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FOREWORD 

Although circular piling is a much-used structural element in shore 
protection, harbor, and other maritime structures, only recently have 
significant advances been made toward gaining a quantitative understand
ing of the forces developed by wave action against piling. The present 
report deals with this subject. 

The report was prepared at the University of California, Berkeley, 
California. The work on which the report is based was sponsored by ~~e 
Office of Naval Research, U. S. Department of t..~e Navy. The au~~ors of 
t..~e report are R. C. MacCamy and R. A. Fuchs of the Institute of 
Engineering Research, University of California. Because of its appli
cability to the research and investigation program of t..~e Beach Erosion 
Board, and through the courtesy of the aut..~ors, the report is being 
publish~d at this time in the technical memorandum series of the Beach 
~rosion BORrd. Views and conclusions stated in the report are not 
necessarily those of the Beach Erosion Board. 

This report is published under authority of Public Law 166, 79t..~ 
Congress, approved July 31, 1945. 
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WAVE FORCES ON PILES : A DIFFRACTION THEORY 

by 
R.C. MacCamy a.nd R. A. Fuchs 

Introduction. This report contains two main resul t.s. In the firs t 
section an exact mathematical solution is presented f or the l inearized 
problem of water waves of small steepness incident on R circular cyl
inder. The nuid is assuIIled to be f r ictionless and the motion irro
tational. This section includes, in a di tion to the f ormal mathematical 
treatment, some simple deductions based on t he assumption of 'very 
small ratio of cylinder diame ter to incident wave-length . The prin
cipal results of the theory are summarized, for c9nvenience in calcu
lations, in the secorn section. Also presented are some suggestions 
as to POflS ible extensions of the theory to take care of more extreme 
wave conditions and other obstacle shape s . 

The second reBul t is an attempt to apply the theory to t.he com
putation of actual wave forces on cylindrical ·piles. The basis of 
comparison is a series of tests performed i n the wave channel. The 
agreeme.nt is found to be quite good in the region in which the as
sumptions of the theory are fairly closely realized. 

Theorr. The problem of diffraction of plane waves from a cir'cular 
cylinder ()Jf infinite extent has been solved both for electromagnetic 
and sound Waves. Only slight modit'i cations are necessary to obtain a 
corresponding solution for ,w~ter' lOaves incident on a ci r cular pile. 
Reference is made to Morsel l )* especiall y for t.he expansions in 
equations 2, 3, 5, and for a survey of the asymptotic developments of 
the Bessel's Functions. 

The following assumptions are made. The fluid i s frictionless 
and moving irrotationally . The ratio of the height of the waves to 
their length is sufficiently small so that all quantities involving 
the parameter (H/L) in the second or higher powers may be neglected 
without sensible error, thus giving rise to the so-called linear 
theory. The waves are indident on a vertical circular cylinder which 
extends to the bottom. The depth of the water is d, finite. 

A set of axes x , y, z is chosen with z directed positively up
ward from the still-water level. The cylinder of radius, a, is 
assumed to lie along the z-axis and cylindri cal waves are incident 
f~om t.l)e negative x-di:rection. The velocity potential of the inci
dent wave then may be written, 

cp (i): .ttl! cosh k (d + z) ei (l<x - CTt) 
2 CT cosh kd 

I H 
III 

*Numbers in parent..l'1.eses refer to list of references on page 11. 
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It is understood here that the actual potential is the real part of 
this complex expression, and ~~at in order to find ~~e physical 
solution in what follows, it is necessary to take real parts. 

