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Abstract 

This paper presents a comparison of measured and predicted wave forces on a 
vertical wave barrier, defined here as a thin impermeable vertical wall extending from 
above the water surface down to near mid-depth. Theoretical wave loads are computed 
using the eigenfunction expansion method. Measured wave loads are obtained from two 
sets of laboratory experiments, one conducted at the U.S. Naval Academy and the other 
conducted at the Oregon State University in a large wave flume. Results of this study 
suggest that the eigenfunction theory can predict wave loads to within 10% to 20% 
accuracy for a wide range of wave conditions, water depths, and wave barrier drafts. 

Introduction 

Existing methods of predicting forces on vertical wave barriers, as contained in the 
Army Corps of Engineers Shore Protection Manual (1984) or the Naval Facilities 
Engineering Command Design Manual 26.2 (1982), appear to be overly-conservative. 
Both design manuals adopt the Sainflou or Miche-Rungren solutions for wave forces on 
a full-depth vertical wall, and then modify these with an ad hoc reduction factor to account 
for the limited draft of the wave barrier. Both manuals also state that the maximum wave 
force should be computed under the assumption that a wave crest occurs on one side of the 
wall while a wave trough occurs on the other side. In general, however, neither 
assumption is valid; and, as a result, predicted wave loads may far exceed actual wave 
loads for a typical wave barrier. 
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In the present paper, a more rigorous method of computing wave loading on a wave 
barrier, based on the eigenfunction expansion theory, will be reviewed. Results of this 
theory will then be compared to measured wave forces obtained from two recent laboratory 
experiments. The experimental portion of this study is itself unique in that tests were 
conducted independently at two different scales in two different laboratories, with small- 
scale tests conducted at the U.S. Naval Academy and large-scale tests conducted at the 
Oregon State University. 

Background 

An illustration of a vertical wave barrier is shown in Figure 1. The wave barrier 
consists of an thin impermeable vertical wall with a draft or penetration, w, in water of 
depth d. The wave field consists of incident waves with height Ht, transmitted waves of 
height H,:=KtHt, and reflected waves of height Hr=KrHt, where K, and Kr are the 
transmission and reflection coefficients. As waves interact with the barrier, each side of 
the barrier experiences fluctuating dynamic pressures and, because these pressures differ 
on the up-wave and down-wave sides, the barrier experiences time-varying wave forces. 

Figure 1. Definition sketch of wave interaction with a vertical wave barrier. 

It does not appear, however, that these wave forces have been widely studied. For 
design purposes, the most widely used method of computing wave loads on a wave barrier 
is that outlined in the Army Corps of Engineers Shore Protection Manual (SPM) and in 
the Navy Design Manual 26.2 (DM26.2). However, as noted above, this procedure has 
been adapted from experience with wave loading on full-depth vertical walls; and, to the 
authors' knowledge, it has never been verified against measured wave loads on a partial- 
depth vertical wave barrier. From discussions with design engineers,4 it appears that the 
procedure outlined in the SPM or in DM26.2 is overly conservative, and one goal of the 
present study is to evaluate the predictive skill of this method. 

Based on discussions at a Wave Barrier Design workshop, held by Peratrovich, 
Nottingham & Drage, Inc. in Seattle, Washington, on April 24-25, 1995 
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A second goal of this study is to evaluate a more rigorous method of estimating the 
wave loads on wave barriers. Two theoretical methods have been proposed for computing 
the linear or first-order wave forces on these structures: (1) the boundary integral equation 
method of Liu and Abbaspour (1982) and (2) the eigenfunction expansion method of 
Losada, Losada, and Roldan (1992). With these theories, the interaction of the incident 
waves with the barrier is determined based on a solution of the appropriate boundary value 
problem for linear waves. The wave force per unit length on the barrier, /, is then 
computed as 

(i 

f=f(Pup-
P*,)d* (1) 

where P and Pdn are the dynamic pressures on either side of the wave barrier as obtained 
from the theoretical solution. In this paper, we compute these pressures using the 
eigenfunction theory. For given incident waves, this theory determines the reflected and 
transmitted progressive waves, as well as the evanescent wave modes, all of which 
contribute to the pressures on the face of the barrier. To date, however, the eigenfunction 
theory has not been widely accepted for design; and, it is the goal of the present paper is 
to evaluate its validity relative to the design methods now adopted in the SPM or in 
DM26.2. 

