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S U M M A R Y

We present the theory for wave-equation inversion of dispersion curves, where the misfit

function is the sum of the squared differences between the wavenumbers along the predicted

and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves

recorded by vertical-component geophones. Similar to wave-equation traveltime tomography,

the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the

picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic

wave equation and an iterative optimization method are then used to invert these curves for

2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion

inversion (WD), does not require the assumption of a layered model and is significantly

less prone to the cycle-skipping problems of full waveform inversion. The synthetic and

field data examples demonstrate that WD can approximately reconstruct the S-wave velocity

distributions in laterally heterogeneous media if the dispersion curves can be identified and

picked. The WD method is easily extended to anisotropic data and the inversion of dispersion

curves associated with Love waves.
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1 I N T RO D U C T I O N

Inverting surface waves for the S-wave velocity model falls into

two categories: (1) the classical method of inverting dispersion

curves (Evison et al. 1959; Park et al. 1998; Xia 2014) for a 1-D

layered medium, and (2) full waveform inversion (Groos et al. 2014;

Solano et al. 2014; Dou & Ajo-Franklin 2014; Bohlen et al. 2015;

Yuan et al. 2015) for 2-D and 3-D media. The classical method

accurately inverts for a 1-D S-wave velocity model, but becomes

less accurate with increasing lateral heterogeneity in the subsurface.

The 1-D assumption is not satisfied for some practical applications,

so partial remedies are spatial interpolation of 1-D velocity mod-

els (Yamanaka & Ishida 1996; Xia et al. 1999; Beaty et al. 2002;

Tian et al. 2003; Dal Moro 2015; Pan et al. 2016b) and laterally

constrained inversion (Socco et al. 2010; Bergamo & Socco 2012).

In comparison, full waveform inversion (FWI) can theoretically

account for any lateral heterogeneity, but it is computationally ex-

pensive and can easily get stuck in local minima associated with

the objective function (Tarantola 1984). To avoid falling into a local

minimum, the initial model should be smooth and time-damping

strategies can be used at the early iterations (Sheng et al. 2006;

Sears et al. 2008; Brossier et al. 2009; Romdhane et al. 2011).

However, there are no fail-safe strategies for always avoiding local

minima in the context of FWI with surface waves. A partial FWI

method is that of Solano et al. (2014) who used the magnitude spec-

tra of surface waves as the input data. Results with some synthetic

data showed this to sometimes be a robust and efficient method

for reconstructing the S-wave velocity model at the near surface.

Another surface wave inversion strategy is proposed by Yuan et al.

(2015), who developed a wavelet multi-scale adjoint method for

the joint inversion of both surface and body waves. Synthetic tests

showed that this approach can avoid cycle skipping for some mod-

els. The role of attenuation in FWI with surface waves was studied

by Groos et al. (2014). They concluded that the estimation of a

priori quality factors is critical for inverting seismic waves in the

near-surface zone. Instead of inverting Rayleigh waves, Pan et al.

(2016a) proposed to invert Love waves in the time domain in order

to reconstruct the S-wave velocity model.

To avoid the assumption of a layered medium and also mitigate

FWI’s sensitivity to local minima, we present a skeletonized in-

version method that inverts the dispersion curves of surface waves

for 2-D or 3-D velocity models. The picked dispersion curves are

skeletonized data (Schuster 2015; Zhang et al. 2016) that tend to

make the objective function simpler, and hence this new method,

denoted as wave-equation dispersion inversion (WD), enjoys bet-

ter convergence properties than FWI. This is similar to wave-

equation traveltime inversion (WT; Luo & Schuster 1991b), ex-

cept that picked dispersion curves rather than picked traveltimes

are the input data. The WD procedure is more robust than FWI

because it replaces complicated surface wave arrivals with simple

dispersion curves in the wavenumber-frequency k − ω or phase-

velocity-frequency C(ω) − ω domains (Fig. 1). In addition, the

surface-wave inversion method presented in this paper is the adjoint-

state implementation of WD, which is different from Zhang et al.

(2015, 2016), who used a difference approximation to calculate

the misfit gradient model. Hence, our WD method is more gen-

eral and more than an order-of-magnitude faster for complicated

models.
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Figure 1. (a) Common shot gather d(x, t), (b) the fundamental (n = 0) dispersion curves for Rayleigh waves in the k − ω domain and (c) C(ω) − ω domains.

Here the phase velocity is C(ω) = ω/κ(ω) and κ(ω) is the skeletonized data (Zhang et al. 2015; Schuster 2017).

In the following sections, we first present the theory of WD and a

workflow for its practical implementation. The WD method is then

validated with tests on both synthetic data and field data. The field

data are from 2-D surveys conducted in Saudi Arabia and Tanzania,

East Africa. The final section presents a summary and discussion.

