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Short Note

Wave equation calculation of most energetic traveltimes
and amplitudes for Kirchhoff prestack migration

Changsoo Shin∗, Seungwon Ko∗, Kurt J. Marfurt‡, and Dongwoo Yang∗

INTRODUCTION

Because of its computational efficiency, Kirchhoff migra-
tion is the method of choice for 3D prestack depth migra-
tion, particularly in the initial velocity model-building stages
where several iterations of migration are necessary. In the be-
ginning, Kirchhoff migration used traveltimes calculated by ei-
ther eikonal solvers or asymptotic ray theory, while amplitudes
were calculated using relatively smooth geometrical spreading
and obliquity considerations. More recently, Kirchhoff migra-
tion has been generalized to include more than one arrival time,
with amplitudes calculated from geometrical optics, solution of
the transport equations, or Gaussian beams (e.g., Hill, 2001).

Nevertheless, for reasons of computational efficiency and al-
gorithmic simplicity (more important than ever on distributed
memory machines), most Kirchhoff algorithms use only one
traveltime. While there remains considerable debate whether
the ray having the shortest path or most energy should be used,
it is clear that the ray using the most energetic arrival time is
superior to using the easier to calculate first-arrival time, which
often carries little to no energy. Considerable progress has been
made in calculating the most energetic arrival from the eikonal
and transport equations.

However, our method is built on that of Nichols (1996), who
proposes solving the wave equation within a window, which
we call the wavefront, following the first arrival. As originally
proposed, Nichols’ (1996) algorithm has two drawbacks. The
first, relatively minor drawback is that the first-arrival time is
calculated using an algorithm independent of the wave equa-
tion solver, thereby requiring two rather than one traveltime
calculation algorithm. The second, more serious drawback is
that the traveltimes calculated within the short analysis window
suffer from severe Fourier wraparound artifacts. Even though
the waveform itself is corrupted by wraparound in the short
analysis window, we are usually able to pick the traveltime of
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the most energetic event. However, situations arise where the
most energetic event within the window is an unfortunate con-
structive interference of wrapped events.

We address both of these issues and show how we can re-
construct the waveform in the analysis window with minimal
wraparound artifacts, thereby allowing us to unambiguously
calculate the most energetic arrival time and amplitude. We
then demonstrate the effectiveness of our algorithm on the 2D
IFP Marmousi model.

THEORY

In discrete Fourier transforms, the Nyquist frequency,
fN(= 1/21t), is determined by the temporal sampling inter-
val1t , while the frequency sample interval1 f = 1/T is deter-
mined by the length of the seismic trace T = n1t . If we were to
double the frequency sample interval (21 f ) and reconstructed
the data within the window (0, T/2), we would accurately re-
construct the data originally falling within the interval (0, T/2).
That part of the data that originally fell within the second in-
terval (T/2, T) would be wrapped around and added on top
of the data within (0, T/2). If, alternatively, we chose to re-
construct the data within the interval (T/2, T), the converse
would occur. Indeed, the data in the two intervals would be
identical. If for reasons of wave propagation the first arrival
t0 were greater than T/2, there would be no real events in
the window (0, T/2) such that wraparound would not contam-
inate the second interval. The events that would arrive after
time t0 > T/2 would still wrap around into the first window, but
we would know they are artifacts. The most energetic travel-
time tE would always arrive no earlier than the first arrival at
time t0.

Let us assume that this most energetic arrival appears within
the interval (t0, t0+ Tw), where Tw is a user-defined analysis
window in which we reconstruct the seismic data. Our Fourier

2040



Most Energetic Traveltimes, Amplitudes 2041

reconstruction of the seismic data (or in our case, the migration
impulse response) g(t) then becomes

g(t + t0) =
J∑

j=1

G(ω j ) exp[iω j (t + t0)], (1)

where G(ω j ) is the j th Fourier component of the wavefield
and J= fN/1 f . Equation (1) is essentially that presented by
Nichols (1996), who notes that the number of frequencies de-
creases with the value of Tw . To suppress wraparound, we fol-
low Marfurt and Shin (1989) and solve the wave equation to
obtain the impulse response G—not at real frequencies ω j but
at complex frequencies ω j + iα—to obtain a wraparound sup-
pressed version of equation (1). To compensate for this sup-
pression in the analysis window (t0, t0+ Tw), we exploit the
shifting theorem (Aki and Richards, 1980; Shin et al., 2003)
and multiply the time domain solution by exp[+α(t + t0)] to
obtain

g(t + t0) =
{

J∑
j=1

G(ω j + iα) exp[iω j (t + t0)]

}
× exp[+α(t + t0)]. (2)

On 32-bit computers, a reasonable value of α∼= ln(B/A)/Tw
(where A is the picked amplitude of the first arrival and B
is the picked amplitude of the most energetic arrival) would
suppress any events arriving after time t0+ Tw and the events
are folded back into the analysis window (t0, t0+ Tw) by at least
a factor of 100.

