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ABSTRACT

The objective of this study is to compute 100-yr return value estimates of significant wave height using a new
hindcast developed by the Norwegian Meteorological Institute. This regional hindcast covers the northeast
Atlantic and spans the period 1958–2009.
The return value estimates are based upon three different stationary models commonly applied in extreme

value statistics: the generalized extreme value (GEV) distribution, the joint GEV distribution for the r

largest-order statistic (rLOS), and the generalized Pareto (GP) distribution. Here, the qualitative differences
between the models and their corresponding confidence intervals are investigated.

1. Introduction

Wind-generated ocean waves are, in many cases, the

most critical factor in design of offshore structures and

coastal development. The everyday strain inflicted by

waves weakens most of the local construction and shapes

the coastal landscape. However, the biggest concern is

often related to storm events when wave loads may be-

come catastrophic. As presented by Alves and Young

(2003), Caires and Sterl (2005), and Semedo et al. (2011),

the highest wave conditions globally are found in the

northeast Atlantic, making this area particularly inter-

esting for extreme value analyses.

Considerable effort has been made to obtain accurate

return value estimates of significant wave height, both

locally and globally; see Soukissian and Kalantz (2006)

for a review of earlier works. These estimates are typi-

cally based upon one of two closely related families of

extreme value distributions, either the generalized ex-

treme value (GEV) family or the generalized Pareto

(GP) family (see Coles 2001), where the type of data

extraction determines the family to be applied. With the

GEV distribution, only block maxima are retained from

the initial dataset (e.g., the annual maximum). This is

quite a wasteful approach and therefore requires a sub-

stantial dataset. Alternatively, a fixed number r of the

highest peaks within each block can be extracted to

utilize the joint GEV distribution for the r largest-order

statistic (see, e.g., Soares and Scotto 2004). A third op-

tion is the so-called peaks-over-threshold (POT) ap-

proach, where all uncorrelated peaks above some

predetermined threshold are retained. The data subset

will vary in size according to the level of the threshold,

but should conform to the GP distribution. In the end,

there is no consensus on a method that is superior in all

cases. Sometimes the choice is dictated by the data at

hand. However, more often the discrepancy or agree-

ment between the different approaches is investigated

as a measure of confidence in the return value estimates.

Although in situ wave measurements rely on different

techniques and instruments, they still represent the best

estimates of the ground truth. Unfortunately, they are

also sparsely distributed geographically, contain gaps,

and often span short periods of time, and are therefore

not always adequate for extreme value analysis. Satellite

altimetry is really the only other source of wave height

data, besides numerical models, that offers satisfactory

spatial resolution and global coverage. However, as

polar-orbiting satellites revisit the same location once

every 10–35 days, the temporal resolution is very poor

for wave measurement. Within the context of extreme

value statistics, this problem is addressed by Cooper and
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Forristall (1997), Panchang et al. (1999), and Anderson

et al. (2001). A common approach has been to bin data

into larger geographical areas, (e.g., 28 3 28), with assumed

statistical homogeneous wave conditions. This is illus-

trated in the work of Carter (1993), who fitted the Fisher–

Tippet-type 1 (FT-1) distribution to all data (i.e., the initial

distribution method, IDM), to obtain 50-yr return value

estimates covering the northeast Atlantic. Wimmer et al.

(2006) focused on the same area and reported up to a 37%

reduction in their corresponding estimates going from

the IDM–FT-1 to the POT–GP combination. Two dif-

ferent approaches were applied in Alves and Young

(2003) to obtain global 100-yr return value estimates of

significant wave height,Hs100. They found the IDM–FT-1

more suitable than the POT–three-parametric Weibull

distribution (3PW) when working with satellite data.

Attractive alternatives to in situ and remote sensing

data are modeled reanalyses or hindcasts as these data-

sets offer regularity both in time and space. Caires and

Sterl (2005) based their extreme value analysis on the

45-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40; Uppala

et al. 2005) to obtain globalHs100 estimates. By utilizing

the POT approach with the threshold set at the 93th

percentile of the initial data, they assumed the retained

data to conform to the exponential distribution—one of

the three forms incorporated in the GP family. The final

result was adjusted by a linear relation found between

the return value estimates based on the reanalysis and

the available buoy observations. In areas where the as-

sumption of exponentiality was found to be inapplicable,

estimates were usually found to be conservative (i.e., too

high).Williams (2005) performed a similar analysis based

on the NEXT Re-Analysis (NEXTRA) hindcast, a re-

vised and updated version of the North European Storm

Study (NESS) hindcast (Peters et al. 1993). This dataset

covers U.K. waters and spans the period 1964–98, but

omits several summer months during the period. The

Hs100 estimates were based on the 3PW distribution fit-

ted to all data above the 95th percentile and calibrated

to observations and altimeter data. Compared to the

results of Caires and Sterl (2005), theHs100 estimates are

significantly smaller, especially within the North Sea.

The main objective of this study is to compute Hs100

estimates covering the northeast Atlantic using a new

hindcast developed by the Norwegian Meteorological

Institute. The hindcast is presented in section 2. TheHs100

estimates will be based on three different statistical models

utilizing different subsets of the initial data, that is, the an-

nual maximum, the r largest-order statistic, and the peaks

over threshold, which we present in section 3. In section 4

we present the results of the different approaches, while

the discrepancies between the estimates are discussed in

section 5. Finally, conclusions are given in section 6.

