ing model� given by m�r�� � ��r� · n�, we have M�k� � ��k

− Cn� and kg + ks = Cn, where n is the normal vector of the reflec-
tor, and � is Dirac’s delta function. Since �ks� = �kg� = k0, we know n

is the angle bisector of kg and ks �see Figure 1�, and C = 2kg · n

= 2ks · n = 2k0 cos i with i as the reflection angle. Substituting this
M�k� into equation 9 yields

D�r,n� = �� A�r,Ks,Kg���Kg + Ks − CN�dKsdKg

= � A�r,CN − Kg,Kg�dKg, �13�

where N is the horizontal component of normal vector n. Since n is a
unit vector, it is determined by N. D�r,n� is the acquisition dip re-
sponse �ADR�, which gives the illumination response for a plane re-
flector located at r with a dipping n. Equation 13 implies that a plane
reflector is exclusively illuminated by mirror reflections. Using
transform 11, we see that kd = Cn is linked to the dipping direction
and that �kr� = 2k0 sin i is linked to the reflection angle. Considering
an isotropic point scatter �i.e., the Born scattering model� m�r��
� ��r��, we have M�k� � const. Substituting M�k� into equation 9
yields

DT�r� = �� A�r,Ks,Kg�dKsdKg. �14�

DT�r� is the total illumination response, which sums energy from all
possible scattering combinations.
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The illumination responses for other structures, such as a reflector
with a particular curvature or roughness or a layer with random ve-
locity fluctuations, can be obtained using a different M�k�. Because
of the small size of region V, a simple geometry is usually sufficient
for illumination analysis.

NUMERICAL EXAMPLES OF VARIOUS

ILLUMINATION MEASUREMENTS

In numerical implementations, the formulations can be dis-
cretized. The size of the target region V for the decomposition should
be small enough to maintain localized properties of both the wave-
field and the model, while large enough to preserve the internal

structures of the wavefield and the model �e.g., the wave-propaga-
tion direction and the dip of the structure�. The local plane-wave de-
composition of equation 2 can be conducted on horizontal coordi-
nates by using either local slant stacking or a windowed FFT �Xie
and Wu, 2002, Xie et al., 2003�. This geometry is consistent with
most of the one-way wave-equation-based propagators that choose
the vertical direction as the primary propagation direction and apply
the transform in the horizontal direction. With these one-way propa-
gators, we can use the depth step as the vertical dimension of V and
use the wavelength to determine the horizontal size. The equations
developed in this section are in the frequency domain. To calculate
illumination responses from multiple frequencies, the response from
each individual frequency should be weighted by the source spec-
trum and summed together. To demonstrate the application of the
wave-equation-based illumination analysis, various types of illumi-
nation measurements for both 2D and 3D are calculated.

Local illumination matrix

The illumination matrix can be calculated using equation 10. For a
2D model, the horizontal wavenumber is scalar, and the local illumi-
nation matrix A�r,Ks,Kg� becomes a 2D matrix. Figure 2 is a sketch
showing the structure of a 2D local illumination matrix. The hori-
zontal and vertical axes denote the horizontal components Ks and Kg

of incidence and scattering wavenumbers, or equivalently, incidence
and scattering angles �s = sin−1�Ks/k0� and �g = sin−1�Kg/k0�. The
main and auxiliary diagonal directions are horizontal-reflection
wavenumber Kr and dipping wavenumber Kd, respectively. As men-
tioned above, each element �Ks,Kg� in the matrix corresponds to an
independent scattering observation of the target. A strip parallel to
the vertical direction consists of scatterings with a common inci-
dence angle. Conversely, a strip along the horizontal direction corre-
sponds to scatterings with a common scattering angle. Energy dis-
tributed within a strip parallel to the main diagonal is composed of
all mirror reflections that contribute to the illumination of a plane-
dipping reflector. Similarly, energy distributed within a strip parallel

to the auxiliary diagonal corresponds to scatter-
ings that have a common reflection angle. The co-
ordinate transformation 12 rotates the 2D scatter-
ing matrix 45°. The energy distribution in the illu-
mination matrix gives the effective acquisition
aperture at a local target. To recover the entire tar-
get spectrum, properly distributed energy in the
illumination matrix is preferred.

As an example, Figure 3 gives local illumina-
tion matrices at selected locations in the 2D SEG/
EAGE salt model �Aminzadeh et al., 1997�. The
normalized value �A/Amax�1/2 is used in the figure,
with Amax as the maximum value in the model.
The energy occupies the upper-left corner within
the matrix resulting from the off-end data acquisi-
tion for this model. At a shallow depth, the model
is illuminated by wider effective apertures, but
the energy spans a relatively narrow aperture at
deeper depths. Because of the shadowing effect
within the subsalt region, the energy is generally
weak and apparently missing for certain dipping
and reflection angles. This is the main cause of
poor imaging in the subsalt region.

