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Wave-equation traveltime inversion 

Y. Luo* and G. T. Schuster* 

ABSTRACT 

This paper presents a new traveltime inversion 

method based on the wave equation. In this new 

method, designated as wave-equation traveltime in- 

version (WT), seismograms are computed by any 

full-wave forward modeling method (we use a finite- 

difference method). The velocity model is perturbed 

until the traveltimes from the synthetic seismograms 

are best fitted to the observed traveltimes in a least 

squares sense. A gradient optimization method is used 

and the formula for the Frechet derivative (perturba- 

tion of traveltimes with respect to velocity) is derived 

directly from the wave equation. No traveltime pick- 

ing or ray tracing is necessary, and there are no high 

frequency assumptions about the data. Body wave, 

diffraction, reflection and head wave traveltimes can 

be incorporated into the inversion. In the high- 

frequency limit. WT inversion reduces to ray-based 

traveltime tomography. It can also be shown that WT 

inversion is approximately equivalent to full-wave 

inversion when the starting velocity model is “close” 

to the actual model. 

Numerical simulations show that WT inversion suc- 

ceeds for models with up to 80 percent velocity 

contrasts compared to the failure of full-wave inver- 

sion for some models with no more than 10 percent 

velocity contrast. We also show that the WT method 

succeeds in inverting a layered velocity model where a 

shooting ray-tracing method fails to compute the cor- 

rect first arrival times. The disadvantage of the WT 

method is that it appears to provide less model reso- 

lution compared to full-wave inversion, but this prob- 

lem can be remedied by a hybrid traveltime + full- 

wave inversion method (Luo and Schuster, 1989). 

INTRODUCTION 

Seismic inversion algorithms span the range between two 

extremes: traveltime inversion (Dines and Lytle, 1979; 

Paulsson et al., 1985; Ivansson, 1985; Bishop et al., 1985; 

Lines, 1988; Justice et al., 1989; and many others) and 

full-wave inversion (Tarantola, 1987; Johnson and Tracy, 

1983; and others). Traveltime inversion typically uses ray 

tracing to compute both the traveltimes and Frechet deriv- 

ative (perturbations of traveltimes with respect to veloci- 

ties). While computationally efficient, traveltime inversion is 

subject to a high-frequency assumption about the data and 

can therefore fail when the earth’s velocity variations are 

characterized by the same wavelength as in the source 

wavelet. On the other hand, we can show that the misfit 

function to be minimized (sum of the squared errors between 

observed and calculated traveltimes) can be qrcasi-linear 

with respect to the relative change between the assumed and 

actual velocity models. A gradient optimization algorithm 

(e.g., conjugate gradients) can thus make rapid progress in 

searching for the correct velocity model and successful 

inversion can be achieved even if the starting model is far 

from the actual model. 

Attempts to bridge the gap between the extremes of 

traveltime inversion and full-wave inversion include Born 

inversion (Clayton and Stolt, 1981; Weglein, 1982; Keys and 

Weglein, 1983; Bleistein and Gray, 1985; Carrion and Foster, 

1985; and others) and other amplitude methods which are 

subject to restrictive assumptions about the data. These 

intermediate methods can be very successful for some data 

sets but usually not for data with strong contrasts in imped- 

ance. Intermediate methods also include surface-wave inver- 

sion (Wattrus, 1989) and diffraction tomography (Lo et al., 

1988) 

Full-wave inversion overcomes limitations imposed by the 

high-frequency restrictions in traveltime inversion and the 

weak scattering approximation of Born methods by perturb- 

ing the velocity model until the synthetic seismograms match 
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the observed seismograms. No approximations are neces- 

sary and the synthetic seismograms are usually computed by 

a finite-difference solution to the wave equation. In addition, 

the FrechCt derivatives are elegantly computed by reverse 

time migration of the seismogram residuals. The problem 

with full-wave inversion, however, is that the misfit function 

(normed difference between observed and synthetic seismo- 

grams) can be highly nonlinear with respect to the velocity 

models. Gauthier et al. (1986) showed that full-wave inver- 

sion can fail for a velocity model with no more than 10 

percent velocity contrast. A reason for this failure is that the 

misfit function is highly nonlinear with respect to velocity 

perturbations in the model. In this case a gradient method 

will tend to get stuck in local minima if the starting model is 

moderately far from the actual model. 