Introducing polar co-ordinates rand 9, equation 1 admits of 
an expansion in cylindrical harmonics, having t.~e form: 

cf>F~= -~ cosh ked oj- z) fJo(kr) _ 
2 cosh k d "t (2) 

The assumption is now made that the reflected wave admits of a 
similar expansion. The particular eombination approp~iate to a wave 
moving outward, symmetrically wi tl-} respect to Q, that is such that 
¢ (- Q) = ¢ (9), is, 

Thifl combination of B~s~el Functions is known as the Hankel function 
of the first kind, Hm~lJ (kr), and, for large values of r, has ~l-}e 
asymptotic form: 

Hence equation 3 has, for large values of r, the form of a periodic 
disturbance moving outward in the r direction, with frequency q and 
wave number k, and vanishing at r = ex> • 

For the total velocity potential, ¢, there is taken a super
position of ¢ (i) and an infinite series of terms like the quantities 
Am are then determined by setting ~l-}e particle velocity normal to the 
cylinder, that is ~, equal to zero at the surface, r ~ a. 

a·r 
The result of ~l-}is calculation is, 

cosh k (d+z) 
cosh kd 

H (2) ekr) 
o 

+2 I im(Jm(kr) - m t (2) (kr» cos mQ (5) 
CD J (ka) ~ 
m=' H (2) (ka)Hm 

m 

where Hm(2)(kr) is the Hankel Function of tQ~ second kind and equals 
Jm-i Ym• This result is given by Havelock( 2) for the special case 
of infinite depth. 
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The pressure exerted on the cylinder is computed from Bernoulli IS 

equation, 

(b ) ant 
(6) 

where, in t..~e linear theory, the squared terms are neglected. 

The x-component of the force, per unit length in the z-direction, 
is, 

7T 

I F z ~ Re 21 p (g) a coa (7T' - Q) de 
o 

Only the term in cos 9 will contribute to this integral and the result 
after taking the real part may be written as, 

where 

F
z 

• 2p g H cosh k (d+z) A (ka) cos «(j t - a) 
k cosh kd 

J1 ' (ka) 
tanO: .....:;.--

Yll (ka) 
; 

These functions are plotted in Figures 1 and 2, ka being equal to 
iT" D/L. 

The moment about a point z = u, on a cylinder extending to depth 
v below the still-water level may be easily computed from equation 7, 
assuming that the motion of the fluid j,.s the same as. .if the oylinder 
extended to the bottom. The expressio,n for the moment is, 

mu v • , 
TJ f (z - u) Fz dz 

-v 
To be consistent with the linear theory the integration need only 
be carried up to the still-water level z = 0, the result being 

(8) 

~ ( ) r uk sinh kd"sinh k(d-v) .. v}c sinh k(d-v)+cosh kd· 
ffiu,v • - 7 A ka t cosh kd 

cosh k( d-v)l 
cosh kd J cos «(j t - a. ) (9) 

The special case of a pile hinged about the bottom is evaluated by 
setting u = -d, v = d. 
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(k d sinh kd - cosh kd - 1) 
cosh kd cos (0- t - <1 ) (10) 

The function D (kd) = 1 - cosh kd + kd sinh kd 
cosh kd 

giving the dependence 

on depth is plotted in Figure 3. 

An estimate _of the effect of second order terms on the moment l'flu'v 
may be immediately obtained f1'om equation 6 by evaluating that portion 
of the integral from zero to ~. To the second order, for, 

H 
T7. = '2 sin tT t • (11) 

~ 2 
b. mu -I (z - u) Fz dz .. pg H u A(ka) sin~t cos (0" t -c%) (12) 

o k 

This calculation omits that portion of the se-cond-order terms arJ.sJ.ng 
from the second term in the velocity, but this latter term may be ex
pected to be small. It is noted that the reaul t (12) may be obtained 
by assuming that the force and lever arm are constant over the range 
o 4r Z 61), having t.he value at z • 0 and multiplying these constant 
values by the length, f} • For the special case of a cylinder hinged at 
the bottom the total moment becomes 

ffio+6Db. 2P gH A(ka) D(kd) cosat [1 + k
2

Hd )Sin.,.J (13) 
k3 2D(kd J 

From equation 13 it is seen t.hat the maximum mOIOOnt occurs for, 

1 . (\ 1 -~l+2 [~\~d)]2 nt 1 (14) 
sJ.n fT t max = - b 

k2Hd 
2 D (kd) 

and has the value obtained by ~mbstituting (a-t)max into equation 13. 