2. Data

Norwegian Reanalyses 10 km (NORA10)

The 10-km Norwegian Reanalyses (NORA10) make

up the latest contribution to a series of wave hindcasts

developed by the Norwegian Meteorological Institute

(see Reistad et al. 2007, 2011). This regional hindcast

is a dynamical downscaling of the ERA-40 dataset

(Uppala et al. 2005), producing 3-hourly wave fields at

10–11-km grid spacing. The atmospheric forcing is ob-

tained with the 10-km High-Resolution Limited Area

Model (HIRLAM10; Undén et al. 2002). Temperature,

wind velocity, specific humidity, and liquid water in the

boundary zone are relaxed toward ERA-40, while some

of the large-scale features are maintained using a digi-

tal filter. Sea surface temperatures are interpolated

from the ERA-40 dataset or the ice data archive at the

Norwegian Meteorological Institute. For wave simula-

tions a modified version of the wave modelling (WAM)

cycle 4 (Komen et al. 1994), is run on the same grid as the

HIRLAM10, nested inside a WAM model at 50-km

resolution forced by ERA-40 winds (Fig. 1). NORA10

covers the northeast Atlantic, including the North Sea,

the Norwegian Sea, and the Barents Sea.

TheERA-40 dataset spans the period September 1957

toAugust 2002. However, NORA10 is continually being

extended using operational analyses from the ECMWF

as boundary and initial conditions. In the following, we

focus on the period 1958–2009, a total of 52 yr. To en-

sure that NORA10 does not possess a discontinuity of

significance, we have made a statistical comparison of

the modeled and observed Hs at three locations in the

North Sea and the Norwegian Sea: Ekofisk, Gullfaks C,

and Draugen (see Fig. 1). The Ekofisk data are obtained

with a Waverider, while the latter two are obtained with

a platform-mounted radar (Miros). Poor quality obser-

vations have been coarsely filtered by excluding all data

outside the interval 0.5Hs–2Hs of NORA10, and only

data obtained at corresponding hours have been used.

Figure 2 presents the annual bias and the annual dis-

crepancy in the 95th percentile between 1994 and 2008.

There are no abrupt changes in the statistics during this

period. Therefore, any discontinuity present is to be

insignificant in the course of this work and should not

affect the final results.

The added value of running a regional hindcast is

clearly manifested in the superior performance of

NORA10 relative to ERA-40. The model validation

presented by Reistad et al. (2011) indicates no need for

calibration similar to what was performed by Caires and
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Sterl (2005). However, there is a need to establish what

the following Hs100 estimates represent in terms of du-

ration at a point specific location. With a finite model

resolution of 10–11 km, the crossing of a grid cell will

vary approximately with the mean wave period of the

wave system. Generally, the higher the Hs, the longer

the mean wave period and hence the faster the crossing,

governed by the dispersion relation. As the wave climate

will vary substantially within the model domain, it is not

straightforward to give a universal duration estimate.

FIG. 1. Model setup and nesting. Outer boundaries represent the model domain of the
coarserWAMmodel, forced by ERA-40 winds. Inner boundaries enclose the model domain of
NORA10, forced by HIRLAM10 winds. Filled contours represent the bathymetry: 0–50 m,
white; 50–100 m, light gray; 100–150 m, gray; and below 150 m, dark gray. The hatched area
represents the ice coverage by 1 June 2011. In the top-left corner, the oil rigs Ekofisk, Gullfaks
C and Draugen are shown offshore of Norway.

FIG. 2. (top) Time series of annual bias inHs (NORA10-OBS). (bottom)Annual discrepancy
in the 95th percentile of Hs (NORA10-OBS). The statistics are based on 3-hourly data at
corresponding hours. August 2002 marks the transition in NORA10, going from initial and
boundary conditions obtained with the ERA-40 to the ECMWF analysis.
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However, in Table 1 we present a model validation of

NORA10 at the same locations as are presented above.

At this stage we include all available observations

(20-min averages) recorded every 20 min at Ekofisk and

every 10 min at Gullfaks C and Draugen. The 3-hourly

NORA10 data have been validated against themaximum

observed Hs within a time window of 61.5 h, Hs at the

corresponding hour, and the 1-, 3-, and the 6-h means.

Similar statistical comparisons have been conducted

using all available data (Hs . 0) and cases where the ob-

served Hs is higher than the corresponding 95th [Hs .

Hs(p95)] and 99th percentiles [Hs . Hs(p99)]. In general,

we see that NORA10 is biased low against the maxi-

mum Hs in all three cases. For all data, the NORA10

validates the best result being somewhere between the

3- and 6-h means. ForHs above the 95th percentile, the

best result is achieved closer to the 3-h mean. This be-

comes even more evident when using data exclusively

above the 99th percentile, which underlines the remarks

made above. Now, as the Hs100 estimates will be well

above the 99th percentile of the data, it is very likely that

these events will validate better against means taken over

even shorter time windows.We therefore assume that the

following Hs100 estimates will represent approximately

a 1-h-mean sea state.