Figure 2. Diagram of the structure of a 2D local illumination matrix.
The horizontal and vertical coordinates are Ks and Kg, respectively.
The main and auxiliary diagonal directions are horizontal-reflection
wavenumber Kr and dipping wavenumber Kd, respectively. Differ-
ent angle gathers are shown as strips with different orientations.

Figure 3. Local illumination matrices at selected locations in the 2D SEG/EAGE salt
model. In the sediments at shallow depths, the model is illuminated by wider effective ap-
ertures. The illumination spans a relatively narrow aperture at deeper depths, especially
in the subsalt region.
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Wavenumber-domain illumination

As mentioned above, the illumination matrix can be expressed in
the target-wavenumber coordinate �kd,kr� �see Figures 1 and 2�. By
integrating A�r,kd,kr� over kr we project the illumination matrix
onto the target-spectrum space,

Ad�r,kd� = � A�r,kd,kr�dkr, �15�

where A�r,kd,kr� is obtained from A�r,ks,kg� through transforma-
tion 12, and the latter can be derived from A�r,Ks,Kg� using

A�r,ks,kg� = A�r,Ks,Kg���ksz − �k0
2 − Ks

2�

� ��kgz − �k0
2 − Kg

2� , �16�

where ksz and kgz are vertical components of ks and kg. In the process-
es of seismic imaging and diffraction tomography, properly distrib-
uted illumination in the target-spectrum space is essential in order to
obtain high-resolution results. Several authors �e.g., Wu and Toksöz,
1987; Woodward, 1992� have indicated the importance of wave-
number-domain illumination. For a given acquisition system and ve-
locity model, illumination in the target-spectrum domain can be cal-
culated using equation 15. Similarly, by integrating A�r,kd,kr� over
kd, the illumination matrix is projected to the reflection-wavenum-
ber domain,

Ar�r,kr� = � A�r,kd,kr�dkd, �17�

which gives the reflection-angle coverage for all dipping angles at
the target location. Figure 4 shows the wavenumber-domain illumi-
nation matrices Ad�r,kd� and Ar�r,kr�, respectively. Shown in Figure
5 is the illumination matrix Ad�r,kd� at selected locations in the 2D
SEG/EAGE salt model. In sediments at the shallow part, good illu-
mination extends to a wide dipping-angle range. The dipping-angle
coverage deteriorates with increasing depth, particularly in the sub-
salt region. In the subsalt region, the acquisition system provides
limited vertical resolution and poor horizontal
resolution, which explains the poor image quality
of steep faults.

Illumination as a function of
target-reflection angle

For a target reflector with a local normal vector
n = n�r�, substituting Kd = �CN�r��r�target into
the illumination matrix A�r,Kd,Kr�, we derive
the target illumination A�r,CN�r�,Kr	r�target as a
function of dipping n and reflection angle i

= sin−1�Kr/2k0�. Figure 6 shows the reflection-
angle distribution of the illumination along four
target horizons in a 2D constant-velocity model.
We used 181 surface shots to generate the illumi-
nation. One of these shots and its 3000-m cable
are indicated in Figure 6. The four reflectors �Bai-
na et al., 2002� are labeled from T1 to T4, in
which T1 has the largest variation in dipping an-
gles with a maximum value of approximately
40°, T2 has a constant dipping angle, T3 has a

moderate change in dipping angles, and T4 is a horizontal reflector.
The fan-shaped patterns on these reflectors represent the normalized
illumination intensities as a function of reflection angle. Note that
the angle coverage decreases with increasing depth. The sections
with steep dips have reduced angle coverage and weak intensities.
We deliberately choose a constant-background velocity model to
show that the illumination is affected by both acquisition aperture
and target dipping even in simple scenarios. To obtain correct AVA,
compensation of the illumination versus reflection angle is crucial
and should be taken into account.

Target-oriented illumination

The ADR �D�r,n�r�	�r�target on a target can be calculated using
equation 13 by substituting the target normal vector n = �n�r��r�target

into the integration. Figure 7 compares the amplitudes of prestack
depth images and computed illuminations on targets for both con-

Figure 4. Wavenumber-domain illumination matrices in kd domain
�a� and kr domain �b� for a 2D model.