Description of Experiments 

Laboratory measurements of wave forces on vertical wave barriers were conducted 
independently in two facilities at two different scales. In the summer of 1996, a series of 
experiments were conducted at the Naval Academy Hydromechanics Laboratory (NAHL) 
using regular waves in a wave tank 37 m long and 1.5 m deep. In the summer of 1997, 
experiments were conducted at the Oregon State University (OSU), using both regular and 
irregular waves, in a wave tank which is 104 m long. The water depth in the OSU tests 
was fixed at 3.0 m so that tests could be conducted at twice the scale used in the NAHL 
tests. In each set of tests, four values of the wave barrier draft, w, were tested, producing 
four values of the dimensionless draft, w/d, of 0.4, 0.5, 0.6, and 0.7. 

In both tanks, an extensive set of regular waves were tested with a wide range of 
relative depths, ranging from near shallow conditions, with d/L of about 0.10, to deep 
water conditions, with d/L exceeding 0.50. For each relative depth, two values of wave 
steepness were tested, with target values 1/40 and 1/30. In the OSU tests, irregular waves 
were also used. These were generated from target JONSWAP spectra, most with peak 
enhancement factors of 3.3. Peak wave periods were in the range of 2 to 6 seconds and 
were selected to produce a range of relative depths, d/Lp, (where Lp is the wavelength 
associated with the peak period) similar to regular wave values. Zero-moment significant 
wave heights, Hmo, were in the range of 0.3 to 0.7 m and were similarly selected to 
produce values of the spectral steepness, H,JLp, similar to the steepness used for regular 
wave tests. 
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One difference between the two test programs involved the way that forces were 
measured. In the NAHL tests, a rigid frame was installed across the 2.4 m tank width and 
the wave barrier was attached to this frame in three sections. The two outer sections, each 
1.05m wide, were rigidly attached to the supporting frame and forces on these sections 
were not measured. The center section, 0.30m wide, was then attached to two modular 
force gages (one near the top and one near the bottom) which were, in turn, attached to 
the supporting frame. The center section was separated from the outer sections by gaps 1 
to 2 mm in width, thus permitting the wave load on the center panel to be isolated and 
measured. In the OSU tests, in contrast, the wave barrier was constructed as a single 
rectangular panel that spanned the entire 3.3 m tank width. This panel was attached to the 
side walls at four points (top and bottom on each side of the tank) by load beams that were 
instrumented with strain gages. 

For regular waves, the forces analyzed in this paper are based on an average of 
force amplitudes in the positive (down-wave) and negative (up-wave) directions. Most 
wave heights were small enough that mean forces on the wave barrier were small and 
difficult to resolve. The force amplitudes were, however, sometimes skewed so that the 
amplitude in one direction (either the up- or down-wave direction) was somewhat larger 
than that in the opposing direction. These amplitudes typically differed by only a few 
percent and, as a result, the two force amplitudes could be averaged with little loss of 
information. For irregular waves, the significant force amplitude was determined from the 
force spectrum. In this case, the zero-moment of the spectrum, m0, was determined, and 
the significant force amplitude was determined as Fnw=2*(moy

A. It is noted that the factor 
of two is used here, instead of four, in order to determine the force amplitude. 

Evaluation of SPM and DM26.2 Design Method 

One of the primary goals of the experiments was to provide data that could be used 
to evaluate the existing design practice as summarized in the SPM or DM26.2. Figure 2 
presents results of this evaluation in which measured wave loads from the laboratory tests 
are compared to those predicted using the SPM approach. Figure 2a shows the results in 
dimensional form (force per unit width across the tank) while Figure 2b shows the same 
results in dimensionless form. In this case, the measured and predicted wave loads are 
normalized by the force associated with a linear wave on a full depth vertical wall as 

p. „  1   sinli kd 

k cosh kd 

In Figure 2a, it is apparent that the wave loads predicted using the SPM or DM26.2 
procedure are generally more than twice as large as those that were measured. In some 
case, predicted forces were three or four times as large as tiiose measured. The scales of 
the two test series are also apparent as the OSU data extends the range of measured values 
to forces that are about eight times as large as those measured in the NAHL tests. When 
the same data are plotted in dimensionless form, it is apparent that the NAHL and OSU 
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data follow the same trends and cover nearly the same dimensionless range of conditions. 
It is still clear, however, that the predicted values are generally more than twice as large 
as those measured. Some predicted forces are more than 2.5 times F0 while none of the 
measured forces exceeded F„ 

25000 

z 
"•   5000 

~ 2*Fmeas 

5000 10000       15000       20000       25000 
F(N/m) - SPM or NAVFAC Method 

Fpred ~ 2*Fmeas 

0.5 1 1.5 2 2.5 
F/Fo - SPM or NAVFAC 

Figure 2. Comparison of measured forces to forces predicted using SPM or DM26.2 
design method, for regular waves. 
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Review of Eigenfunction Theory 

In order to obtain more accurate theoretical predictions of the wave forces, the 
eigenfunction expansion theory of Losada et al. (1992) and Abul Azm (1993) was 
implemented. Kriebel and Bollmann (1996) applied this method to the prediction of wave 
transmission past vertical wave barriers and their solution is repeated here. 