3. Method

The following analysis is primarily based on the ex-

treme value theory presented in Coles (2001). Here, we

use three closely related statistical models to obtain

Hs100 estimates. A common denominator for all ap-

proaches is the assumption of an independent and

identical distributed (IID) time series. While the crite-

rion of independence is discussed in the following, the

violation of the homogeneity principle is addressed in

section 5.

Each initial 3-hourly time series needs to be reduced

to a subset of uncorrelated data entries, or peak events.

A pragmatic way of dealing with this issue is to require

a minimum time interval between each entry. Here, we

use 48 h to decluster the dataset (Caires and Sterl 2005;

Lopatoukhin et al. 2000). This exceeds the average time

scale of the passing of an extratropical cyclone and

should prevent data representing the same weather sys-

tem. The subset is further reduced by only retaining the

highest events. This is traditionally done either by re-

taining a constant number (r) of the highest entries per

block, where a block refers to a year, or by retaining all

peaks above some predefined threshold, the POT ap-

proach. With r 5 1, the former reduces to the annual

maximum (AM), while r . 1 is known as the r largest-

order statistic (rLOS). These three data subsets (AM,

rLOS, and POT) descend from the same initial dataset,

but conform to different distributions and require dif-

ferent attention.

a. The AM model

Let Xi 5 X1, . . . , Xn represent a random sequence of

independent variables with the common distribution

function F (IID), then the distribution of the block

maximum Mn 5 max (Xi) can be expressed by

TABLE 1. Statistical comparison of modeled and observed Hs for Hs . 0, Hs . Hs(p95) and Hs . Hs(p99) at Ekofisk (2001–2009),
Gullfaks C (1999–2009), andDraugen (1996–2009). The 3-hourly NORA10 data are validated against the maximum observedHs(20 min)
within61.5 h of NORA10, the mean observedHs over periods of 20 min and 1, 3, and 6 h, centered at the time of NORA10. Statistical
measures shown are the scatter index (SI, %), the NORA10-OBS bias (m), the correlation coefficient (R), and the regression line of
NORA10 5 a 1 b 3 obs.

Ekofisk Gullfaks C Draugen

Obs period SI Bias R a 1 bx SI Bias R a 1 bx SI BIAS R a 1 bx

Hs . 0 max 20 min 16.50 20.17 0.97 0.07 1 0.89x 16.29 20.24 0.95 20.01 1 0.92x 20.83 20.18 0.94 0.15 1 0.88x
20 min 17.54 0.07 0.96 0.03 1 1.02x 17.26 0.01 0.95 0.08 1 0.97x 21.17 0.05 0.94 0.23 1 0.93x

1-h mean 16.03 0.06 0.97 0.00 1 1.03x 16.60 0.01 0.96 0.06 1 0.98x 20.42 0.06 0.94 0.23 1 0.94x
3-h mean 15.48 0.06 0.97 20.01 1 1.04x 15.86 0.01 0.96 0.04 1 0.99x 19.60 0.05 0.95 0.22 1 0.94x
6-h mean 15.23 0.06 0.97 20.04 1 1.05x 15.07 0.01 0.96 20.01 1 1.01x 18.31 0.05 0.95 0.18 1 0.95x

Hs . Hs(p95) max 20 min 11.33 20.56 0.82 1.05 1 0.73x 11.21 20.43 0.79 20.18 1 0.96x 12.30 20.56 0.78 20.24 1 0.96x
20 min 12.44 0.10 0.78 0.48 1 0.93x 12.76 0.02 0.76 20.06 1 1.01x 13.92 20.10 0.75 20.35 1 1.04x

1-h mean 10.47 0.16 0.85 0.22 1 0.99x 12.22 0.05 0.79 20.35 1 1.06x 13.29 20.07 0.78 20.56 1 1.07x
3-h mean 9.76 0.18 0.87 0.19 1 1.00x 11.70 0.09 0.82 20.56 1 1.10x 12.84 20.06 0.80 20.60 1 1.08x
6-h mean 9.88 0.25 0.86 0.23 1 1.00x 11.75 0.20 0.82 20.61 1 1.13x 12.85 0.02 0.80 20.59 1 1.09x

Hs . Hs(p99) max 20 min 11.18 20.80 0.73 2.20 1 0.61x 9.86 20.45 0.71 0.56 1 0.88x 10.48 20.53 0.73 0.35 1 0.90x
20 min 11.93 0.02 0.81 0.97 1 0.86x 11.17 0.04 0.65 0.65 1 0.93x 11.82 0.02 0.69 0.00 1 1.00x

1-h mean 9.43 0.13 0.78 0.17 1 0.99x 10.59 0.13 0.70 0.19 1 0.99x 11.54 0.08 0.73 20.08 1 1.02x
3-h mean 8.68 0.16 0.82 0.37 1 0.97x 9.91 0.22 0.73 0.34 1 0.99x 11.29 0.14 0.73 0.32 1 0.98x
6-h mean 9.27 0.26 0.79 0.29 1 1.00x 10.36 0.42 0.71 0.97 1 0.93x 11.48 0.35 0.71 0.74 1 0.95x
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Pr(Mn# z) 5 Pr(X1# z)3 � � �3Pr(Xn# z)5 [F(z)]n.