2 T H E O RY O F S K E L E T O N I Z E D

I N V E R S I O N O F S U R FA C E WAV E S

The key steps in WD are similar to the WT algorithm proposed in

Luo & Schuster (1991a), except the WD algorithm inverts for the

S-wave velocity model vs from the dispersion curves by executing

the following steps. (1) Pick the dispersion curve and compute the

dispersion-curve misfit function, (2) define a connective function

that connects the observed dispersion curve residuals with the pre-

dicted data; this allows for the derivation of the Fréchet derivative of

the picked wavenumbers with respect to the shear-slowness model,

(3) compute the gradient of the misfit function with respect to the

shear-slowness model using the elastic wave equation, and (4) up-

date the S-wave velocity vs model with the iterative steepest-descent

method or conjugate-gradient method.

The mathematical details for the WD method are now presented,

where d(g, t) denotes the input shot gathers of vertical particle-

velocity traces excited by a vertical-component force at s = (xs, 0) on

the surface and recorded at g = (xg, 0). To reduce notational clutter,

the dependency of d(g, t) on the source location s is silent and we

assume a 2D medium and a 2D seismic survey. We utilize the high-

resolution linear Radon transform (LRT) method to get D̃(k, ω)

in the wavenumber-frequency domain (Luo et al. 2008). Here, the

skeletonized data consist of the picked dispersion curve κ(ω) of

the fundamental Rayleigh mode, which is obtained by taking the

maximum of the magnitude spectrum of D̃(k, ω) shown as the red

dashed line in Fig. 1b. This method can be easily adapted to inverting

higher-order modes and different components of the recorded data.

It is also straightforward to adapt the methodology to the inversion

of dispersion curves associated with Love waves.

(i) Misfit function. The WD method inverts for the S-wave veloc-

ity model which predicts observed data that minimize the dispersion

misfit function ǫ:

ǫ =
1

2

∑

ω

(

residual=�κ(ω)
︷ ︸︸ ︷

κ(ω) − κ(ω)obs)2. (1)

Here, κ(ω) represents the predicted dispersion picked from the sim-

ulated spectrum D̃(k, ω) and κ(ω)obs denotes the dispersion curve

obtained from the recorded spectrum D̃(k, ω)obs.

The gradient γ (x) is given by

γ (x) =
∂ǫ

∂s(x)
=

∑

ω

�κ(ω)
∂κ(ω)

∂s(x)
, (2)

so that the optimal shear-slowness model s(x) is obtained from the

steepest-descent formula:

s(x)(k+1) = s(x)(k) − α
∑

ω

�κ(ω)
∂κ(ω)

∂s(x)
, (3)

where α is the step length by any backtracking line-search method

(Nocedal & Wright 1999) and the superscript (k) denotes the kth it-

eration. For pedagogical simplicity, we assume a single shot gather,

but the misfit function includes an additional summation over dif-

ferent shot gathers if more than one shot gather is used. In practice,

a preconditioned conjugate gradient method can be used (Luo &

Schuster 1991b).

(ii) Connective function. The analytic expression for the Fréchet

derivative ∂κ(ω)

∂s(x)
in eq. (2) is obtained by forming a connective func-

tion (see Appendix A) that relates the residual �κ(ω) to the shear-

slowness model s(x). This connective function is defined to be the

cross-correlation between the predicted D̃(k, ω) and conjugated

observed D̃(k, ω)∗obs spectra in the k − ω domain (Luo & Schuster

1991a,b):

	(�κ, s(x)) = Real

{∫

D̃(k + �κ, ω)∗obs D̃(k, ω)dk

}

, (4)

where �κ is the lag variable along the wavenumber axis. Let �κ(ω)

denote the dispersion curve residual for the actual background vs

model, in which case, the derivative of 	 with respect to �κ(ω)

should be zero. That is,

	̇(�κ, s(x)) = Real

{∫

˙̃D(k + �κ, ω)∗obs D̃(k, ω)dk

}

= 0, (5)

where ˙̃D(k, ω)obs = ∂ D̃(k,ω)obs

∂k
and �κ is now the wavenumber lag

that aligns the predicted and observed spectra with one another for

a specified ω. This wavenumber lag is also equal to the dispersion

curve residual in eq. (1), so eq. (5) connects the slowness model

with the dispersion curve which will be used to derive the Fréchet

derivative ∂κ(ω)

∂s(x)
.
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(iii) Fréchet derivative. For eq. (5), the implicit function theorem

implies that κ is an implicit function of s(x) so that

d	̇ =
∂	̇

∂s
ds +

∂	̇

∂κ
dκ = 0. (6)

Rearranging this equation gives the Fréchet derivative

∂κ

∂s(x)
= −

∂	̇/∂s

∂	̇/∂κ
, (7)

where the denominator is the normalization term

A =
∂	̇(�κ, s(x))

∂κ
= Real

{∫

¨̃D(k + �κ, ω)∗obs D̃(k, ω)dk

}

, (8)

and the numerator is

∂	̇(�κ, s(x))

∂s(x)
= Real

{∫

˙̃D(k + �κ,ω)∗obs

∂ D̃(k, ω)

∂s(x)
dk

}

. (9)

Plugging eqs (8) and (9) into eq. (7) gives the Fréchet derivative:

∂κ

∂s(x)
= −

∂	̇/∂s

∂	̇/∂κ
=

−1

A
Real

{∫

˙̃D(k + �κ, ω)∗obs

∂ D̃(k, ω)

∂s(x)
dk

}

=
−1

A
Real

{∫

D̂(g, ω)∗obs

∂ D(g, ω)

∂s(x)
dxg

}

.