The eigenfunction theory involves solution of the velocity potentials on the up-wave 
(incident wave) and down-wave (transmitted wave) sides of the wave barrier. These up- 
wave and down-wave solutions must then be appropriately matched at the location of the 
wave barrier (x=0). Following Losada et al. (1992), these potentials can be selected to 
automatically satisfies the requirement that the velocities must be matched at all elevations 
below the barrier at x=0. As a result, the velocity potentials must have a spatial 
dependence (in x and z) given by 

<V Z, ' ,(V"0,) + t K Z, e -^ $,„ = Z, e *•*-»> -±RnZne ^~°'> (3) 

where Rn are complex coefficients describing the dimensionless amplitude and phase of the 
progressive (n=l) and evanescent (n> 1) wave modes and where other terms are defined 
below. In this form, the first term in each velocity potential is the incident progressive 
wave mode while the terms in the summation includes both the scattered progressive wave 
(n= 1), and the evanescent wave modes (n> 1). 

The functions Z„ in equation (3) describe the depth-dependence of the wave modes 
and are given by 

gH cosh k(d+z) 
Zn = -i "  (4) 

2 a      cosh kd 

The wavenumbers k„ are given by the solution of the dispersion equation 

o2 = g kn tanh knd (5) 

where the first root is the linear progressive wavenumber, k, = k, and where there are then 
an infinite set of imaginary roots for n > 1. 

The solution for the complex amplitudes Rn must satisfy two additional physical 
requirements: (a) the horizontal velocities must be zero on both sides of the barrier in the 
upper region where -w<z < 0, and (b) the dynamic pressures must match in the gap below 
the barrier where -d<z<-w. As a result, two sets of matrix equations are obtained as 
follows. 
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The first boundary condition, in the upper region, is satisfied by setting the 
horizontal velocities («=9$/3x) equal to zero at the barrier (x=0), by multiplying by the 
orthogonal eigenfunctions, and by depth integrating over the immersed length of the wall 
(-w<z<0), giving 

N 

T, R k Y    = k, Y, (6) £—/      n    n    nm 1     \m \   / 

where the function Ynm is the same as that defined by Losada et al. (1992) 
o 

Y    =  f Z Z  dz n\ 

The second boundary condition in the lower region involves matching dynamic 
pressures or, equivalently, matching the up and down-wave potentials from equation (3) 
under the wall (*=0). As shown by Losada et al. (1992), this yields a second set of matrix 
equations for the unknown amplitudes Rn as 

where Xnm is given by 

2E«Am = 0 (8) 

X    =     Z Z dz (Q\ nm        I       n    m \y) 
-d 

The unknowns R„ can be readily obtained by solving a single set of equations which 
result by adding the two matrices in equations (6) and (8) as 

E^^ + ^J^J^ (io) 

Once the solution is obtained for the unknowns Rn, the wave forces on the wave barrier 
may be determined from equation (1). Based on linear wave theory, the dynamic pressures 
are related to the velocity potentials asp = ipo<P, and the linear wave force per unit width 
(atx=0) is given by 

0 0 

F=/pa f(<bup~<bdJdz = 2/po T,Rn[Zndz (H) 

Substitution of equation (4) gives the following expression for forces on a vertical wave 
barrier 



2076 COASTAL ENGINEERING 1998 

"  Rn   sinli knd - sinli kn{d-w) 

' »-i k„ cosh£ d *•    ' 

For a full-depth wall (yv = d) with perfect reflection, if, = 1, and all other values of R„ = 
0 for n> 1, such that equation (12) gives the force associated with linear standing waves, 
denoted F0, in equation (2). This value provides a convenient normalizing parameter for 
the forces on a partial-depth wave barrier, and experimental results can be compared to 
theory on the basis of the ratio, F/F0. 

Comparison of Theory and Data 

Regular Waves 

Forces computed using equation (12) are compared to selected results of the regular 
wave tests in Figure 3 for values of d/L = 0.12 to 0.50. As may be seen in these 
comparisons, the predicted loads essentially agree with the measured values for each 
relative depth and for each of the four values of wall penetration, w/d, tested. In the top 
of Figure 3, for relatively shallow water depths, the agreement is particularly good. For 
deeper water depths, at the bottom of Figure 3, there is more scatter in the data and the 
eigenfunction solution tends to form an upper bound to the data. In all cases, measured 
and predicted wave loads range from about 20 % to 90 % of the value F0 associated with 
a linear wave reflecting from a full-depth vertical wall. 