(1)

It follows that if z1 represents the smallest value of z,

whereF(z)5 1, thenFn(z)/ 0 for all z, z1whenn/‘;

that is, the distribution of Mn degenerates to a point

mass on z1. To avoid this difficulty, we renormalizeMn by

M
n
* 5

Mn 2 mn

sn

(2)

and seek a combination of constants (sn. 0) andmn that

stabilizes the distribution of M
n
* such that

Pr(M
n
* , z)/G(z). (3)

Independent of the form of F, it can be shown (Coles

2001) that G(z) must take the form

G(z) 5 exp

(

2

�

11 j
z 2mn

sn

� ��21/j
)

, (4)

where sn and mn represents the scale and location pa-

rameter ofG, respectively, while j is known as the shape

parameter. The distribution of G is categorized into

three classes of distributions depending on j: Fréchet

(j . 0), Gumbel (j 5 0), or reversed Weibull (j , 0).

While the latter is approaching an asymptotic limit on z,

the former two are unbounded. Together, they are known

as the family of the generalized extreme value distri-

bution (GEV).

The parameter estimates are obtained by maximiz-

ing the likelihood function L or equivalently the log-

likelihood function ‘ defined by

‘(z
i
; u) 5 logL(z

i
; u) 5 �

n

i51
log f (z

i
; u), (5)

where u(j, s, m) represents the parameter vector, f

represents the probability density function of the sta-

tistical model and zi are realizations of the same model

(i.e., observed block maxima). This is solved iteratively

and is known as the maximum likelihood approach.

b. The rLOS model

Again, we consider n instances of the IID variable

Xi 5 X1, . . . , Xn, but now the extracted data subset is

expanded to contain the r largest-order statistic. Even

though the expression for the joint density function for

Mr
n and the log-likelihood function differ somewhat from

the GEV, it can be shown that the parameter estimates

correspond to those of the GEV distribution (i.e., j, s,

and m). See Coles (2001) for further details.

By including more data, we hope to improve the fit

between the data and the statistical model. However,

the choice of r will be a trade-off between variance and

bias. For small r [e.g., r5 1 (AM)], the variance between

the data and model is expected to be high, while larger

values of r are subject to increased bias. Here, the choice

of r is based on the likelihood ratio test (Soares and

Scotto 2004; Coles 2001), defined by

D 5 2[‘(M1) 2 ‘(M0)] _; x21, (6)

where ‘(M1) and ‘(M0) represent the maximized log-

likelihood function for the rLOS model of r 1 1 and r,

respectively.We increase r until themodel ofM0 is a valid

representation of the model M1, that is, when D , ca,

where ca is the (12 a) quantile of the x2
1-distribution(a5

0.05).

c. The POT model

If the block maximum Mn 5 max (Xi) has an ap-

proximate distribution of the GEV, given that Eq. (3) is

satisfied, it can be shown that for large enough u the

cumulative distribution function of y 5 Xi 2 u for y .

0 is approximately given by

H(y) 5 1 2 11
jy

~s

� �

21/j

and (7)

~s 5 s 1 j(u 2 m). (8)

This is known as the generalized Pareto distribution.

Similar to theGEV, theGP takes three forms depending

on j. For j 5 0, the GP reduces to the exponential dis-

tribution.

We have explored several options on how to set the

threshold in the POT model, which will be revisited in

section 5. However, our final choice is primarily based

on the Anderson–Darling goodness-of-fit test. This test

quantifies the fit between a statistical distribution and a

set of data, and is especially suited for extreme value dis-

tributions as the conformity at the tail is heavily weighted.

The test statistic is defined as

A2
52n2

1

n
�
n

i51
(2i 2 1)flog[q(i)]1 log[12 q(n112i)]g,

(9)

where q(i) 5 H(y(i)). The null hypothesis H0 states that

y1, . . . , yn originates from Eq. (7). For H0 to hold, the

upper-tail asymptotic percentage points or the critical

values ofA2 need to exceed the test statistic given in Eq.

(9). For the GP distribution, these critical values were

first established by Choulakian and Stephens (2001) and

vary with j when both j and s are unknown. In Table 2,
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the critical values [c0.05(j)] are presented at the 5%

significance level.

Confidence intervals of the Hs100 estimates are ob-

tained with the profile likelihood approach, defined by

Eq. (6).By solvingEq. (4) onbehalf ofm, the corresponding

log-likelihood equations can be reformulated as a func-

tion of ui(z, s, j). By fixing z at different wave heights or

return levels, the log-likelihood function can be maxi-

mized in the usual way. If ‘(M1) represents the maxi-

mum log-likelihood function and ‘(M0) represents

TABLE 2. Critical value c0.05(j) for the Anderson Darling test statistic at the 5% significance level Pr[A2
$ c0.05(j)] for the GP, taken from

Choulakian and Stephens (2001).

j 20.5 20.4 20.3 20.2 20.1 0.0 0.1 0.2 0.5 0.9

c0.05(j) 1.321 1.221 1.140 1.074 1.020 0.974 0.935 0.903 0.830 0.771

FIG. 3. Results of theAMmodel: (a)Hs100 (m), (b) the width of the 95% confidence interval relative to theHs100 estimate given in percent,
(c) the 2.5% confidence limit, and (d) 97.5% confidence limit of Hs100. Notice that some areas slightly exceed the gray scale.
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the reformulated log-likelihood function, then the 12a

confidence interval at z is defined as CIa 5 [ui: D(ui) #

ca], where ca5 3.84146 at the 95%quantile (a5 0.05) of

the x2
1 distribution. An equivalent procedure applies for

the GP distribution. For more details, see Coles (2001).

