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FOREWORD

Although circular piling is a much=-used structural element in shore
protection, harbor, and other maritime structures, only recently have
significant advances been made toward gaining a quantitative understand-
ing of the forces developed by wave action against piling. The present
report deals with this subject.

The report was prepared at the University of California, Berkeley,
California. The work on which the report is based was sponsored by the
Office of Naval Research, U. 5. Department of the Navy. The authors of
the report are R. U. MacCamy and R. A. Fuchs of the Institute of
Engineering Research, University of California. Because of its appli-
cability to the research and investigation program of the Beach Erosion
Board, and through the courtesy of the authors, the report is being
published at this time in the technical memorandum series of the Beach
Lrosion Board. Views and conclusions stated in the report are not
necessarily those of the Beach Erosion Board.

This report is published under authority of Public Law 166, 79th
Congress, approved July 31, 1945.
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WAVE FORCES ON PILES: A DIFFRACTION THECRY

by
Re C. MacCamy and R. A. Fuchs

Introduction. This report contains two main results. In the first
section an exact mathematical solution is presented for the linsarized
problem of water waves of small steepness ineident on a circular cyl-
inder. The fluid is assumed to be frictionless and the motion irro-
tational. This section includes, in addition to the formal mathematical
treatment, some simple deductions based on the assumption of very
small ratio of cylinder diameter to incident wave-length. The prin-
cipal results of the theory are summarized, for convenience in calcu-
lations, in the second section. Also presented are some suggestions
as to possible extensions of the theory to take care of more extreme
wave conditions and other obstacle shapes.

The second result is an attempt to apply the theory to the com-
putation of actual wave forces on cylindrical piles. The basis of
comparison is a series of tests performed in the wave channel. The
agreement is found to be quite good in the region in which the as-
sumptions of the theory are fairly closely realized.

Theory. The problem of diffraction of plane waves from a circular
cylinder of infinite extent has been solved both for electromagnetic
and sound waves. Only slight modifications are necessary to obtain a
corresoonding solution for water waves incident on a circular pile.
Reference is made to Morsell)¥® especially for the expansions in
equations 2, 3, 5, and for a survey of the asymptotic developments of
the Bessel's Functions.

The following assumptions are made, The fluid is frictionless
and moving irrotationally. The ratio of the height of the waves to
their length is sufficiently small so that all quantities involving
the parameter (H/L) in the second or higher powers may be neglecied
without sensible error, thus giving rise to the so-called linear
thecry., The waves are indident on a vertical circular cylinder which
extends to the bottom. The depth of the water is d, finite,

A set of axes x , y, %2 is chosen with z directed positively up-
ward from the still-water lewvel, The cylinder of radius, a, is
assumed to lie along the z-axis and cylindrical waves are incident
from the regative x-direction., The velocity potential of the inci-
dent wave then may be written,

bi)e =8 H cosh k (d + z)
= 20 cosh kd

ei (kX-O"t;) (1)

#Numbers in parentheses refer to list of refersnces on page 11.



It is understood here that the actual potential is the real part of
this complex expression, and that in order to find the physical
solution in what follows, it is necessary to take real parts.

Introducing polar co-~ordinates r and ©, equation 1 admits of
an expansion in c¢ylindrical harmonics, having the form:

¢(i_»= _%ﬂ cosh k(d + 2z) Elo(kr) - :‘z)"Zimcos el Jm(kr) e-id‘t}

cosh k d

The assumption is now made that the reflected wave admits of a
similar expansion. The particular combination appropriate to a wave
moving outward, symmetrically with respect to @, that is such that

¢ (" 9) - ¢ (9)9 iS,
P Ay cosm © ﬁm(kr) + i Ym(kr)]- 10t (3)

This combination of Bessel Functions is known as the Hankel function
of the first kind, H ) (kr), and, for large values of r, has the
asymptotic forme

i, (1) (kr)~~/1'{—§— oilkr - g”;}'—l ™) (L)

Hence equation 3 has, for large values of r, the form of a periodic
disturbance moving outward in the r direction, with frequency ¢ and
wave number k, and vanishing at r =00 .

For the total velocity potential, @, there is taken a super-
position of § (i) and an infinite series of terms like the quantities
A, are then determined by setting the particle velocity normal to the
cyllnder, that is Q@ , equal to zero at the surface, r = a.

ar
The result of this calculation is,
3 H -i0t sh k (d+z) Jo!(ka) (2)
g gRetor il [iGe) - SR 1,®) (e
o
£ 2] im Ip(ka)
23&\ (J,(kr) - _~(37TZ;;)H (2) (kr)) cos me| (5)

where Hm(z)(kr) is the Hankel Function of zhs second kind and equals
Jp-1i Yo This result is given by Havelock 2) for the special case
of infinite depth.