(10)

Eq. (10) follows by eq. (A2) in Appendix A where D̂(g, ω)∗obs is the

weighted conjugated data defined in Appendix A.

D̂(xg, ω)∗obs =
−i xge−i�κxg

2π
D(xg, ω)∗obs, (11)

where the geophone locations g = (xg, 0) are on the horizontal free

surface, and D(g, ω) is the inverse Fourier transform of D̃(k, ω).

The Fréchet derivative ∂ D(g,ω)

∂s(x)
is derived in Appendix B.

For Rayleigh waves, we assume that only the vertical-component

of particle velocity D(g, ω) is recorded so its Fréchet deriva-

tive with respect to the shear slowness s(x) is given as

eq. (B6):

∂ D(g, ω)

∂s(x)
= −4s(x)ρ(x)

{

∂G(g|x)zz

∂z

∂ D(x, ω)x

∂x

+
∂G(g|x)xz

∂x

∂ D(x, ω)z

∂z

−
1

2

(
∂G(g|x)xz

∂z
+

∂G(g|x)zz

∂x

)

×
(

∂ D(x, ω)z

∂x
+

∂ D(x, ω)x

∂z

)
}

, (12)

where G(g, ω|x)xz , and G(g, ω|x)zz are two components of the har-

monic Green’s tensor (Aki & Richards 1980) for a vertical point-

source displacement. Plugging eq. (12) into eq. (10) gives the final

form for the Fréchet derivative:

∂κ

∂s(x)
=

4s(x)ρ(x)

A
Real

{
source= f (x,s,ω)1
︷ ︸︸ ︷

∂ D(x, ω)x

∂x

×
∫

backprojected data=B(x,s,ω)∗1
︷ ︸︸ ︷

D̂(g, ω)∗obs

(
∂G(g|x)zz

∂z

)

dxg

+

source= f (x,s,ω)2
︷ ︸︸ ︷

∂ D(x, ω)z

∂z

∫

backprojected data=B(x,s,ω)∗2
︷ ︸︸ ︷

D̂(g, ω)∗obs

∂G(g|x)xz

∂x
dxg

−
1

2

source= f (x,s,ω)3
︷ ︸︸ ︷
(

∂ D(x, ω)z

∂x
+

∂ D(x, ω)x

∂z

)

×
∫

backprojected data=B(x,s,ω)∗3
︷ ︸︸ ︷

D̂(g, ω)∗obs

(
∂G(g|x)xz

∂z

∂G(g|x)zz

∂x

)

dxg

}

, (13)

where G(g|x)ij is the Green’s tensor for the ith component of the

displacement field at x = (x, z), due to a point source at g = (xg,

0) in the jth direction, s(x) is the shear-slowness model for the

background medium, and A is defined in eq. (8). Here, f(x, s, ω)i

for i ∈ (1, 2, 3) is the downgoing source field at x that originates at

s, and B(x, s, ω)i for i ∈ (1, 2, 3) represents the backprojected field

at x. If the membrane model is assumed (Tanimoto 1990; Tromp

& Dahlen 1993), then the Fréchet derivative assumes a simplified

scalar form similar to that of the acoustic wave equation.

(iv) Gradient Update. Plugging eq. (13) into eq. (3) gives the

steepest-descent formula for updating the S-wave velocity model

from the dispersion-curve residuals in a shot gather:

s(x)(k+1) = s(x)(k)

−α Real

{

misfit gradient for CSG
︷ ︸︸ ︷

∑

ω

3
∑

i=1

4s(x)ρ(x)�κ(ω)

A
f (x, s, ω)i B(x, s, ω)∗i

}

.

(14)

The above equation says that the slowness update is computed by

a weighted zero-lag correlation between the backprojected data

and the source fields. In the space-time domain, the modified

source wavelet is defined as �κ(ω)W(ω). If there is more than one

source, then the there will be an additional summation over source

coordinates.

In summary, the slowness model is updated by first calculating the

magnitude spectra of the dispersion curves for both the observed

and predicted data, then �κ(ω) is computed for each shot gather.

The weighted observed data D̂(g, ω)obs for each source are migrated,

where the forward propagated source has the weighted source spec-

trum W(ω)�κ(ω). The gradients for each migrated shot gather are

added together to get the slowness update.

3 W O R K F L OW F O R WAV E - E Q UAT I O N

D I S P E R S I O N I N V E R S I O N

Fig. 2 depicts the workflow for the WD method.

(i) Use window muting to remove the early-arrival body waves,

backscattered data and higher modes of the Rayleigh waves in the

shot gather and then apply a 1-D Fourier transform along the time

axis of the shot gather to get its frequency-domain spectrum. The

same muting is applied to both the observed data and the predicted

shot gather computed by a finite- difference solution to the elastic

wave equation.