4. Results

Here, we present the Hs100 estimates and the corre-

sponding 95% confidence intervals based on the three

different approaches. All gray scales are held constant and

span the interval 0–25 m, with white isolines given every

2 m. We also include a plot of the relative uncertainty,

defined by the width of the confidence interval relative to

the Hs100 estimate, presented as a percentage and with

white isolines every 10%. All plots have been smoothed

with a mean filter, that is, assigning the mean value of a

(2N1 1)-by-(2N1 1) gridmatrix to each center grid point.

In panels b and d of Figs. 3–5 N 5 6; otherwise, N 5 3.

The results of the AMmodel are presented in Fig. 3 and

will be used as a benchmark in the following. The main

features of the Hs100 estimate are the global maximum

located southwest of the Faroe Islands, peaking just above

21 m; a branch of the global maximum extending through

FIG. 4. As in Fig. 3, but for the rLOS model (except no areas exceed the gray scale).
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the Faroe–Shetland Channel toward the Norwegian coast;

a local maximum in the central North Sea; and another

maximum in the northern Norwegian Sea. Somewhat

unexpectedly, we find a local minimum in the central

parts of the Norwegian Sea, a feature that contradicts

the general wave climate (i.e., a wave field gradually

decreasing going north-northeast). In about 77% of all

grid points the shape parameter is negative (j , 0; i.e.,

a Weibull type), and Hs is bounded above.

The uncertainty associated with the AM model is

substantial. Atmost, the width of the confidence interval

is 60% of the best estimate. The majority of the un-

certainty is affiliated with the upper level of the confi-

dence interval, which is a result of the positively skewed

x2-distributed profile likelihood. Notice that the main

features of the relative uncertainty are highly compa-

rable to the pattern we see in the Hs100 estimate.

In Fig. 4 we present the results of the rLOS model.

These estimates are based on a constant number r of the

highest-order statistic per year per grid point. Our choice

of r is determined with the likelihood ratio test and lies

between 2 and 3 in theNorth Sea–Barents Sea, 3 and 5 in

FIG. 5. As in Fig. 3, but for the POT997 model.
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the Norwegian Sea, and 4 and 6 south of Iceland. To

investigate the quantitative difference to theAMmodel,

we have plotted the discrepancy between the Hs100 re-

sults of the AM model and the rLOS model, relative to

the AM model (Fig. 6a). Overall, the Hs100 estimates of

the AM model exceed those of the rLOS model and

differ by less than 65% for the most part. The largest

deviation is found in the central North Sea, where the

rLOS model exceeds the AM model by about 20%.

Compared to the AMmodel, we now see a much nar-

rower 95%confidence interval, where the globalmaximum

spans an interval of 18–24 m versus 18–30 m for the AM

model. The relative uncertainty of the rLOS model is

most pronounced in the central parts of the North Sea

and just northeast of the Kola Peninsula, where the

width of the confidence interval constitutes about 30%

of the best estimate. These areas have a positive shape

parameter (j . 0); otherwise, approximately 95% of all

grid points have a negative shape parameter.

Figure 5 represents the results of the POT model.

Based on the Anderson–Darling goodness-of-fit method,

we have set the threshold at the 99.7th percentile of the

initial data. Below the 95th percentile, the GP distribu-

tion is rejected at a 5% significance level at all grid

points. At the 99th percentile there is scattered re-

jection, with more or less total rejection in the North Sea

and the Baltic Sea. The GP distribution is almost fully

accepted at the 99.9th percentile, with the exception of

the Baltic Sea. However, to limit both the variance and

the bias between themodel and the data, we have set the

threshold at the 99.7th percentile of the initial data

(POT997). This leaves a total of 100–150 entries per grid

point.

In general there are only small deviations between the

Hs100 estimates of the POT997 and the AM (i.e., within

65% of the AM estimate). However, two areas stand

out, an area east of the Faroe Islands, where POT997 is

approximately 10% smaller than AM, and another area

southeast of Iceland, where POT997 exceeds AM by

;15% (Fig. 6b). The POT997 model produces tighter

confidence intervals, and as with the AM model, the

highest uncertainty is related to the areas with the

highest return value estimates.

About 30% of all grid points have a positive shape

parameter; otherwise, Hs is bounded above. The total

area of grid points having a negative shape parameter

for the three different models is summarized in Table 3.