For cylinders, the diameters of which are small compared to the 
length of the waves, the foregoing theory admits of several simplifi
cations. Asymptotic values of the Bessel's Functions and their 
derivatives are presented for reference in Table IV. These lead 
immediately to t.he approximate formulas, 

A(ka) ~ ~ (ka)2} 

a (ka) i:' If- ( ka ) 
2 

r (16) 



In particular, equation 7 may then be replaced by 

2 cosh k (d+z) 
-8'1 F z =71' P g H k a cosh kd cos -:-: t 

In ~his form the force Fz admits of a much simpler derivation. 
For a wave incident on a vertical wall at an a rbi trary angle there is 
complete reflection without 10s8 of energy, rei!iulting in a total 
pressure equal to twice that of the incident wave. Assuming that this 
result holds for the cylinder also, an incident wave with velocity 
potential given by equation 1 will give rise to a real pre ssure , 

( ) 
p :-p g H cosh k (d+z) sin (k x -O"t). 

cosh k d 

The resulting force, F, is then obtained by integration as for 
equation 7, giving the relationship 

7T 

Fz :: -2 ap g H cosh k (d+z) fSin (ka cos Q -o-t) cos Q dQ 
cosh kd 0 (18) 

But now for small values of ka, expanding the integrand in equation 18 
gives 

/V 
Fz = - 4 ap g H 

cosh k (d+z) 
cosh kd 

71' 
-2 1 cosha-t 
o 

2 ka cos Q dQ, 

which leads again to equation 7'. It is to be noted in connection 

(19) 

wi th this.. equation, that the force Fz is E}q~al to the so-called 
"virtual mass force l ' in Morison l s resul tUJ provided the experimental
ly d.etermined constant eM is taken as two. The resul t is to be. ex .. 
pected since an essential assumption ot Morison's theory is that the 
form of the incident wave is little affected by the presence of the 
cyli.nder. From equation 23 it is seen that this assumption _is 
equivalent to tile smallness of the ratio of pile diameter to wave 
length. It is to be noted in this connection that the exact theory of 
the present report represents an extension since its accuracy does 
not depend on the relative size of the cylinder. The value of eM 
quoted by Morison for a series of model studies is nearly 1.5. 

This type of analysis admits of certain extensions. For example 
the same technique might be used to obtain forces on more complicated 
shapes, the dimensions of which are .small compared to the wave length, 
since a knowledge of Ule form of the reflected wave 1s not necessary. 
It is also shown in the next section how an estimate of the effect 
of steeper waves may be obtained in a similar manner. 
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A more exact analysis of the relative ' effects of the incident 
and refiected waves is possible from the small cylinder theory and 
will offer justification for the developments of the preceding para
graphs. The surface profile may be obtained from the velocity 
potential, ¢, given by equation 5 from the fonnula, 

.,. 1 aj z = 0 (20) 
., 'lI gat 

this gives 
_He-iG" t 

(,,),= a = " ka 
Q:) 

.2 'r 
n=1 

where use has been made of the identity, 

1 

Hn (2) I (ka) 

Jm(x) Hm(2)' (x) - Jm' (x) Hm(2) (x) = - ~ix 

cos n9] 

(21) 

(22) 

Using the asymptotic formulas for the Bessel Functions for small 
values of ka, equation 21 becomes, on taking the real part, 

sin (crt-f) 

where " :J 

tan~ = 2ka cos Q 

In the same notation the pressure, at the surface of the pile, 

[ 

~ Q) J cosh k (d+z) 
p': .Kl!! 1 +2 I in 1 cos n Q cosh kd 

""1fl«i (2)' 1\1\ (2) I 
Ho (ka) Hn (ka) ~ .-r 

or for small piles, the :real part of equation , 24 gives 

p~gPH (sincrt + 2ka cos Q cosa't) COshhkk~d.Z) 
cos 

(23) 

is, 

-iat e 

(24) 

(25) 

I t can easily be shown t..~at the pressure due "00. the incident wave 
only is to the same degree of approximation, 

(i). cosh k (d+z) 
p = gPH (sl.ncrt .. k a cos Q cos tr t) cosh kd rl. 