(ii) Apply the LRT to the spectra of predicted and observed data

to get the phase-velocity image in the ω − C domain (Luo et al.

2008), where C is the phase velocity of the surface waves. The

fundamental dispersion-curves are automatically picked according

to the maximum amplitudes of the magnitude spectrum. However,

in some field data, the dispersion curves still contain higher-order

modes, so there will be discontinuities in the dispersion curves. We

utilize the adjacent point-smoothing method to remove the residual

higher-order modes as follows. Firstly, we compare the phase veloc-

ities at adjoining points in the dispersion curves, and if they differ
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Figure 2. The work flow for implementing the WD method.

(a) (b) (c)

(d) (e) (f)

Figure 3. (a) True S-wave velocity model, (b) common shot gather (CSG), (c) misfit gradient for all of the shot gathers, (d) inverted S-wave velocity model,

(e) CSG associated with the final inverted model and (f) S-wave velocity profile at X = 50 m.

by a specified threshold, we set the value of the larger one equal to

the lower one. Then, the sum of the squared residuals in eq. (1) can

be computed from the predicted and observed skeletonized data

κ(ω) and κ(ω)obs (κ(ω) = ω/C(ω)). A limitation to this method

is that some of the low-frequency information in the fundamental

mode might be lost due to the overlap between fundamental and

higher-order modes.

(iii) Use eq. (A3) to calculate the weighted data D̂(g, ω)obs, which

can be used to compute the backprojected data in eq. (13). The

forward propagated source field is computed by a finite-difference

solution to the elastic wave equation.

(iv) Estimate the step-length α by any backtracking line-search

method (Nocedal & Wright 1999).

(v) The gradients for each migrated shot gather are added to-

gether to get the S-wave slowness update (eq. 14). The background

S-wave slowness model is updated and the above steps are repeated

until the residual falls below a specified value.

4 N U M E R I C A L T E S T S

The WD method only inverts for the S-wave velocity model and

the initial P-wave velocity model is defined as vp =
√

3vs . Three

synthetic data sets and field data from seismic surveys in Saudi Ara-

bia and Tanzania are now inverted by the WD method to demonstrate

both its benefits and limitations.

4.1 Simple three-layer model

A three-layer model is shown in Fig. 3(a) where the S-wave velocity

increases with depth. For input data, 20 vertical-component shot

gathers with a shot spacing of 4 m (see Fig. 3b) are computed by

solving the 2-D elastic wave equation with 50 geophones located

every 2 m on the surface. The dominant frequency of the source

wavelet is 30 Hz with useful frequencies between 10 and 80 Hz. The

initial velocity model for WD is the linear gradient model described

by the blue dashed line in Fig. 3(f). The dispersion curves are

estimated using the procedure described in the previous section. The

fundamental-mode dispersion curve is picked for each shot gather

in the ω − C domain and the associated wavenumber residuals

are inverted by the WD method using an iterative gradient solver.

The misfit gradient for all of the shot gathers in Fig. 3(c) suggests

that the shallow velocity distribution to the depth range of 3–6 m

is accurately reconstructed. After 20 iterations, the reconstructed

model is shown in Fig. 3(d) where the predicted shot gather in
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(a) (b)

Figure 4. Plots of (a) model and inverted dispersion curves, and (b) the data misfit values after 21 iterations of the WD method.

Figure 5. Checkerboard (a,c) S-wave velocity models. (b,d) The S-wave velocity tomograms are inverted from the dispersion curves for the (a) and (c) models.

Fig. 3(e) closely resembles the observed shot gather illustrated in

Fig. 3(b). This is consistent with Fig. 3(f), where the 1-D inverted

S-wave velocity profile (blue curve) over the centre of the model (x

= 50 m) is a good approximation to the true S-wave velocity profile

(red curve). The inverted velocity profile mostly agrees with that of

the actual model (Fig. 4a) and Fig. 4(b) shows rapid convergence of

the RMS residual with an increase in iteration number.

4.2 Checkerboard model

Elastic shot gathers are computed for two different checkerboard

models (see Figs 5a and c) to assess the resolution capabilities of the

WD method. The average background S-wave velocity is 600 m s−1

in both models. To construct the checkerboard perturbations, the

S-wave velocity is changed by ±15 per cent, a 30-Hz Ricker source

wavelet is used for the synthetics, and 2 per cent random noise

is added to the elastic shot gathers. Here, the wavelength ranges

between 16 m and 23 m, with an average value of 20 m. The first

checkerboard model has two rectangular velocity anomalies where

each one has the area of 50 × 5 m2 (Fig. 5a), while the second one

has two layers with a patch size of 25 × 5 m2 (Fig. 5c). There are

25 vertical-component shot gathers computed by solving the 2-D

elastic wave equation with 50 geophones located every 2 m and

shots every 4 m on the surface.

According to the WD workflow in Fig. 2, the reconstructed

S-wave velocity tomograms are shown in Figs 5(b) and (d) for

the checkerboard models, where the white dashed lines depict the

velocity interfaces. These tomograms suggest that the WD method

is able to accurately estimate the S-wave velocity variations in the

horizontal direction, but resolution decreases with depth. This is

because surface waves propagate horizontally along the surface and

attenuate in depth.