Figure 7 illustrates the model diagnostics at six loca-

tions, presented from north to south. These are primarily

chosen because they represent areas of high deviation

between at least two of themodels (Fig. 6).We have also

included the position 67.988N, 02.218E (Fig. 7c), as it is

located within the local minimum of theHs100 estimates

FIG. 6. (left) Discrepancy between theHs100 estimates of AM and rLOS, relative to AM. (right) Discrepancy between theHs100 estimates
of AM and POT997, relative to AM, given in percent.

TABLE 3. Percentage of grid points having a negative shape
parameter (j , 0, bounded above) according to the three different
models.

AM rLOS POT997

77.2 94.8 70.5
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found in the Norwegian Sea (Figs. 3a, 4a, and 5a). In the

first column we present the return value plots of the AM

and rLOSmodels plotted together with the AM data. In

the next column the POT997 model is presented to-

gether with the POT997 data. In both cases each entry is

assigned the probability rank/(n 1 1), where n repre-

sents the total number of data points. In the third col-

umn the three models are compared in quantile plots,

while the last column shows the geographical location of

the comparison.

The sensitivity of the three different models may be

illustrated by a bootstrap experiment. In the following

we have constructed 1000 resamples based on random

draws with replacement from the original data sub-

sets at two locations—71.928N, 7.248E and 67.988N,

2.218E—presented in Figs. 7a,c, respectively. Each re-

sample can be illustrated by its own return value plot,

providing an alternative way of defining the 95% con-

fidence interval. As bootstrap samples have a tendency

to generate shorter tails than the true sample distribu-

tion, we follow the example of Coles and Simiu (2003)

and apply a bias correction to the parameter estimates

of each resample. This ensures that the bootstrap mean

coincides with the best estimate (maximum likelihood)

of each of the original data subsets. In Fig. 8 the indi-

vidual return value plots are presented together with the

best estimates and the confidence intervals based on the

bootstrap procedure and the profile likelihood. Notice

that the bootstrap produces a slightly more symmetrical

confidence interval around the best estimate, while the

FIG. 7. Model diagnostics at (a) 71.928N, 7.248E; (b) 69.548N, 39.438E; (c) 67.988N, 2.218E; (d) 63.078N, 15.478W; (e) 61.888N, 2.568W;
and (f) 56.528N, 3.258E. (left to right)) Return value plots of the AM–rLOS model together with the AM data, where j represents the
shape parameter and r is the number of the largest-order statistic, return value plots of the POT997 model together with the POT997
data where n represents the total number of entries and j is the shape parameter, quantile plots of the three models, and the geo-
graphical location.
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profile likelihood is skewed toward higher Hs. The rel-

ative widths of the two confidence intervals seem to have

a dependence on the shape parameter. For j # 0, the

profile likelihood produces wider confidence intervals

than its counterpart, while the opposite is true for j $ 0.

5. Discussion

Of the three approaches applied in this study, the AM

model is the most wasteful. Here, 52 yr of data are re-

duced from 151 944 to 52 entries per grid point,;0.03%

of the initial dataset. This data subset is easy to handle

and easy to obtain, but decreases our confidence in the

return value estimates. In several areas the relative

width of the 95% confidence interval constitutes more

than 60% of the best estimate (Fig. 3b). Nor does the

AMmodel account for any year-to-year variation.A single

year can have several wave events higher than the next;

still, only one entry is retained. In that way important in-

formation may get censored. Taking into consideration

that the AM model is highly influenced by individual

storms, particularly the strongest ones, it is fair to con-

clude that the approach should be applied with some

care. Nevertheless, we find that the AM model pro-

vides a relatively good fit in areas where the discrep-

ancies among the other models are most pronounced,

(Figs. 7a,b,e,f).

With the rLOSmodel, we retain three or more entries

per year over most of the model domain, letting fewer

severe storms go unnoticed. This clearly tightens the

95% confidence interval compared to the AM model,

almost reducing it in half (i.e., peaking just above 30%of

the best estimate). For the most part the rLOS model

provides somewhat lower Hs100 estimates than the AM

model, and primarily within 65% of the AM model.

However, in a few areas the discrepancy exceeds610%,

as illustrated in Fig. 6. In none of these cases does rLOS

show better conformity to the data compared to the

AM model (Figs. 7a,b,e,f). It is therefore somewhat of

a paradox that more data provide a tighter confidence

FIG. 7. (Continued)
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interval, while the best estimate of the model shows an

increased deviation from the actual data. This only shows

that larger data subsets do not necessarily provide better

results, a consequence of the well-known bias–variance

trade-off. In general, increased data subsets will give

more weight to the lower entries, and put restrains on

the shape parameter of the distribution. For the rLOS

model, the shape parameter shows significantly less var-

iation compared to the AMmodel and is often closer to

aGumbel-typemodel(i.e., j5 0). In some cases this may

prove more unfortunate than others, for example, when

the data belong to more than one population.