(26) 

so that the pressure due to the reflected wave is, -r ' 
(i) cosh k (d+z) 

P = gp H ka cos Q cos (f"t cosh kd 
(27) 
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It is observed ~~ut the first, and largest, term of equation 26 
is independent of Q and hence will contribute nothing to the force, 
F z. Hence the "effective" pressures due to the incident wave and 
the reflected I.laves are identical. This is in contrast to the effect 
on the surface elevation, since equation 23 shows that the deviation 
from that of the incident wave alone is small. 

Summary. The diffraction of long-crested waves incident on vertical 
circular cylinders extending from above the water surface to the 
bottom is treated exactly within the framework of ~~e linearized 
irrotational ~l-}eory. The essential results are summarized below. 

Letting z be the distance along the cylinder, in the direction 
of its axis, with positive direction upward from ~~e still-water 
level, the x-component of the force on the cylinder per unit length 
in the z-direction and at depth z, is, 

2 pg H 
k 

cosh k (d+z) 
cosh kd A(~) cos (cT t - a. ) (28) 

where 

tan a = 

when ~~e surface elevation is given by, 

'7) = ~ sin (k x - (J' t) (29) 

Jl and Yl are the Bessel's Functions of ~~e first and second kinds, 
respectively, and primes indicate differentation. The functions A 
and c:t are plotted in Figures 1 and 2. Additional values can be ob
tained from a set of tables published by the Mathematical Tables 
Project(4). 

The corresponding movement on a cylinder extending to depth v 
below the still-water level and hinged at depth u relative to ~~e 
still-water level is given by 

__ -2gPH (Q) [Uk sinh kd - sinh ked-v) - vk sinh ked-v) 
mu,v k3 A L cosh kd 

cosh kd - cosh ked-V)] e" t _,..) + h kd cos v ~ cos 

7 
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In the special case of a cylinder extending to tile bottom and 
hinged at the bottom, u = - d and v = d and equation 30 becomes 

where 

D (kd) :I 

D (kd) A (¥) cos (crt -a ) 

1 - cosh kd + kd si~h kd 
cosh kd 

(1) 

The function D (kd) is plotted in Figure 3. The moments in this case 
may be easily computed through tile use of Figures 4 and 5. Assuming 
H, T, d, D to be knovm, the ratio D is found from Figure 4 and then roo 
computed from Figure 5. 1 

For the case of small cylinders, that is, such t.hat the ratio 
of the diameter to the wave length is small, t.hese formulas may be 
greatly simplified. This appears to be the most important case as 
is seen by considering Figure 2. For a 150 foot ocean wave, the 
cylinder diruneter could exceed fifteen feet without appreciable de
viation from the approximate formulas. For this condition t.he functions 

A (Q) 
L 

and C1 (~) may be replaced by 

(Q) + (~) 2 
D ) '" .,,3 (Q/ A '" 

L 
; d (1 =""4 L 

The force, F z, t.hen becomes 

Fz ~ 
7f' 2 P ~ 

D2 ( !! ) cosh k (d + z) cos a-t 
2 L cosh kd 

and the surface elevation at the circumference of the pile may be 
written, 

"J 
H V 1 + 

r?D2 
= 2" L2 

cos2 9 sin (cr t - t ) 
where 

tan ." 1m ". L cos 9 , 

while the pressure, at depth z, as a function of Q, is 

pg H 
p = 2 cosh k (d+Z)-'l +4][2 D2 

cosh kd \j 12 
cos2g sin (a-t + 8) 

8 
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(28' ) 

(3) 
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where 

tan 8 
__ 2.".n f"\ 

-L-- cos" 

A comparison of equations 29 and 30 indicates the maximum force and 
moment occur almost ninety degrees out of phase with the crest of the 
wave, that is approximately at the time the wave is passing through 
t..l1e still-water level. 