Can one borrow the best characteristics of traveltime 

inversion (quasi-linear misfit function and robust conver- 

gence properties) and full-wave inversion (no approxima- 

tions to the data) to create an inversion method free from 

approximations, robust in the presence of data noise, and 

quickly convergent for starting models far from the actual 

model? Traveltime inversion might achieve this goal if the 

wave equation, rather than the approximate method of ray 

tracing, is used to compute traveltimes and Frechet deriva- 

tives. This paper describes the derivation of a new velocity 

inversion method, wave-equation traveltime inversion (WT), 

which minimizes traveltime residuals using traveltimes and 

FrechCt derivatives computed from solutions to the wave 

equation. The merits of WT inversion are that it can invert 

for some velocity models with more than 80 percent contrast 

in impedance, its misfit function is roughly independent of 

realistic density variations, it can invert for complicated 

velocity models where shooting ray-tracing methods fail, no 

high-frequency assumptions about the data are necessary, 

and traveltime picking and event identification may some- 

times be unnecessary. The disadvantage is that the WT 

method is characterized by less model resolution compared 

to that associated with a full-wave inversion method. We 

first present a derivation of the WT method, and then present 

results from synthetic and real data tests. 

THEORY 

.This section presents the derivation of the wave-equation 

traveltime inversion (WT) method. The key steps are to (1) 

define a connective (Luo and Schuster, 1991) function that 

connects the traveltime residual with the pressure seismo- 

grams (this step allows for the derivation of the FrechCt 

derivative), (2) define a traveltime misfit function (the 

summed squared difference between observed and synthetic 

traveltimes), and (3) derive the perturbation of the misfit 

function with respect to velocity using the wave equation. 

The following analysis assumes that the propagation of 

seismic waves honors the 2-D acoustic wave equation. Let 

p(xr, t; x,),bS denote the observed pressure seismograms 

measured at receiver location x, due to a line source excited 

at time t = 0 and at location x,. For a given velocity model, 

P(Xr, t; x,),,, denotes the computed seismograms which 

satisfy the acoustic wave equation 

1 d?p(r, t: s,) 

c.?(x) at’ 
- p(x)V * 

= s(t: s). (1) 

where ~0) is the density, s(r: .Y) is the source function, and 

c(s) is the wave speed. 

Connective function 

We now use a crosscorrelation function to define a con- 
nective function that connects the traveltimes with the 

pressure field. The degree to which the synthetic and ob- 

served seismograms match each other can be estimated by 

the crosscorrelation function 

where A(x,.: .Y,)“~, is the maximum amplitude of p(x,, t; 

x,)&s and T is the shift time between synthetic and real 

seismograms. The divisor A(x,; _v,)& normalizes the ob- 

served seismograms to a maximum amplitude of 1 and 

eliminates amplitude problems due to inconsistent coupling 

of the geophones or source to the earth. 

We seek a 7 that shifts a synthetic. seismogram so that it 

“best” matches the observed seismogram. The criterion for 

“best” match is defined as the traveltime residual AT that 

maximizes the crosscorrelation functionf(x,, T; x,), i.e., 

f‘(x?, AT: x,) = max {f(x,. 7: x,)~T E [-T, T]}, (2) 

where T is the estimated maximum traveltime difference 

between the observed and calculated seismograms. For the 

examples in this paper. we use only the transmitted wave- 

forms by windowing out all other arrivals so that the AT 

corresponds to the traveltime difference between the ob- 

served and calculated transmitted arrivals. Note AT = 0 

indicates that the correct velocity model has been found 

which generates a transmitted wave arriving at the same time

as the observed transmitted wave. 

The derivative off(x,, T; x-,~) with respect to T should be 

zero at AT unless its maximum is at an end point AT = 7’ or 

AT = -T: 

dt 
l)(X,., t + AT; -r,),hs 

= 
AC-r,; X,)oh$ 

P(.U,, r; X,)cal = 0, (3) 

where i, = dp(x, t; x,)/at. Equation (3) is the connective 

function which will be used to compute the Frechet deriva- 

tive. 

Misfit function 

The WT method attempts to determine a velocity model 

c(x) which predicts seismograms p(xr, t; x,)~~, that minimize 

the following misfit function: 
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where AT is defined by equation (2) and the factor 112 is 

introduced for subsequent simplifications. This criterion can 

be generalized to account for the estimated observation 

errors or a priori information in model space. 