A summary of all of the regular wave results obtained in this study is shown in 
Figure 4 where the measured force (dimensionless) is compared to that predicted from the 
eigenfunction theory. From this comparison, it is clear that the eigenfunction theory 
predicts the force amplitude to within about 10% to 20% for all cases tested. The 
eigenfunction solution forms nearly an upper bound to the data and, on average, it tends 
to overestimate the measured wave loads by just a few percent. 

In comparison to the SPM or DM26.2 methods discussed earlier, the eigenfunction 
solution is clearly superior. It can be shown that the eigenfunction method provides 
improved predictive capabilities for two reasons. First, it more accurately models the 
vertical distribution of pressure on the wall without ad hoc reduction factors, especially 
near the base of the wall where the pressures on the two sides of the wall must match. 
Second, it correctly models the phase shifts between incident, reflected, and transmitted 
waves, and between the various evanescent wave components. While the SPM and 
DM26.2 method assumes a 180° phase shift in the water levels across the wall, 
observations show that the phase shift is closer to 90° under most conditions. While not 
shown here, measured values of the phase shift are well-predicted by the eigenfunction 
theory. 
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Figures 3. Comparisons of measured and predicted wave forces for regular waves, for 
selected values of relative depth d/L. 
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Figure 4. Comparison of measured wave loads to those predicted by the eigenfunction 
theory, for all regular wave tests. 

Irregular Waves 

Selected results of tests using irregular waves are shown in Figure 5. In these 
comparisons, the measured data consist of the zero-moment or significant force amplitude, 
derived from the force spectrum as described earlier. The predicted wave loads are 
determined as follows. Starting with a JONSWAP wave energy spectrum, equation (12) 
is used to compute a transfer function between wave amplitude and force amplitude at each 
frequency in the spectrum. The squared value of this transfer function is then multiplied 
by the JONSWAP wave spectrum at each frequency to obtain the force spectrum. The 
significant force amplitude is then derived as two times the square-root of the area under 
the force spectrum. Both the measured and predicted significant force amplitudes are then 
normalized by the force on a full depth vertical wall as computed from the zero-moment 
significant wave height, Hmo, as 

F =p?fl o      r S Jl
m 

1   sinh k d 

k   cosh kd 
(13) 

where kp is the wavenumber associated with the wave period at the peak of the spectrum. 
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Figures 5. Comparisons of measured and predicted wave forces for irregular waves, for 
selected values of relative depth d/Lp. 



2080 COASTAL ENGINEERING 1998 

Results in Figure 5 suggest that the eigenfunction solution, applied on a frequency- 
by-frequency basis in the frequency domain, can provide very robust predictions of wave 
loads across a wide range of relative water depths. Figure 6 presents a comparison of the 
measured and predicted significant force amplitudes for all of the irregular wave tests 
conducted at OSU. As may be seen, the predictions appear to be even more accurate for 
random waves than for regular waves, as all but five points are predicted to within a 10% 
error. 
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Figure 6. Comparison of measured wave loads to those predicted by the eigenfunction 
theory, for all irregular wave tests. 

Summary and Conclusion 

Results presented in this paper indicate that for a wide range of relative water 
depths, and for wave barrier drafts near mid-depth, the eigenfunction expansion theory is 
capable of predicting wave loads to within 10% to 20%, with somewhat more accurate 
predictions for irregular waves than for regular waves. This is considerably more accurate 
than the predictions obtained from the SPM or DM26.2, which were often more than twice 
as larger as the measured wave loads. 
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It is interesting to contrast these findings to those of Kriebel and Bollmann (1996) 
who found that the eigenfunction theory generally over-predicted wave transmission by a 
larger percentage. They found that viscous dissipation in a large vortex at the base of the 
wall acts to reduce the size of the transmitted wave from that predicted by the 
eigenfunction theory. This is of little concern for the prediction of wave forces, however, 
because of the nearly 90° phase shift found between water levels across the wave barrier. 
Wave forces are maximum at the time when the incident and reflected waves form a partial 
standing wave crest (or trough) on the up-wave side of the barrier, but when the water 
level on the down-wave side is near the still water level. At this instant, the magnitude of 
the transmitted wave is of little consequence. 

Finally, it is noted that the eigenfunction solution presented here is consistent with 
linear wave theory with pressures only integrated up to the still water level. Inclusion of 
pressures above the still water level, up to the instantaneous wave crest, did not improve 
the solution but tended to cause the eigenfunction solution to over-predict by a larger 
margin. As a result, it may be inferred that dynamic pressures predicted by the 
eigenfunction theory below the still water level must be somewhat larger than those that 
would be measured if a wave barrier were instrumented with pressure transducers. This 
could be the subject of future research. 
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