On the basis of the simple arithmetic described above, the
most energetic traveltime can be calculated in the following six
steps:

1) Calculate t0 by solving the one-way wave equation for a
single frequency as described by Shin et al. (2003). (Other
methods such as eikonal solvers are acceptable but re-
quire additional software.)

2) Through experience or analysis of a few impulse re-
sponses in the most complex part of the model, estimate
the length of Tw such that the most energetic event falls
within (t0, t0+ Tw). The value of Tw determines the fre-
quency increment 1 f and thereby the number of fre-
quencies, J= fN/1 f = fN Tw .

3) Solve the one-way (or two-way) wave equation in the fre-
quency domain at complex frequencies ω j =2π j1f+iα us-
ing your preferred propagator (paraxial, phase shift and
interpolate, phase screen, hyperbolic, etc.).

4) Synthesize the wavefield within the analysis window
(t0, t0+ Tw) using equation (2).

5) Extract the amplitude aE and traveltime TE of the most
energetic event. The picked most energetic traveltime
will appear to fall within a computational analysis window
(0, Tw).

6) To properly map the picked TE to the correct domain of
the Fourier transform, use

tE = integer
(

t0
Tw

)
+ TE, (3)

where tE is the most energetic traveltime to be used in
Kirchhoff migration.

NUMERICAL EXAMPLE

To demonstrate the robustness of our algorithm, we calculate
the most energetic traveltimes and their corresponding ampli-
tudes for the Marmousi model. In Figure 1, we display the most
energetic traveltime (in white) obtained by using equations (2)
and (3) by solving an 85◦ one-way wave equation for eight fre-
quencies to reconstruct the data within a Tw = 0.4 s analysis
window. To check the accuracy of our prediction, we gener-
ate results by solving the same one-way wave equation using
128 frequencies to reconstruct the data between 0.0 and 4.0 s.
For both solutions, we pick the most energetic event at each
depth point and plot tE in Figure 1. In Figure 2a we plot aE ,

FIG. 1. Contours of the most energetic traveltime tE for the
Marmousi model. The white line indicates the traveltimes ob-
tained using equations (2) and (3) and only eight frequen-
cies, while the black line indicates the traveltimes obtained by
solving the one-way wave equation for 128 frequencies, recon-
structing the entire waveform for all time, and picking the most
energetic event. The traveltime contours are superimposed on
the velocity model.

FIG. 2. The amplitude aE corresponding to the traveltimes
shown in Figure 1. (a) Amplitude obtained using equations
(2) and (3). (b) Amplitude obtained by solving the one-way
wave equation for all 128 frequencies. The poor correlation
of traveltime picks between the two methods seen in Figure 1
corresponds to zones of low amplitude here.



2042 Shin et al.

FIG. 3. Prestack depth-migrated image obtained by using
first-arrival traveltime and amplitudes described by Bleistein
(1987).

FIG. 4. Prestack depth-migrated image obtained by using the
most energetic traveltime and amplitude computed by this al-
gorithm. Note the improved clarity of the fault faces and turtle
(marl) structure. Arrows indicate zones where the image is
improved.

corresponding to tE , for our new algorithm using eight frequen-
cies. In Figure 2b we plot aE , for the complete 128-frequency
reconstruction. The agreement between the two solutions is ex-
cellent. Considerable energy corresponds to a negative rather
than a positive amplitude. We interpret this amplitude reversal
in polarity as attributable to caustics.

In Figures 3 and 4 we display the prestack Kirchhoff depth-
migrated image of the Marmousi model obtained by using the
first-arrival time and amplitudes described by Bleistein (1987)
and tE and aE obtained by using equations (2) and (3). As others
(e.g., Hill, 2001) have shown using alternative most energetic or
multiarrival algorithms, the images of both the shallow steeply
dipping events in the center of the model and the deeper target
(indicated by arrows) are improved by using the most energetic
arrival time.

CONCLUSIONS

We have described a means of extending Nichols’ (1996)
traveltime estimation technique to provide accurate, unam-
biguous most energetic arrival times. In addition to accurate
most energetic arrival times, we obtain accurate amplitudes
that account for all wave propagation effects, including caus-
tics, accurately modeled by wave equation methods. Such a
change in amplitude polarity can have a very strong impact on
the quality of seismic images generated using Kirchhoff migra-
tion. Our algorithm is easily implemented using currently ex-
isting and frequency-domain wave extrapolation and modeling
software used in more expensive wave equation migration al-
gorithms. Combined with the first-arrival traveltime algorithm
described by Shin et al. (2003), our algorithm is accurate, and
easy to implement, and easy to maintain, and it provides im-
ages consistent with more accurate wave equation images that
may follow iterative Kirchhoff imaging for velocity analysis.
Extending this algorithm to use the entire waveform within the
analysis window, thereby generating a multiple-arrival wave-
front migration algorithm, is straightforward but computation-
ally more intensive.
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