In t..l1e formulas t..l1us far presented the linear theory has been 
strictly followed. Approximations to the effects of steeper waves may 
be obtained by making some additional assumptions. It has been shown 
previo~~ly that in the case of small piles the force, Fz , given by 
equation l' is exactly twice that of the incident wave alone. Assuming 
that this is a general result, the second and higher order terms in 
the parameter (!i) may be introduced into the force calculations. To 

L 
the second order, t..l1e force obtained in this manner is, 

2 Fz 
~=---=-=- = P 7Tg D H 

cosh k (d+z) (!.D) sin~t + ~H) (3 cosh 2 k (d+z) 
cosh kd L L 3 4 sinh kd cosh kd 

1 ) C2lrLD) '=2-S1":"'"' nh~~2~k-:d:--- sin 2 tr t 

for the surface elevation of, 

TJ/H = ~ cos a t + '[ .". (~) ctnh kd (1 + -2--
3
----) cos 2 cr t 

sinh2 . • ~ kd 

(34) 

For purpose of calculation a set of force distribution curves 
has been presented in Figures 6 and 1. The corresponding moments may 
be computed graphically according to the following procedure. For 
the moment about a hinge at depth zl compute zl/d on the vertical 
scale 0 A new curve then may be plotted with abscissa Z zl 

Cd - d)d 
times the old abscissa, and the corresponding moment will be equal to 
the area under this curve, after multiplication by the respective 
numerical factors. The coefficients of the sin O"'t and sin 2 tr t 
terms in the force equation have been designated F z {l) and F z (2) , 
respectively. 

The finite height of the waves introduces a second correction to 
the calculated moments, namely the contribution to the total moment 
of t..l1at portion of the wave above or below the still-water level. 
For a pile hinged at position u this correction term is, 
approximately, 
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2 
6m = pg H u 

u k 
D A ( L ) cos (0- t - a.) sin 0" t (36) 

Comparison with Experiment. A series of experiments has been carried 
out by NoriRon(S) in the viave channel to measure moments on cylindrical 
piles under varying sets of wave conditionso The cylinders were 
hinged at varying depths and subjected to regular wave trains which 
were of essentially three types, moderately steep .. raves in shallow 
water, steep vlaves in deep water and low waves in deep water. In Table I 
are presented the results of these experiment.s for piles hinged on 
the bottom in low waves in deep water. The theoretical moments, roo, 
computed from the graphs of Figures 4 and 5, are corrected for the 
finite height of t.l:1.e v;raves by adding L) m_d as given by equation 36. 

In Table II the results for the largest cylinder in the same 
vrave conditions are presented with the pile hinged at varying depths, 
z. It is seen that in both of "t-hese tables, in vhich the actual 
conditio~~ approxlllate the assumptions made in solution, the agreement 
is good. 

In Table III the results for the first two types of waves are 
presented. The first three entries correspond to moderately steep 
waves in shallo\-l water, and the last three to st.eep waves in deep water. 
The deviations here are seen to be quite large, reflecting the fact 
that the waves cannot be closely approximated by sine waves in this 
range of Hand d. 

L L 

Conclusions and Recommendations for Further Work. The rather large 
deviations of the experimental results from calculated values, which 
are indicated in Table III, give rise to ~he need for a consideration 
of possible sources of error together with possible modifications. 
In order to obtain agreement with experiment }iorisonO) has intro
duced a Recond component of force on the pile which he designates as 
a "drag" force. It has been previously pointed out ~hat his accelera
tive force, in the special case of small piles, may be identified 
wi th the diffraction theory of "t-his report, provided em is taken 
equal to two. The introduction of the drag force is then equivalent 
to the assumption that drag and diffraction forces may be separated, 
each being considered to act independently of the other, an assumption 
which may not be vlell justifiedo 

The force attributed to ttdragi~ is essentiaJ.ly of two parts. One 
arises from the viscosity of the fluid and the corresponding 
frictional drag exerted by ~he fluid moving past ~he cylinder. This 
problem has been considered approximately using Schlicting's t.heory 
of periodic boundary layers and the resu1t.s indicate that frictional 
effects are unimportant. The second part of the drag force is due 
to the separation of the lines of flovJ, with t.he resultant de~rease 
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in pressure behind the cylinder. The wake behind the cylinder is 
then essentially a region of no-motion except for the possible forma
tion of vortices. The exact nature of ~~is wake is not well . under
stood even for the case of steady flow and very little is known 
about periodic motion, for then there is continual change with in
creasing and decreasing velocity. 