A gradient method can be used to find the velocity model 

that minimizes equation (4). For simplicity, we discuss the 

steepest descent method although the conjugate gradient 

method can also be used (Tarantola, 1987). To update the 

velocity model, the steepest descent method gives 

c(x),! + I = L.(-~)I + q,Y(X)k 1 (5) 

where ye is the steepest descent direction of the misfit 

function S and ak is the step length (see Appendix B) for the 

kth iteration. The central problem is how to compute y(x) 

using the wave equation. To obtain y(x), take the derivative 

of S with respect to the velocity model c(x): 

Y(X) = - & = -c c ; AT(s,.. x.7). (6) 
s r 

Using equation (3) and the rule for an implicit function 

derivative, we get 

(74 

1 

=-I 
dtb(x,, t+ AT; X,)oh, 

ap(x,, t; x,),,~ 

E at(X) ’ 
(7b) 

where 

E=- dtP(xr> t + AT; X,)obdd-x,, t; X,)G,I 

= 

/ 
dt b(x,, t + AT; x.,),bsb(x,, t; x,),,I. 

In Appendix A, we show that the Frechet derivative of the 

pressure field p(x,, t; x,),,, is 

ap(x,, t; x,),,~ 2 

a44 
= - Q(x, t; xr, 0) * j(_r, t; x,), 

c(x) 3 
(7c) 

where g(x, t; x’, t’) is the Green’s function for equation (1); 

that is, the pressure field at point x and time t due to the 

impulse source 6(x - x’)6(t - t’). The asterisk represents 

time convolution. Substitution of equation (7~) into equation 

(7b) gives 

a(AT) 2 
-=- 

at(x) c3(x) 
dt B(x, t; xr, 0) * i7(x, t; x,) 

b(X,, t + AT; x,),bs 
X 

E 

and substituting equation (7d) into equation (6) gives 

(74 

(84 

where ST is the pseudotraveltime residual, 

2 
s’d.vr, t: S,) = -E p(X,.. t + AT: .~,)&,~T(.X,., X,). (8b) 

Using the identities (Tarantola, 1987) 

I 
dt [f(r) * g(dlW) = 

I 
dt s(tKf( - t) * WI, 

g(s, -t: x’, 0) = g(.r, 0: x’. t), 

we can rewrite equation (8a) as 

Y= -A 
(.3(x) 

dt $(x, t; x,)~‘(x, t; x~), (9) 
J 

where 

p’(.r, 1; .r,) = c g(x, -1; X,, 0) * 8T(Xr, t; X,), 

p(x, t: x,) is the pressure field calculated for the current 

velocity model c(x) and p’(x, t; x,) is the field computed by 

reverse time propagation of the pseudoresidual ~T(x~, t; x,) 

acting as a source at receiver location x,. This result is the 

same as that of full-wave inversion except 87 is used instead 

of 

SP = P(.Tr, t: X,),bs -P(Xr > t; X,),,I. (10) 

Combining equations (9) and (5) yields an iterative method 

to invert for a velocity model c(x) from traveltime residuals. 

In Appendix B, we describe the computer implementation of 

this theory. 

RELATIONSHIP OF WT INVERSION TO RAY-TRACING 

TRAVELTIME TOMOGRAPHY AND FULL-WAVE INVERSION 

We show that in the high-frequency limit and under a 

linear perturbation assumption the WT method reduces to 

ray-tracing traveltime tomography. We also show that the 

WT method is approximately equivalent to full-wave inver- 

sion if the starting model is close to the true model. 

According to 3-D asymptotic ray theory, 

P(xr, t; X,),,I = A(x,; X,),,t@t - 7(X,; X,),,I], (11) 

where 7(x,; x,),,I is the traveltime computed along rays for 

a given velocity model and A(x,; x,),,~ is the amplitude 

factor which accounts for spherical spreading losses 

(Bleistein, 1984). Substituting equation (11) into (7b) yields 

a(h) 1 
-=_ 
at(x) E 

dt @(x,., t + AT; xs),bs 

i 

dA(xr; Xs)caI 
X 

at(X) 
h[t - T(Xr; X,)obsl 

- A(X,; X,)c,,$t - T(Xr; X,)C,I] (124 
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where 

E= 
I 

dtj(x,, t + AT; X,)obsA(X,; ~s)ca,tit - +r; x,),d]. 