The highest uncertainty related to theHs100 estimates

of the rLOS model is found in the central parts of the

North Sea (Fig. 4b). This also corresponds to the area of

highest discrepancy relative to theAMmodel, where the

latter is about 20% lower than the estimates of the rLOS

model (Fig. 6a). This area is located on the continental

shelf in water depths h , 100 m (Fig. 1). For wave

lengths . 4h (transitional depth), the bottom friction

will have an increasing effect on the wave field (WMO

1998). It is therefore plausible that the Hs distribution

may belong to two different populations above and be-

low some threshold of wavelength. With the majority

of the data originating from ‘‘deep water’’ conditions,

where the bottom friction is negligible, a model ex-

trapolation is likely to produce too conservative (i.e., too

high) return value estimates at some point. In such cases

it is very important that the highest entries are suffi-

ciently weighted, which is more likely with the AM

model (Fig. 7f). Some of the same features are found

north of the Kola Peninsula, in the Barents Sea (Fig. 7b).

The POT model provides an alternative approach to

the AM and rLOSmodels. With no consensus on how to

set the threshold, we have explored several options in this

study. In addition to the Anderson–Darling goodness-

of-fit test, we have also tried to automate the threshold

selection by using mean residual life plots (i.e., plotting

the threshold against the mean excesses):

�

u,
1

n
u

�
n
u

i51
[x(i) 2 u]

�

: u , x(i)

* +

. (10)

According to Coles (2001), the curve of the mean re-

sidual life plot should become linear above a threshold u

if the Pareto distribution is a valid approximation. Such

model diagnostics are normally made visually, but for

a larger model domain this is too time consuming and

needs to be automated. We have tried to do so by first

fitting a polynomial function to the mean residual life

plot. This expression is then doubly differentiated to find

a local inflection point, which in most cases should in-

dicate where the function is straightening out. This

FIG. 8. Return value plots ofHs based on 1000 resamples of the data subsets obtained with (left to right) AM, rLOS, and POT997 at (a)
71.928N, 07.248E and (b) 67.988N, 02.218E, marked in light gray. The 95% confidence intervals based on the bootstrap and the profile
likelihood are marked by a gray and a black bar, respectively. The best estimate of the corresponding model is represented by the dashed
line.
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method seems to locate a threshold where the mean

residual life plot becomes linear, but the threshold is too

low according to the Anderson–Darling goodness-of-fit

test. So, initially we wanted to use a nonsubjective ap-

proach to set the threshold. In the end, we have found it

necessary to check the model diagnostics at a selection

of grid points, with our primary focus on those areas

where the Hs100 estimates of the three models differ the

most. With the threshold set at the 99th percentile, the

Hs100 estimates are very much comparable to the rLOS

model; at the 99.7th percentile the estimates are leaning

more closely to the AM model. Based on the model

diagnostics in Fig. 7, we prefer the threshold set at the

99.7th percentile, even though this has a negative effect

on the confidence intervals, as the total area having a neg-

ative shape parameter decreases from 87.7% to 70.5%.

With the threshold set at the 99.7th percentile, the

total number of entries per grid point lies somewhere in

between theAM and rLOSmodels. This is also reflected

in the relative width of the confidence interval, peaking

around 45%of the best estimate (Fig. 5b). On the whole,

the Hs100 estimates are comparable to the AM model,

though the POT997 is the only model providing a global

maximum above 22 m. The relative difference between

the two models exceeds 10% at two locations (Fig. 6).

However, the model diagnostics at these positions

(Figs. 7d,e) are inconclusive and do not indicate any

model being superior to the other.

All of the models are somewhat sensitive to individual

storms. An extreme example is found at 71.928N, 7.248E

(Fig. 7a), where the Hs100 estimate of the AM model is

reduced from 18.0 to 16.2 m when censoring the highest

entry. With the two highest entries removed, the Hs100

estimate is only 14.6 m. This result is further emphasized

by the bootstrap experiment at the same location (Fig.

8a), where all models indicate a large spread in the re-

turn value plots. For comparison, we have also chosen a

position where the three models agree well on both the

Hs100 estimate and the shape parameter at 67.988N,

02.218E. This area is also associated with higher confi-

dence in the estimates, defined by the relative width of

the 95% confidence intervals. Even so, the distribution

of the random draws varies significantly (Fig. 8b).

The three different approaches applied in this study

are based on the assumption that each of the time series

is IID. Independence is attained by exclusively extract-

ing entries separated by a minimum of 48 h, while the

criterion of stationarity is a different matter. The peri-

odic cycle of the seasons is somewhat accounted for by

only extracting the highest entries, providing a dataset

clearly dominated by winter data. Trends, on the other

hand, are unaccounted for. A number of studies have

treated climatic trends of Hs within the northeast

Atlantic (Wang and Swail 2001, 2002;Weisse andGünther

2007) and indirectly by studying changes in storminess

(Alexandersson et al. 2000; Solomon et al. 2007; Wang

et al. 2009a,b). Common to these studies is a worsening

of the wave climate from the mid-1960s to the beginning

of the 1990s. It should also be mentioned that the ERA-

40 dataset, which provides the boundary conditions for

the NORA10, is inhomogeneous itself due to a growing

amount of observation assimilations over the reanalysis

period (Uppala et al. 2005), though no severe inhomo-

geneities related to cyclone activity have been detected

in the boreal extratropics of the ERA-40 data (Wang

et al. 2006). Still, to what degree this influences the re-

turn value estimates of this study is left open. Future

work may follow the example of Menéndez et al. (2009,

2008); Méndez et al. (2008).