We now employ the vertical displacement eigenfunctions of

Rayleigh waves (Denolle et al. 2012) and the Jacobian sensitiv-

ity matrix (Xia et al. 1999) to explain the sensitivity of Rayleigh

waves with depth (see Appendix C).

(i) Fig. 6(a) plots the amplitude of the Rayleigh-wave eigenfunc-

tions (r2) against depth for the vertical displacement component at

the peak frequency. For the low-to-high-velocity (LH) patches in

Figs 5(a) and (c), the eigenfunction amplitudes in the second layer

(high) are less than half those in the first layer (low). This sug-

gests that the WD inversion method can best estimate the width and

depth of the shallowest velocity anomaly. However, the low-velocity

anomalies in the high-to-low-velocity (HL) patch tomogram are

more accurately reconstructed than the high-velocity anomalies in

the LH patches. Comparison of the sensitivity plots, in the depth

range of 5–10 m (second layer), says that the HL model (red line)

is characterized by eigenvectors with a larger magnitude than in the

LH model.

(ii) Similar to Fig. 6(a), Fig. 6(b) plots a row vector of the Jaco-

bian matrix at the centre frequency. This vector defines the sensitiv-

ity of phase velocity values with respect to variations in the S-wave
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(a) (b)

Figure 6. Sensitivity analysis for checkerboard models at the peak fre-

quency with (a) eigenfunctions associated with the Rayleigh waves and (b)

components of the Jacobian matrix, respectively.

velocity at different depths. It confirms that the data associated with

the HL checkerboard model are more sensitive to S-wave velocity

variations than in the LH model in the second layer.

4.3 Low-velocity mineral model

The objective of this synthetic test is to determine how well WD

can reconstruct the blue low-velocity anomalies in Fig. 7(a). These

anomalies are based on realistic mineral deposits seen in an open-pit

mine. The input data are computed by solving the 2-D elastic wave

equation for 100 shot gathers, with the shots evenly distributed on

the surface at 2 m intervals; the source wavelet for each shot is

a 10-Hz Ricker wavelet. The seismic waves from each shot are

recorded by 100 receivers spaced at the same interval as the shots.

The ensemble of 1-D WD profiles is displayed as the S-wave velocity

tomogram in Fig. 7(d). In this case, the wavenumber residuals from

each shot gather were inverted assuming a 1-D velocity model

beneath the location of each shot. There is a rough but imprecise

correspondence between the tomogram and the actual model in

Fig. 7(a). To generate a more accurate tomogram, the 2-D WD

method is used to invert the data. In this case, only 25 shot gathers

are employed with an 8 m shot interval. Fig. 7(b) depicts the initial

gradient model, and the fundamental dispersion curve is picked

for each shot gather and inverted by the WD method to give the

reconstructed model shown in Fig. 7(c). This S-wave tomogram

shows much better correspondence to the actual model than does

the 1-D tomogram in Fig. 7(d).

The predicted and observed dispersion curves are plotted against

iteration number in Fig. 8. After 25 iterations, the normalized misfit

residual decreased to 0.3 and shows an acceptable fit to the data.

5 F I E L D DATA T E S T S

The field data include controlled noise source (CNS) seismic data

recorded over the Qademah fault in Saudi Arabia and active source

data recorded near Olduvai Gorge in Tanzania.

5.1 Qademah fault controlled noise seismic data

A controlled noise survey is conducted across the Qademah fault.

The location of the field experiment is shown in Fig. 9 and the long

red dashed line in this figure is the Qademah fault which is aligned

(a) (b)

(c) (d)

Figure 7. (a) S-wave velocity true model; (b) initial model; (c) 2-D WD S-wave velocity tomogram after 15 iterations; (d) 1-D S-wave velocity tomogram.
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(a) (b)

Figure 8. (a) C(ω) for predicted (red) and observed (blue) dispersion curves for a CSG, and (b) dispersion misfit residual plotted against iteration number.

Figure 9. The seismic survey line (blue line marked P-2) across the Qademah fault (Hanafy et al. 2015).

Figure 10. (a) Photo of the CNS truck, and (b) common shot gather after applying all the processing steps.

along the north-south direction. The blue solid line is the survey

line which consists of 60 receivers at a 10 m spacing with 60 shots

recorded at 10 m intervals. The controlled noise is created by a noise-

making truck driven around the survey line for 2 hours; the driving

speed ranged between 20 and 25 km hr−1 (Hanafy et al. 2015). The

wooden bars and tires are tied behind the truck to create additional

noise (Fig. 10a), and the resulting seismic noise is recorded at each

of the traces. Then, the traces are broken up into small windows,

and each window of arrivals is correlated with the corresponding

window of arrivals in other traces to give a virtual CSG (Hanafy
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(a) (b)

Figure 11. Qademah fault CNS data dispersion curves at different source offsets of (a) 150 m and (b) 400 m.