(12b) 

Ray-tracing tomography employs a linear perturbation as- 

sumption, i.e., when the velocity c(x) is perturbed, the 

raypath remains unchanged for first-order variations in ve- 

locity and traveltimes. An unperturbed raypath leads to an 

unperturbed amplitude with a constant ray tube. Therefore, 

setting the derivative of A(x,; x,),d with respect to c(x) to 0 

in equation (12a) and substituting equation (12b) into equa- 

tion (12a), we get 

a&) a~(&; x,),al a@~‘) -= - 
ah) &(x) = - a+) ’ 

ww 

where AT’ = T(Xr; X,)& - 7(X,; X,),d and 7(X,; X,)& iS the 

traveltime picked from real data. This result shows that the 

Jacobian matrix in ray-tracing tomography is a special case 

of our Jacobian operator in equation (7) for the high- 

frequency and linear perturbation assumptions. 

To establish the relationship between WT and full-wave 

inversion, assume p(xI, t; X,)&s iS the seismogram for the 

true velocity model c(x). If the current velocity model is 

c(x) + &z(x) and &z(x) is small, then the calculated seismo- 

a 

gram p(xr, I; ~,)~d differs by only a time shift from p(xr, t; 

x,),bs 9 

P(Xr, t; X,),al =P(Xrr t + AT; x,),bs 

This assumes that the amplitude differences are negligible. 

Therefore, 

tixr, f + AT; x,),bs = 

P(&, t + AT; %),bs -dx,, I; &jobs 

AT 

d&, 2; x,)cal -d-h, t; x,),bs 
x 

AT. ’ 

Substituting the above equation into equation (8b) yields 

8T(&, t; X,) =; b(Xr, t; x,),bs -d&v t; %),,I1 = ; &- 

(13) 

This result shows that 67 equals Sp except for a factor of 2/E, 

the WT inversion method is similar to full-wave inversion when 

the current velocity model is close to the true model. In 

practice, however, it is diflicult to determine AT by crosscor- 

relation [equation (2)] when AT is small. This results in less 

velocity resolution compared to that from the full-wave inver- 

sion method. An optimal method might be to use the WT 

method to reconstruct a moderately coarse velocity model and 

C d 

2000 m/s 4000 m/s 

FIG. 1. (a) Dipping layer + fault model. (b) Initial starting model for both WT and full-wave inversion algorithms. (c) Velocity 
field reconstructed by full-wave inversion method after 20 iterations. Source and receiver parameters given in text. (d) Same 
as (c) except the WT method is used for the velocity reconstruction. 
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use full-wave inversion for the finer velocity details. This 

hybrid strategy is successfully exploited in Luo and Schuster 

(1989). 

uration and velocity are the same as that in the Langan 

velocity model (Figure 2b), except the density profile is that 

in Figure 4a. This density function was computed with a 

formula derived from well-log measurements (Gardner et al., 

1974) NUMERICAL EXAMPLES 

The WT method is tested on three different crosswell data 

sets: synthetic crosswell data associated with a dipping layer 

and a fault model, synthetic crosswell data associated with 

an earth model (Langan velocity model) derived from a well 

log in Southern California (Langan et al., 1988), and real 

crosswell data collected by Exxon in Texas. The dipping 

layer + fault model is used to verity that WT inversion is 

more robust than full-wave inversion, and the Langan ve- 

locity model is used to show that WT inversion succeeds 

when ray tracing fails. The real data inversion is used to 

demonstrate that the WT method can successfully invert 

velocities from real data. 

Crosswell fault model 

Figure 1 illustrates a faulted crosswell velocity model 

where both the full-wave and WT methods are used to 

reconstruct the velocities from synthetic data. Figure la 

shows the true velocity model from which we calculate the 

synthetic seismograms by a finite-difference method. The 

vertical source and receiver wells are along the left and right 

margins of the model, the two wells are offset by 90 m, and 

the well depth is 210 m. The peak frequency of the Ricker 

source wavelet is 80 Hz, 21 sources are evenly spaced in the 

left well, and 36 geophones are evenly spaced in the right 

well. Figure lb shows the initial velocity model where the 

velocity linearly increases with depth. Figure lc shows the 

reconstructed velocity model after 20 iterations using a 

standard full-wave inversion (or nonlinear inversion) 

method. Figure Id is the velocity model reconstructed by the 

WT method after 20 iterations. The average traveltime (- 1 

ms) residual did not significantly decrease after 15 iterations. 

For this example, the full-wave method fails while the WT 

method provides an accurate velocity reconstruction. 