Figure 5. Wavenumber-domain illumination matrices Ad�r,kd� at selected locations in
the 2D SEG/EAGE salt model. In the sediments at shallow depths, good illumination ex-
tends to a wide dipping-angle range. In the subsalt region, the dipping-angle coverage of
the illumination is significantly reduced.
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stant and variable-velocity models. The variable-velocity model and
the target reflectors are given by Baina et al. �2002�, with all reflec-
tors having a constant reflectivity. The constant-velocity model is
created by assigning a velocity of 3.5 km/s throughout the model. In
Figure 7, the left column is for the constant-velocity model with �a�

the velocity model and target reflectors, �b� prestack depth image, �c�

amplitudes picked from the depth image, �d� target ADRs, and �e�

the target-illumination coverage as a function of reflection angle.
The horizontal coordinates are horizontal distance and have been
aligned with the same scale. The results reveal that, even for a con-
stant-velocity model, the image amplitude varies dramatically be-
cause of the joint effect of limited acquisition aperture and dipping
of the target. The minimum image amplitude corresponds to sections
with the steepest dips, where the illumination result shows the nar-
rower reflection-angle coverage. The target ADRs predict the varia-
tions of the image amplitudes very well. Such information can be

further used as the basis for checking the image
quality and correcting the image amplitude. The
right column is similar to the left column except
that the varying-velocity model is used. In this
case, the image amplitude becomes more com-
plex. The illumination analysis, however, still
properly predicts the image amplitude.

Volumetric illumination analysis

The volume ADR map, which can be calculat-
ed using equation 13, represents the acquisition-
dip response as a function of space with the dip-
ping angle as a parameter. Shown in Figure 8 is
the 30° �n · êz = cos 30°� ADR map for the 3D
SEG/EAGE salt model �Aminzadeh et al., 1997�.
The normalized value �D�r,n�/Dmax	1/2 is used in
the figure, where Dmax is the maximum value. In
this model, the acquisition system is composed of
a source and four cables of 3200-m length. Figure
8a is the ADR in a vertical profile including the
source and cables, while Figure 8b shows the
ADR in a horizontal slice at a depth of 1000 m.
TheseADR maps reveal the relationship between
the acquisition system, the velocity model, and
the illumination. Figure 9a shows an in-line sec-
tion of the 3D SEG/EAGE salt velocity model.
Figure 9c shows the normalized vertical �n = êz�
ADR of the same section. The corresponding-
depth image is shown in Figure 9b, which is ob-
tained by a 3D prestack offset-domain wave-
equation migration with local reference veloci-
ties �Jin et al., 2002�. Image shadows are present
beneath the salt body, including the missing
events on the horizontal baseline. The vertical
ADR associated with the illumination of horizon-
tal events shows poor illumination in the same
target area. Figure 10 shows a similar relationship
between the illumination and the depth image for
a horizontal slice at 2500-m depth. Strong total
ADR illumination corresponds to the high-quali-
ty image at the left side of the model, while a poor
image is located in the weak illumination zone.

Figure 6. Illumination distribution as a function of reflection angle
on the targets. The illumination-angle coverage decreases with the
increasing depth. The sections with steep dips have reduced angle
coverage and their illumination intensities become weak.

Figure 7. Comparison between the images and illuminations on the targets. The left col-
umn is for a constant-velocity model and the right column is for a variable-velocity mod-
el. From top to bottom, different rows are �a� velocity model, �b� prestack depth image,
�c� amplitudes picked from prestack depth image, �d�ADRs calculated from the illumina-
tion analysis, and �e� illuminations as functions of reflection angles. �f� through �j� are
similar results for the variable-velocity model. The horizontal coordinates are distance
and have been aligned using the same scale.
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Summary of different illumination measurements

Table 1 shows various illumination measurements with different
levels of detail. Toward the top of the table are high-order illumina-
tion matrices, which contain more information, but are composed of
larger data sizes. More illumination measurements can be derived
from these matrices with additional constraints. Toward the bottom
of the table, lower-order measurements consist of more condensed
information with compact data sizes. Different levels of measure-
ments can be chosen to meet the specific purposes of the illumination
analysis. The measurements with extensive information can be ap-
plied to selected locations for comprehensive investigations, while
measurements with condensed information can be used to investi-
gate spatial variations of illuminations, such as target-oriented or
volumetric analysis.

DISCUSSION

In previous work on illumination analysis �e.g., Wu and Chen,
2002, 2003; Xie and Wu, 2002; Xie et al., 2003�, the illumination is
formulated for plane reflectors using source and receiver beams with
mirror reflections. In this paper, the information regarding the target
spatial spectrum is introduced in the formulation. Various illumina-

tion measurements can be obtained within this framework. The illu-
mination results can be linked to other analyses, such as diffraction
tomography and resolution analysis.