For the diffraction theory presented in ~~is report the motion is 
symmetrical around the cylinder. Hence no separation occurs and the 
wake drag must be zero. In light of this result it seems doubtful that 
the correction due to drag could be made simply by addition of a term 
corresponding to a wake while still maintaining the same diffraction 
force. . 

Drag forces are determined experimentally for the case of steady 
flow past a cylinder in the following manner. The assumption is made 
that ~~e drag force is proportional to the square of the velocity, 
the diameter of t..~e cylinder and the density of the fluid. The con
stant of proportionality, called CD' is then determined empirically 
for various values of the Reynolds number. f~rison has assumed that 
this result will also hold for periodic motion, an assumption vihich 
needs considerable investigation, since the flow behind the cylinder 
may not be able to aclj ust rapidly enough to maintain steady state 
conditions. Some calculations have been made, hO;'lever, using Morison's 
assumptions and it is found t..~at the introduction of drag does not 
appreciably improve the results. 

The results of this report indicate ~~at a great deal of additional 
work might profitably be carried out. In particular a detailed ex
perimental study, with photographs, of the actual state of motion be
hind the cylinder would be of considerable value in estimating the 
effect of drag. It might be expected that for moderately small 
velocities t..~e motion up to a certain point on the cylinder is well 
approximated by the diffraction t..~eory, while beyond that point the 
flow separates leaving a dead water region. If this should prove to 
be the case, additional theoretical resul~9 are possible. 
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• TABLE I 

D d H (mo) expo (me) theo. Illo + D. Illo 
(in·l r L ~ft. lbs.) ~ft. lbs. ~ (ft. lbs.~ 

.1. 0.40 0.037 0.0207 0.0202 0.0205 2 

1 0.41 0.038 0.0203 0.0207 0.0211 "2 

1 0.40 0.036 0.0903 0.0804 0.0816 

l. 0.40 0.037 0.0998 0.0813 0.0825 

2 0.40 0.037 0.2910 0.314 0.320 

2 0.40 0.037 0.2905 0.310 0.315 

TABLE II 

D· • 2 inches 

z d H (Illo) expo }I!'o) theo. (Inc +D.mo) 
<t r r (ft. lbs.) ( t. lbs.) (ft. lbs.) 

0.25 0.39 0.037 0.0335 0.0311 0.0373 

0.42 0.40 0.039 0.0836 0.0808 0.0894 

0,52 0.40 0.037 0.112 0.110 0.120 

0.68 0.40 0.038 0.154 0.176 0.187 

0.78 0.39 0.037 0.205 0.221 0.232 

0.98 0.40 0 .. 037 0.291 0.315 0.320 

0.98 0.40 00 037 0.291 '0.310 0.315 

• 
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D 
(in. ) 

1 
"'2 

1 

1 

2 

2 

TABLE III ----
d H (mo) expo (mo) theo. (m?.6.m) 
r L (ft . Ibs.J. i£t. l bs . ) _(ft . Ibs. ) --

0.15 0.044 00:1158 0.0650 0.0703 

0.16 0.044 0 0 0785 0.oL~08 0.0428 

0.39 0.093 0 0 3900 0.2065 <].2240 

0.16 0.045 0,,2205 0.1530 001610 

0.40 0. 090 00962 0.822 0~ 8 86 

TABLE IV 

Asymptotic Expansions for Bessell g Functions and Thair" 
Derivatives for Small x. 

J o (x) "V 1 J : (x) "" 
x 

0 - ·Z 

J1 (x) tV x Jlf (x) -""\J 1 

7 2 

J m (x)rv 1m (~)m 
(X)N em : 1) ! eX ) 

m-l 
J m 

I 

2 2. 

2 '") 

Yo (x),..., if (In x ~ r ) Y ; (x',~=. '( :: 0 .1159 0 J 7TX 

(x) 'V 
2 ? 

Yl 
Y I (x),V~'i 

TTX I " 
TT xc.. 

(m ~ 1)! ? m I " 
m ~ 1 

Ym (x) rv ~ (i) Y ! (X)IV ~ ( ~) 
rr m " 2 11 x 

ill > 0 
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