Figure 12. Qademah COG and associated tomograms (Li & Hanafy 2016). (a) common offset gather (COG, offset = 50 m), (b) P-wave velocity tomogram

inverted from the first-arrival traveltimes, (c) 1-D S-wave velocity tomogram inverted from the dispersion-curve data and (d) S-wave velocity tomogram inverted

by 2-D WD inversion of the wavenumber residuals.

et al. 2015). Stacking the virtual CSGs for the same source position

gives the virtual shot gather after band-pass filtering and a window

mute (Fig. 10b).

A common offset gather (COG) is shown in Fig. 12(a) with

the source–receiver offset of 50 m. The dashed lines in Fig. 12(a)

indicate the location of the Qademah fault, which is consistent with

the lateral velocity decrease in the P-wave velocity tomogram in

Fig. 12(b). The P-wave velocity tomogram is computed by inverting

the P-wave first-arrival traveltimes with a ray-based tomography

method. Then, all virtual shot gathers are transformed into the ω − C

domain by a Fourier transform in time and the LRT method, and

the maximum energy values of the dispersion curves are picked.

The typical dispersion curves at different shot locations (150 and

450 m) show that the fundamental mode is mostly continuous from

5 to 20 Hz (Fig. 11). In addition, the higher-mode dispersion curve

in Fig. 11(a) can be removed with the adjacent point smoothing

method. According to the detection depth of about 1/3 wavelength

(z = v

3 f
) (Rix & Leipski 1991), the maximum depth for a reliable

estimate of vs is about 40 m.

Fig. 12(c) shows the S-wave velocity tomogram obtained from

1-D WD inversion (Li & Hanafy 2016). This tomogram roughly

estimates the position of the Qademah fault and the velocity struc-

ture is smoothed with low resolution. Then, the 2-D WD method is

applied to the picked dispersion curves to give the S-wave velocity

tomogram in Fig. 12(d) after 18 iterations in Fig. 13, where there

is a low-velocity zone on the downthrown side of the fault. This is

consistent with the P-wave velocity tomogram in Fig. 12(b) and the

COG profile in Fig. 12(a) for 150 m < x < 300 m.

Figure 13. Dispersion misfit residual plotted against iteration number for

the Qademah fault seismic data.

Compared with the P-wave velocity tomogram, the 2-D WD to-

mogram has higher horizontal resolution. For example, below the

depth of 30 m, the P-wave velocity tomogram shows a smoothly

varying velocity along the horizontal direction, but the S-wave ve-

locity tomogram indicates a strong lateral heterogeneity at the same

depth. The dispersion curves at different shot locations (150 and

450 m) in Fig. 11 also show that the phase-velocity strongly varies

over the same frequency range. As the surface waves enter the fault

zone there is strong dispersion in the surface wave arrivals. It is

difficult to assess the accuracy of the 2-D WD tomogram, but it
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Figure 14. (a) Topography along Lines 1–3, and (b) the source–receiver geometry for profiles 1–3, where the red triangles and yellow stars represent the

locations of receivers and sources, respectively.

(a) (b)

Figure 15. (a) CSG of shot No. 20, and (b) phase velocity image obtained from the linear Radon transform (white dots depict the picked fundamental

dispersion-curve).

appears to have much more complexity than the simpler 1-D to-

mogram in Fig. 12(c). In fact, the 1-D tomogram appears to be too

simple to fully explain the complexity of events in the COG profile

(Fig. 12a).

5.2 East Africa data

Another field data test is carried out on seismic data recorded over

a basin near Olduvai Gorge, Tanzania, which is one of the earliest

hominid sites where fossil and stone tool evidence dates back to

more than 2.2 million years. A 2-D seismic survey with a total

length of 3.6 km is recorded and the survey line straddles the major

Fifth Fault. Fig. 14 shows the topography and the source–receiver

geometry, respectively, where the Fifth Fault is located at the sharp

change in elevation at around X = 1000 m. The survey line consists

of 3 profiles, each of which has a length of 1.2 km, with 240

channels at 5 m receiver intervals. In-line shooting is carried out

for all 3 profiles, with 120 shots at 10 m intervals for each profile.

We use a 200 lb accelerated weight drop source, and stack 30 shot

records at each shot location. However, the data suffer severely from

a low signal-to-noise ratio caused by the weathering layer and wind

noise. To reduce this noise, we bury geophones at the depth 0.5 m,

after which, the data quality is improved. Fig. 15 depicts a typical

shot gather and the associated phase velocity image. We can pick

the surface-wave fundamental-mode dispersion curve (white dots

in Fig. 15b) with the strongest amplitudes and also use the adjacent

point-smoothing method mentioned in the workflow section. The

fundamental dispersion curves of all shot gathers are picked along

the maximum of the phase-velocity spectra. The higher modes also

can be removed according to the adjacent point smooth method.

Simultaneously inverting all of the dispersion curves by the

2-D WD method gives the S-wave velocity tomogram shown in

Fig. 16(a), where the dashed lines are interpreted as fault structures.