Langan velocity model 

Figure 2 (courtesy of R. Langan) is associated with an 

earth model derived from a sonic log in southern California. 

The crosswell configuration in Figure 2a consists of eight 

sources in the source well and 83 receivers spaced 4.8 m 

along the receiver well; the sonic log is given in Figure 2b. In 

this case, Ax = AZ = 2.4 m, Ar = 0.5 ms, and 700 time steps 

are calculated. Figure 2c shows the synthetic seismograms 

for the source at depth 168 m. To avoid aperture problems, 

the velocity is assumed to be known from the depths of O-48 

m and 350-400 m. 

Langan et al. (1988) showed that a shooting ray-tracing 

method could not accurately compute the traveltimes in the 

shadow zones of the model, suggesting that a ray-tracing 

tomography algorithm may be inappropriate for a velocity 

reconstruction. Figure 3 shows the velocity profile recon- 

structed by the WT inversion method using a steepest 

descent method. 

In the Langan velocity model, the density is kept constant 

(4.0 10’ kg/m3) for both forward modeling and inversion. In 

the Langan velocity-density model, the acquisition config- 

where c is the velocity (Figure 2b), co = 2000 m/s, and 

l/p, = 2.5 x 10e4 m3/kg. In the inversion, the incorrect 

lightness profile in Figure 4b is used. Despite an incorrect 

assumption of homogeneous density, the WT method still 

achieves an accurate velocity reconstruction (Figure 4d) 

after 10 iterations. 

Exxon crosswell data 

Calnan and Schuster (1989) inverted the first arrival times 

from an Exxon crosswell data set using a ray tracing 

tomography algorithm. The crosswell geometry consisted of 

96 evenly spaced downhole sources and receivers, 23 evenly 

spaced surface sources and receivers, the source and re- 

ceiver well depths were 305.0 m, and the well offset was 

183.0 m. The data and first arrival picks were of superb 

quality, partially due to the use of explosive sources. Figure 

5 depicts a typical common shot point gather from the Exxon 

data set. Figure 6 shows the tomograms inverted from this 

crosswell data set. 

Figure 6 compares the Calnan and Schuster ray-tracing 

tomogram on the right with the WT tomogram on the left. 

The ray-tracing and WT tomograms are quite similar, al- 

0 

loo 
t 
s 

“a 

2 

200 EII 

300 

400 
0 100 200 3a 

HoimaI Disum Cm) 

a b 

c 

FIG. 2. (a) Crosswell geometry with eight sources evenly 
distributed along left well and 83 receivers evenly distributed 
along right well. (b) Sonic log, and (c) pressure seismogram 
for a source at depth 300 m. 
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though the WT tomogram appears to be smoother. The input 

data in each case consisted of the same picked traveltimes 

associated with the well-to-well (8104 traveltimes) and well- 

to-surface (4037 traveltimes) first arrivals. In these figures, 

darkest red corresponds to 2286.0 m/s, darkest blue corre- 

sponds to 1219.2 m/s, and the offset (depth) scale is 183.0 

(305.0) m. The ray-tracing result required three iterations 

using a Gauss-Newton method with a conjugate gradient 

solver, while the WT method associated with Figure 6 used 

9 iterations with a preconditioned steepest descent method. 

The ray-tracing algorithm used a slowness parameterization 

of a 51 by 31 grid of unknown slownesses, while the WT 

algorithm used a grid of 120 by 200 unknown velocities. 

The associated WT traveltime residuals after 0, 3, 6, and 8 
iterations are shown in Figure 7. The CPU time per iteration 

is about 2 hours for each method, although the WT method 

used a 30 Mflop Stellar 2000 computer while the ray-tracing 

tomogram was calculated on a 20 Mflop Stellar 1000 com- 

lca~ I 

0 loo 200 300 400 lrnOA 400 

Deph Cm) aprh Cm) 

a b 

FIG. 3. (a) Actual velocity profile (solid) and initial velocity 
model (dashed line) for WT inversion. (b) Actual (solid line) 
and reconstructed (dashed line) velocity model. 

2.6 

2.4 

2.2 -_ 
0 loo 2fYl 300 400 

npch Cm) 

b 

3m IniuvdLldwModal 
3ooo 

Ma 10 Itcluiau 

1 

FIG. 4. (a) Density log computed from equation (14) and the 
velocity profile in Figure (2b). (b) Assumed density profile 
for WT inversion. (c) Actual (solid line) and reconstructed 
(dashed line) velocity profile. (d) Reconstructed velocity 
profile (dashed line) after 10 WT iterations compared to 
actual velocity profile (solid line). 

puter. Also, the ray-tracing code was considered to be 

inefficiently written. 