At present, the full-wave method is still too expensive for illumi-
nation analysis. The one-way propagator is used instead to calculate
the wavefield from sources and receivers to the target. Some approx-
imations are introduced into the one-way propagators. Transmission
losses are often neglected. Luo et al. �2004� discussed the difference
between illuminations calculated using one-way and full-wave
methods and noted that the major factors affecting the illumination
are limited acquisition aperture, dipping of the reflector, and accura-
cy of the propagator.Among these three factors, the first two are usu-
ally more crucial than the accuracy of the propagator.

In contrast to seismic imaging, illumination analysis only uses the
amplitude of the wavefield. Except for the plane-wave decomposi-
tion, the phase information is not used. Therefore, reducing the num-
ber of sources and receivers does not cause spatial aliasing and will
not seriously affect the illumination calculation. Unlike two-point
ray tracing, the wave-equation-based propagator can simultaneous-
ly extrapolate waves into a large model space. With a frequency-do-
main propagator, we can calculate illumination for a number of fre-
quencies or for a single dominant frequency. The result usually pro-
vides a satisfactory illumination estimate. The above mentioned ap-
proximations can reduce the CPU time considerably and make the
wave-equation-based approach an efficient tool for volumetric illu-
mination analysis.

Figure 8. The 30°ADR from a single shot in a 3D model. �a� The illu-
mination of a vertical profile. �b� The illumination of a depth slice at
1000 m. The acquisition system consists of a source and four cables
with 3200-m length as indicated in the figure.

Figure 9. Illumination analysis for an inline section of the 3D SEG/
EAGE salt model. �a� The velocity model, �b� the depth image by 3D
wave-equation, prestack depth migration, and �c� the corresponding
verticalADR associated with the near-horizontal events.Apoor illu-
mination zone is present beneath the salt body. This is consistent
with the image shadows where the subsalt structures, including the
horizontal baseline, are not well imaged.
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The equations formulated in this paper are based on one source-
receiver pair. Complex acquisition geometries �locations of sources,
number of streamer cables, receiver locations, navigation directions,
etc.� can be composed by summing contributions from multiple

source-receiver pairs. Since individual source and receiver wave-
fields are calculated independently, the wave-equation method is ca-
pable of computing illuminations from an irregularly distributed ac-
quisition system.

CONCLUSIONS

A wave-equation-based method was developed for seismic illu-
mination analysis. Various illumination measurements derived from
this method can be used to optimize the acquisition-survey design,
evaluate the image quality, and make corrections to the seismic im-
age, resulting in more accurate subsurface physical-parameter re-
trieval. The current method has the following features.

The wave-equation-based propagator is adopted to calculate the
wave propagation. Angle-related information is extracted from the
wavefield by local plane-wave analysis. Therefore, this method can
properly extrapolate the wavefield in complex media. Velocity
smoothing and Fresnel-zone smoothing are no longer required as in
the high-frequency, asymptotic, ray-based approach.

The illumination analysis part of the method is independent of its
wavefield extrapolation part. Therefore, we conclude that the illumi-
nation analysis can be applied to most one-way wave-propagation
methods �e.g., the generalized screen propagator and the one-way
implicit finite-difference propagator�, full-wave-equation methods
�e.g., the full-wave, finite-difference scheme�, and ray-based or ray-
beam-based methods �e.g., the Kirchhoff and Gaussian-beam ap-
proaches�. This gives us the flexibility to choose different propaga-
tors based on the trade-off between their efficiency and accuracy.

Illumination measurements with different levels of detail can be
derived from this method. Based on the goal of investigation, we can
conduct illumination analysis by choosing the optimal category of
measurement. Our wave-equation-based illumination analysis is
more efficient than the ray-based method when calculating the volu-
metric illuminations. Therefore, we conclude that the wave-equa-
tion-based illumination analysis provides a flexible and efficient tool
to calculate target-oriented or volumetric illuminations in 2D and 3D
complex models.

Table 1. Comparison of different illumination measurements.

Figure 10. Illumination analysis for a depth slice of the 3D SEG/
EAGE salt model. �a� The velocity model at 2500-m depth, �b� a
depth image by 3D wave-equation, prestack depth migration, and �c�
the total ADR associated with the contributions from all possible
dipping events. The depth-image quality is superior at the left por-
tion of the model, which corresponds to the strong illumination,
while the image is poor at the right portion, which is related to the
weak illumination.
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