The Fifth Fault and other faults are indicated in the S-wave velocity

tomogram. This diagnosis is consistent with the interpretation of

faults by the P-wave velocity tomogram in Fig. 16(b) and the COG

profile in Fig. 16(c). In addition, the S-wave tomogram computed

by the WD method provides a more detailed velocity structure in

the shallow regions. Here, a fault is suggested by a sudden delay

in the onset of surface waves at the dashed lines. The combination

of both the S-wave and P-wave velocity tomograms and the COG

strongly suggest the presence of fault-like structures which gives
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(a)

(b)

(c)

Figure 16. (a) S-wave velocity tomogram obtained by inverting the dispersion curves in the East Africa data shown in the previous figure, (b) P-wave velocity

tomogram by wave-equation traveltime inversion of first arrivals, and (c) COGs at source–receiver offset of 100 m for data recorded by an East Africa survey.

The dashed white faults are more reliably interpreted than the dashed red faults.

Figure 17. Dispersion misfit residual plotted against iteration number for

the East Africa field data.

a new interpretation to the geology in this basin. Fig. 17 plots the

normalized data misfit values for 23 iterations.

6 S U M M A RY

We present the theory for wave-equation inversion of dispersion

curves (WD), where the misfit function is the sum of the squared

differences between the wavenumbers along the predicted and ob-

served dispersion curves. The S-wave velocity model is updated by

migrating the weighted data, where the weight is proportional to the

wavenumber residual. It largely overcomes the expense of finding

the Fréchet derivative by a finite-difference approximation. Numer-

ical simulations suggest that WD inversion is effective for selected

2-D velocity models where the dispersion curves can be readily

identified. These 2-D tomograms are more accurate than the ones

inverted by assuming a local 1-D velocity model over each common

shot gather. Tests on both the Qademah fault and East Africa data

suggest that velocity models can be inverted to reveal the presence

of faults.

A limitation of this method is that it requires picking of the fun-

damental dispersion-curves in the shot gathers. Accurate picking of

the fundamental dispersion-curve can be prone to errors if there is

a strong overlap with higher-order modes and other coherent events

such as backscattered surface waves. Therefore we recommend sep-

aration of the different modes and elimination of noise prior to the

application of WD to the wavenumber residuals. Another limitation

is the S-velocity tomogram will have less resolution than that of a

successful FWI tomogram. Therefore, the WD tomogram might be

used as a good starting model for FWI.
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A P P E N D I X A : C O R R E L AT I O N

I D E N T I T Y

In eq. (9), the functions in the integrand can be replaced by their

Fourier transforms:

˙̃D(k + �κ, ω)obs =
1

2π

∫ [

i x ′
g D(x ′

g, ω)obse
i(k+�κ)x ′

g

]

dx ′
g,

D̃(k, ω) =
1

2π

∫

D(xg, ω)eikxg dxg, (A1)

to give

∂	̇(�κ, s(x))

∂s(x)
=

1

4π 2
Real

{ ∫

dxg

{ ∫

dx ′
g

[∫

eik(xg−x ′
g )dk

]

× (−i x ′
g)D(x ′

g, ω)∗obse
−i�κx ′

g

}
∂ D(xg, ω)

∂s(x)

}

,

=
1

4π 2
Real

{ ∫

dxg

{∫

dx ′
g[2πδ(xg − x ′

g)]

× (−i x ′
g)D(x ′

g, ω)∗obse
−i�κx ′

g

}
∂ D(xg, ω)

∂s(x)

}

,

=
1

2π
Real

{∫

dxg

[

−i xg D(xg, ω)∗obse
−i�κxg

] ∂ D(xg, ω)

∂s(x)

}

,

= Real

{ ∫

dxg

D̂(xg ,ω)∗obs
︷ ︸︸ ︷
[

−i xge−i�κxg

2π
D(xg, ω)∗obs

]
∂ D(xg, ω)

∂s(x)

}

,

(A2)
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where the weighted conjugated data function is

D̂(xg, ω)∗obs =
−i xge−i�κxg

2π
D(xg, ω)∗obs. (A3)

The offset coordinate xg in the argument of D̂(xg, ω)∗obs in

eq. (A3) will be replaced by the vector notation g = (xg, 0).

A P P E N D I X B : E L A S T I C G R A D I E N T

The gradient for the WD method is now derived. For an

isotropic heterogeneous medium, the Born approximation in

terms of the elastic Green’s functions for a harmonic source

(Mora 1987) is

δD(x, ω)i = −
∫

G(x|x′)i j, j Dk,k(x′, ω)δλ(x′)dx ′3

−
∫

G(x|x′)ik, j (D(x′, ω)k, j + D(x′, ω) j,k)δμ(x′)dx ′3,

(B1)

where δD(x, ω)i denotes the ith component of the perturbed particle

velocity recorded at x due to the scattering from the perturbations

of Lamé parameters δλ and δμ. Einstein notation is assumed where

Di, j = ∂ Di

∂x j
for i, j ∈ (1, 2). Gij is the 2-D harmonic Green’s tensor

(Aki & Richards 1980) for the background medium with the Lamé

parameters λ and μ, and density ρ. We assume density ρ is a

constant. Eq. (B1) yields the derivative of D(x, ω)i with respect to

λ and μ at x′

δD(x, ω)i

δλ(x′)
= −G(x|x′)i j, j

∂ D(x′, ω)k

∂xk

,

δD(x, ω)i

δμ(x′)
= −G(x|x′)ik, j

(
∂ D(x′, ω) j

∂xk

+
∂ D(x′, ω)k

∂x j

)