The pressure exerted on the cylinder is computed from Bernoulli's
equation,

. A W2
< 2 ¢‘ Y

parfy -f BV 13)) ot (6)
where, in the linear theory, the squared terms are neglected.

The x-component of the force, per unit length in the z-direction,
is,

-
F, = Re 24{ p (6) a cos (7 - @) d6
o

Only the term in cos © will contribute to this integral and the result
after taking the real part may be written as,

2P g H cosh k (d+z) 0
F, = i S A (ka) cos (o0t -a) (7)
where
Jq' (k
tanag = —-:L-—(-fl 3 A (ka) = 1
1
bS] (ka) J1‘2 (ka) + Y1'2 (ka)

These functions are plotted in Figures 1 and 2, ka being equal to

T D/L.

The moment about a point 2z = u, on a eylinder extending to depth
v below the still-water level may be easily computed from equation 7,
assuming that the motion of the fluid is the same as if the cylinder
extended to the bottom. The expression for the moment is,

7
my,y = l:(z - u) F, dz : (8)

To be consistent with the linear theory the integraticn need only
be carried up to the still-water level z - O, the result being

_ 2gpH uk sinh kd-sinh k(d-v)=vk sinh k(d-v)+cosh kd
N,v = ‘5;3" A(ka) [ cosh kd

cosh k(d-v) _
mr] cos (ot -a) (9)

The specilal case of a pile hinged about the bottom is evaluated by
setting u = -d, v = d.

(&)



2 gpH (k d sinh kd = cosh kd = 1) 1
m, = —-ig—— A(ka) o T cos (ot =a) (10)

The function D (kd) = L= cosh kd ; }}ES sinh kd  oiving the dependence
cos

on depth is plotted in Figure 3.

An estimate of the effect of second order terms on the moment m;,
may be immediately obtained from equation 8 by evaluating that portion
of the integral from zero to 7 . To the second order, for,

n = % sing t (11)

n
A my -J’ (z = u) F, dz = Eﬂ_i{(-?_ll A(ka) sinodt cos (ot -a ) (12)
()

This calculation omits that portion of the second-order terms arising
from the second term in the wvelocity, but this latter term may be ex-
pected to be small. It is noted that the result (12) may be obtained
by assuming that the force and lever arm are constant over the range

o & 2 £9), having the value at z = 0 and multiplying these constant
values by the length,Y) . For the special case of a cylinder hinged at
the bottom the total moment becomes

2
Mo +Amg = %&H_ A(ka) D(kd) coseat [1 + %)sma{' (13)

From equation 13 it is seen that the maximum moment occurs for,

5 2
1 -Jl 2| kKH d
sin (0 t)oy = ; [D (kd5] (1)

) k%Hd
D (kd)

and has the value obtained by substituting (o t)

max 1nto equation 13,

For cylinders, the diameters of which are small compared to the
length of the waves, the foregoing theory admits of several simplifi-
cations. Asymptotic values of the Bessel's Functions and their
derivatives are presented for reference in Table IV. These lead
immediately to the approximate formulas,

A(ka) T I (ka)2

a(xa) ¥ I (ka)’ (16)



In particular, equation 7 may then be replaced by

cosh k (d+z)
cosh kd

F, =m P gHk al cos =t (1Y)

In this form the force F, admits of a much simpler derivation.
For a wave incident on a vertical wall at an arbitrary angle there is
complete reflection without loss of energy, resulting in a total
pressure equal to twice that of the incident wave., Assuming that this
result holds for the cylinder also, an incident wave with velocity
potential given by equation 1 will give rise to a real pressure,

p =-pg H cosh k (d+z) gin (k x =ot). 17
cosh k d

The resulting force, F, is then obtained by integration as for
equation 7, giving the relationship '

cosh k (d+z)
cosh kd

TE,
sin (ka cos € ~ot) cos & de
(18)

But now for small values of ka, expanding the integrand in equation 18
gives

F, = -2 apgH

yia

2
ﬂffcosh(rt ka cosQG de, (19)
O

o

sh k (d+
Fz=_hang cos ( Z)

cosh kd

which leads again to equation 7'. It is to be noted in connection
with this equation, that the force F;is ?%gal to the so=-called
"yvirtual mass force™ in Morison's result provided the experimental-
ly determined constant Cy is taken as two. The result is to be ex-
pected since an essential assumption of Morison's theory is that the
form of the incident wave is little affected by the presence of the
cylinder. From equation 23 it is seen that this assumption is
equivalent to the smallness of the ratio of pile diameter to wave
length, It 1s to be noted in this connection that the exact theory of
the present report represents an extension since its accuracy does

not depend on the relative size of the cylinder. The value of Cy
quoted by Morison for a series of model studies is nearly 1.5.