CONCLUSION 

A new seismic inversion method is presented which re- 

constructs velocities from traveltimes computed from solu- 

tions to the wave equation. No high-frequency assumptions 

about the data are needed, traveltime picking and event 

identification are sometimes unnecessary, velocities are 

practically decoupled from densities, and the computer time

is no more than that of full-wave inversion. Synthetic tests 

show that successful reconstructions can be achieved with 

models having large velocity contrasts. This is an improve- 

ment over standard full-wave inversion which can fail 

for velocity models with little more than 10 percent 

velocity contrast. Real data tests suggest that this method 

can be as accurate as ray-tracing tomography, and it can 

CROSSWELL SH Y 51 UNFlLTERED 

‘W- 

30 100 150 200 250 300 

=W.V 

CROSSWELL SH X 51 DOWN GOING WAVE 
100, 

FIG. 5. Common shotpoint gather from shothole number 51 
associated with the Exxon crosswell experiment described 
in the text. Top figure is unfiltered CSP gather and bottom 
figure is f-k filtered gather to highlight downgoing reflections. 
Reflections from interfaces are labeled Rl, R2, and R3. Note 
the impulsive quality of the transmitted wavelets. 
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tomography consortium members; Amoco, ARCO, British 

Petroleum, Chevron, Conoco, Exxon, GRI, Marathon, Mo- 

bil, Phillips, Texaco. Finally, we thank Sen Chen, Linda 

Zimmerman, and Exxon for providing the Exxon crosswell 

data set to us. 
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APPENDIX A 

FRECHhT DERIVATIVE 

To obtain the Frechet derivative of the pressure field with 

respect to the velocity [equation (7c)]. we introduce the 

pressure field p(x, t: x,) which satisfies the wave equation 

I 2p(x, t; x,,) 

c(x)’ at2 
- p(s)V . [A VPLY, t; .d] = sv; *,;;Ll) 

The corresponding Green’s function obeys 

1 a’gcx, 1: .Y’, I’) 

c(x)’ at? 

- p(x)V * 

[ 

-!- Vg(x, t; x’, I’) 
P(X) 1 = 6(x - _u’)6(t - t’) 

(A-2) 

g(x, t; x’, t’) = 0 iJ(x, t: x’, t’) = 0 for (t 5 t’). 

A perturbation of velocity T(X) + c(a) + 6c(.u) will produce 

a field p(x, t; x,) + 6p(.r, t; x,) which obeys 

1 a’[p(x, t; x,) + 6p(s. t: .\‘, ,] 

[c(x) + 6c(s)]2 at’ 

- p(.Y)V * 

[ 

1 
p(s) V[p(.u, t; I,) + Sp(s, t: _Y,)] 1 = s(t; x) 

(A-3) 

;l(s, 0; x,) + Sj?(x, 0: s, 1 = 0. 

Using 

and subtracting equation (A-2) from equation (A-3) gives 

1 a%p(x, t; x,) 

[ 

1 

c(x)? at’ 
- P(X)V * p(x) VSP(.X, t; x.,1 

1 

&(x, t; x,) 2. &c(x) 
= 

at’ 
~ + 0(&(x)‘), (A-4) 

c(x13 

Sp(x, 0; x,) = 0 Sb(x, 0; x,) = 0. 

Using the Green’s function, the solution of equation (A-4) 

can be written 

I 
2 . 6c(x’) 

6p(s,, t;r,) = dv(x’)g(x,, t;x’,O)*jj(x’, t;x,)------ 

” c(x’)3 ’ 

(A-5) 

where the asterisk denotes time convolution. Since the 

perturbation occurs only at one point. set 

Then equation (A-5) becomes 

2Ac 
Sp(s,-, t; s,) = g(x,., 1; .Y, 0) * ij(s, t; x,) - 

c(x)3’ 

Dividing by 5~ on both sides, we get equation (7~): 

iip(x,.. t; x.,),,, 2 

l3cj.r) 
= ---y iJ(x, t; x,-, 0) * 6(x, t; x., ). 

c(X- 
(A-6) 

We use reciprocity to allow the exchange x * x,. 