. (B2)

For 2-D, our interest is confined to the derivative of the vertical

component of the particle velocity at g, so eq. (B2) for i = 2 and

the derivatives of D(g, ω) ↔ D(x, ω)z with respect to λ and μ at x

can be written as

δD(g, ω)

δλ(x)
= −

(
∂G(g|x)xz

∂x
+

∂G(g|x)zz

∂z

)

×
(

∂ D(x, ω)x

∂x
+

∂ D(x, ω)z

∂z

)

,

δD(g, ω)

δμ(x)
= −2

∂G(g|x)xz

∂x

∂ D(x, ω)x

∂x
− 2

∂G(g|x)zz

∂z

∂ D(x, ω)z

∂z

−
(

∂G(g|x)xz

∂z
+

∂G(g|x)zz

∂x

)

×
(

∂ D(x, ω)z

∂x
+

∂ D(x, ω)x

∂z

)

, (B3)

where D(x, ω)x and D(x, ω)z are horizontal- and vertical-component

finite-difference solutions to the 2-D elastic wave equation for the

background velocity model and the specified source location and

source wavelet. From the definitions vp =
√

(λ + 2μ)/ρ and vs =√
μ/ρ the Frećhet derivatives with respect to vp and vs (Mora 1987)

can be obtained:

δD(g, ω)

δvp(x)
= 2vp(x)ρ(x)

δD(g, ω)

δλ(x)
,

δD(g, ω)

δvs(x)
= −4vs(x)ρ(x)

δD(g, ω)

δλ(x)
+ 2vs(x)ρ(x)

δD(g, ω)

δμ(x)
. (B4)

Inserting eq. (B3) into eq. (B4) gives

∂ D(g, ω)

∂vs(x)
= 4vs(x)ρ(x)

{
∂G(g|x)zz

∂z

∂ D(x, ω)x

∂x

+
∂G(g|x)xz

∂x

∂ D(x, ω)z

∂z
−

1

2

(

∂G(g|x)xz

∂z

+
∂G(g|x)zz

∂x

)
(

∂ D(x, ω)z

∂x
+

∂ D(x, ω)x

∂z

) }

. (B5)

The shear slowness is defined as s = 1/vs and its derivative is

∂vs = −s−2∂s, so that the Frećhet derivative of shear slowness can

be expressed as:

∂ D(g, ω)

∂s(x)
= −4s(x)ρ(x)

{

∂G(g|x)zz

∂z

∂ D(x, ω)x

∂x

+
∂G(g|x)xz

∂x

∂ D(x, ω)z

∂z
−

1

2

(

∂G(g|x)xz

∂z

+
∂G(g|x)zz

∂x

)(

∂ D(x, ω)z

∂x
+

∂ D(x, ω)x

∂z

)}

. (B6)

A P P E N D I X C : R AY L E I G H - WAV E

S E N S I T I V I T Y A NA LY S I S

The amplitudes of Rayleigh waves are related to the vertical dis-

placement eigenfunction r2(z, v, ω), which is a kernel function that

is a function of velocity, frequency ω of the fundamental Rayleigh

wave, and depth z (Aki & Richards 1980). Strong amplitudes at a

specified depth say that the Rayleigh waves are sensitive to S-wave

velocity variations at that depth and frequency. The eigenfunction

r2 can be computed from the Thomson–Haskell algorithm and the

Rayleigh dispersion equation (Thomson 1950; Haskell 1953). It

is constructed by a sequence of matrix multiplications involving

terms that are transcendental functions of the properties (velocity

and depth) of a layered medium. The roots are the wavenumbers

corresponding to the modes of propagation of Rayleigh waves at

each frequency. The eigenfunctions give the depth dependence of

the vertical displacement which can be used to test the sensitivity of

the Rayleigh-wave amplitudes to localized variations in the velocity

model.

Similarly, the Jacobian matrix J is also used to evaluate the sen-

sitivity of Rayleigh waves at the depth zj according to the partial

derivative of phase velocity with respect to the S-wave velocity. The

Rayleigh-wave phase velocity vR j
is determined by the characteris-

tic equation F:

F
(

f j , vR j
, vs, vp, ρ, h

)

= 0, ( j = 1, 2, ....., m), (C1)

where fj is the frequency, vR is the phase velocity; and

vs, vp, ρ and h are the S-wave velocity, P-wave veloc-

ity, density, and thickness, respectively. The Jz element of

the Jacobian matrix is the partial derivative of phase veloc-

ity with respect to the S-wave velocity over different depths

(Lai & Rix 1998):

Jz =

⎡

⎣
∂ F/∂vs(z)

∂ F/∂vR(z)

∣
∣
∣
∣
∣

z=zi

⎤

⎦ (i = 1, 2, 3...n). (C2)