This study is comparable to Caires and Sterl (2005) as

it combines data from a hindcast–reanalysis and the

POT model to obtain Hs100 estimates. With the finer

resolution of the NORA10, the corresponding return

value estimates are believed to represent the 1-h mean

sea state, while the Hs100 estimates of Caires and Sterl

(2005) are calibrated to buoy observations averaged

over 3 h (61). Even so, we find ourHs100 estimates to be

lower than the corresponding estimates of Caires and

Sterl (2005). This is probably influenced by several fac-

tors. First and foremost, the datasets are different, as is

clearly demonstrated by the superior performance of

NORA10 relative to ERA-40 in Reistad et al. (2011). It

was therefore found unnecessary to calibrate the initial

dataset, a feature more likely to add bias in areas less

well represented by observations. Second, our fitting

procedure is not limited to the exponential distribution.

As stated by Caires and Sterl (2005), the exponential

distribution does not apply well in the storm tracks of

the high latitudes where the shape parametermore often

is negative (Table 3). The use of a purely unbounded

distributionmay explain why the estimates of Caires and

Sterl (2005) are excessive in the northeast Atlantic.

Third, we have set the threshold higher, at the 99.7th

percentile versus the 93th percentile, putting more

weight on the higher entries and improving the fit.

Fourth, the two datasets cover different periods (1958–

2002 versus 1958–2009). Fifth, the NORA10 does ac-

count for shallow water effects, unlike the ERA-40.

Note, however, that the different period and the shallow

water mode are expected to have minor impacts on the

final results over most of the model domain. On the

other hand, we believe the Hs100 estimates of this study

to be less precise in the westernmost part of the model

domain (i.e., south-southwest of Iceland), as this area is

more influenced by the boundary conditions of the

model (Fig. 1).With the performance of the outerWAM
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model and the ERA-40 highly comparable (Reistad

et al. 2011), there are good reasons to believe that the

Hs100 estimates are too low in this particular area. This

may explain why the global maximum is shifted further

east-northeast compared to the similar estimates ofAlves

and Young (2003), Caires and Sterl (2005), andWimmer

et al. (2006).

The general wave climate, represented by the mean

and the 95th–99th percentiles of Hs, is decreasing going

northeast into the Norwegian Sea and the Barents Sea.

It is therefore somewhat unexpected that we find a local

minimum in the Hs100 estimates in the central parts of

the Norwegian Sea (Figs. 3a, 4a, and 5a). Bearing in

mind the model sensitivity discussed above, this result

would have appearedmore nuanced exclusive of the two

extraordinary wave events above 16.5 m illustrated in

Fig. 7a. However, the bootstrap experiment presented in

Fig. 8 offers a fairly strong indication that the two distri-

butions, located at 71.928N, 07.248Eand 67.988N, 02.218E,

possess shape parameters of opposite signs, indicating

that the northernmost position will see the highest wave

conditions in time. This feature is probably a combined

effect of preferred low pressure tracks and some shad-

owing effects from Iceland and the Faroe Islands.

6. Conclusions

In this study we have presented 100-yr return value

estimates of significant wave height, Hs100, covering the

northeast Atlantic. The estimates are based on a new

hindcast developed by the Norwegian Meteorological

Institute spanning the period 1958–2009. With three

different subsets of the initial data, the annual maximum,

the r largest-order statistic, and the peaks over threshold,

we have utilized three commonly applied extreme value

models, all based on the assumption of stationary wave

conditions. Our choice of r is determined by the likeli-

hood ratio test and varies over the model domain, while

the threshold selection is based on theAnderson–Darling

test and set at the 99.7th percentile of the initial data.

The levels of model performance have been in-

vestigated by return value plots and quantile plots, and

primarily focused toward areas with the highest dis-

crepancies. However, such model diagnostics are sub-

jective and leave it up to the individual researcher to

determine the best model. In general, the Hs100 esti-

mates differ by less than 65%, with local discrepancies

peaking around 20%. In these areas we have found the

annual maximum and the peaks-over-threshold methods

to outperform the r largest order statistic, as the former

two conform better to the highest entries.

The main advantage of utilizing larger data subsets is

tighter confidence intervals. With the annual maximum,

the width of the 95% confidence interval constitutes as

much as 60% of the Hs100 estimate, while the r largest-

order statistics peak just above 30%. However, this

seemingly increased confidence in the estimate is not

necessarily indicative of an improved fit between the

data and the model, which is a paradox.

In the end, no model has been found to be superior in

all cases. Themodel that utilizes themost data should be

preferred provided that the conformity between the

model and the data are intact, as this increases our

confidence in the model estimate. However, bigger data

subsets combined with the maximum likelihood approach

will putmore weight on the lower part of the distribution

and are therefore more likely to be biased at the high

end. This feature has been particularly evident for the r

largest-order statistic in this study. With the consider-

able time span of the hindcast (52 yr), the annual max-

imum has proved to perform well with little bias and

acceptable variance, but low confidence. Overall, the

peaks-over-threshold model has shown the best results

provided the threshold is set high, showing good fit and

reasonable confidence intervals.
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