APPENDIX B 

IMPLEMENTATION OF WT INVERSION 

Forward modeling p(.u,., 0: x,) = 0: M(s,., 0; x,) = 0. for (t 5 0) 

In principle, one can use any forward modeling scheme Here 5 is 
which simulates wave propagation; we use a staggered grid 

finite-difference scheme (Virieux, 1984). To use this scheme, 

I 

f 

we rewrite equation (1) as two first order equations qt; x) = dt s(t; s), 

0 

apex,, t; x,) 

at 
= C(.X)zp(x)v * (w(x,., t; x,)) 

+ c(x)%(t; x), 

acs(x,., t; x,) I 
(B-1) 

at 
= p(x) Vj?(.X~, t; x,), 

where 11’ is the particle velocity vector and the initial 

conditions are given as 

where s(t: I) is the source term in the second-order wave 

equation. 

From equation (B-l), we can get p(x,., t; x,),_~, and p(x, t; 

x,) which will be used in the time correlation with the 

reverse time propagation field p’(xI-, t; x,~). As for the time

correlation in equation (9), we need to multiply the field p(x, 

t; x,) byp’(x,, t: x7). We can either choose to store the entire 

history of field p(x, t; x,,) in the computer memory or to 

recalculate it, backward in time simultaneously with the 
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calculation of the fieldp’(x,, t; x,) (Gauthier et al., 1986). We 

chose the latter option. For recalculation of the field p(x, t; 

xs), we need to store the history of the field of p(x, t; x,) at 

the boundaries, and, of course, the final two states of the 

field. 

where the steepest descent method uses 

Backward Propagation 

From equation (9), P’(x,., t; x,~) should satisfy 

1 &‘(&., t; x,) 

[ 

1 

c(x)* at2 
- p(.x)V * p(x) VP’(X, > t; x,) 1 

= 8T(Xr, t; X,?). 

In the time correlation of equation (9), the field Ij’(xr, t; x,) 

is used so that the time derivative can be taken on both sides 

of the above equation: 

1 CY2$(.Xr, t; x,) I 

c(x)? at2 
- P(X)V * 

[ 

- V$(xr, t; x,) 
p(x) 1 

= &r(x,, t; x,y). (B-2) 

Again, to use a staggered finite-difference scheme, rewrite 

equation (B-2) as 

ab'b,, t; x,) 

at 
= c(x)*p(x)v * [W’(x,, t; x,)] 

+ c(x)2sT(x,, t; xs), (B-3) 

ati’(x,, t; x,~) 1 

at 
= p(x) Vli’(x, 3 t; xs), 

with initial condition 

$(xI, T; x,) = 0; lii’(x,., T + 112At; x,~) = 0, 

where, At is the discretized time-step interval used in the 

finite-difference method and T is the total recording length. 

The pseudoresidual ST is calculated from equation (8b) and 

the AT is obtained from equation (2). Since this initial 

condition is an approximation, we need to attenuate the 

amplitudes at the end of each trace to make this approxima- 

tion more reasonable. 

Direction of updating the model 

Instead of using a steepest gradient direction, we can use 

some modified direction for updating the model. In general 

this update scheme can be expressed as 

(.(.X)k + , = c(s)/, + (Yk ’ &, (B-4) 

4r = Y(X)h> 

where y(x) is the negative gradient of the misfit function S 

given by equation (9). Another modification is to use a 

preconditioned gradient direction 

C$k = P(s)/; = y(.r)kl/X - x,/I”? * /lx - s,p. 

This preconditioning compensates for geometrical expansion 

(Beydoun and Mendes, 1989). Of course, one can use the 

well known conjugate gradient direction 

where 

[Pkl’ * [Ykl 

h=[Pi-II’ * [-f&II 

and superscript t indicates matrix transpose. 

Calculation of the step length 

Pica et al. (1988) gives a formula for the estimation of step 

length ‘Y/, in equation (B-4). The final formula is 

[4nl’[rbhl 

a!% = [F4I,l’[F4/,1’ 

where 

[4al’[r(~~M = c [4LY(XJLl 

(B-5) 

and 

[F4xl= 
Y[C.(X, + E4kl - dd.dl fF(.G, t; x.7) 

zz 
& E 

g[c(s)] implies forward modeling to get seismograms for the 

velocity model c(x), 

where E is estimated by 

max {F * 4~)s 
max 14-4kl 

100 . 

Downloaded 27 Feb 2010 to 86.51.114.210. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/