This type of analysis admits of certain extensions. For example
the same technique might be used to obtain forces on more complicated
shapes, the dimensions of which are small compared to the wave length,
since a knowledge of the form of the reflected wave is not necessary.
It is also shown in the next section how an estimate of the effect
of steeper waves may be obtained in a similar manner.



A more exact analysis of the relative effects of the incident
and reflected waves is possible from the small cylinder theory and
will offer justification for the developments of the preceding para-
graphs. The surface profile may be obtained from the velocity
potential, @, given by equation 5 from the formula,

7 1 %;? 2133 (20)

this gives

(n) “He-iodt 1 s zoo P 1 ]
N a s S -{Hom' Gy el T gy 0
: (21)

where use has been made of the identity,
In(x) B3 ) -y G B (o) = - B (22)

Using the asymptotic formulas for the Bessel Functions for small
values of ka, equation 21 becomes, on taking the real part,

(M), =a? % /\lz'fh (ka)? cos?6 sin (et -¢) (23)
where ' ‘
tan \I/ = 2ka cos ©

In the same notation the pressure, at the surface of the pile, is,

cosh k (d+z)

oo
p= gPH 1 +2 % in R ‘o cos n © cosh kd g1t
wka | (2) nel (2)¢
Ho (ka) H (ka) (24)
or for small piles, the real part of equation 24 gives
3 j cosh k (dez)
p T gPH (sinot + 2ka cos © cosot) il (25)

It can easily be shown that the pressure due . the incident wave
only is to the same degree of approximation,

p(i) cosh k (d+z)

= gPH (sinot + k a cos 6 cos 0 t) acialnded (26)

so that the pressure due to the reflected wave is,

cosh k (d+z) (27)

(1) _
P = gpH ka cos © cosot o5h K




It is observed that the first, and largest, term of equation 26
is independent of © and hence will contribute nothing to the force,
F,. Hence the "effective" pressures due to the incident wave and
the reflected waves are identical. This is in contrast to the effect
on the surface elevation, since equation 23 shows that the deviation
from that of the incident wave alone is small.

Summary. The diffraction of long-crested waves incident on vertical
circular cylinders extending from above the water surface to the
bottom is treated exactly within the framework of the linearized
irrotational theory. The essential results are summarized below.

Letting 2z be the distance along the cylinder, in the direction
of its axis, with positive direction upward from the still~water
level, the x-~component of the force on the cylinder per unit length
in the z-direction and at depth z, is,

F, = ZPEH coshlo(dva) @) cos (ot -a) (28)
where
tan Jlf(w%)
Y (rrID7 )
A (%) =

) 2 D 2 D
N e
when the surface elevation is given by,
n:%sin (k x - ot) (29)

J1 and Y, are the Bessel's Functions of the first and second kinds,
respectively, and primes indicate differentation. The functions A
and d are plotted in Figures 1 and 2. Additional valuves can be ob-
tained from a set of tables published by the Mathematical Tables
Project(L).

The corresponding movement on a cylinder extending to depth v
below the still-water level and hinged at depth u relative to the
still-water level is given by

-2gPH A(-D-) [uk sinh kd = sinh k(d-v) - vk sinh k(d-v)
L

Marv =3 cosh kd

cosh kd - cosh k(d-v) _
__cosh ]cos (0t -a) (30)




In the special case of a cylinder extending to the bottom and

hinged at the bottom, u = - d and v = d and equation 30 becomes
mo=-2—&§P—H D (kd) A (2) cos (ot -a) (31)
k
where
D (kd) = 1 - cosh kd + kd sinh kd

cosh kd

The function D (kd) is plotted in Figure 3. The moments in this case
may be easily computed through the use of Figures L and 5. Assuming
H, T, d, D to be known, the ratio D is found from Figure L and then m,
computed from Figure 5. L

For the case of small cylinders, that is, such that the ratio
of the diameter to the wave length is small, these formulas may be
greatly simplified. This appears to be the most important case as
is seen by considering Figure 2. For a 150 foot ocean wave, the
cylinder diameter could exceed fifteen feet without appreciable de-
viation from the approximate formulas. For this condition the functions

A (%) anda(%) may be replaced by

2

Dy~ #> (D ; Dy m? D)2 :
The force, F,, then becomes
2 2
F v T P g D H cosh k (d + 2z) (55 ot 281
2 - 2 ( L ) cosh kd ( )

and the surface elevation at the circumference of the pile may be
written,
|

212
\/1 + I D2 cos2 6 sin (ot - W) (33)

1 =

s fao

where

D cos 6 ,

S

tanw =2

while the pressure, at depth z, as a function of 8, is

2 .2
. PeH cosh k (d+z) Lr® D 2q s
p = 5 ——1a 1+ = c0s°0 sin (ot + 3) (3k4)



where

tan § = E%LE cos ©

A comparison of equations 29 and 30 indicates the maximum force and
moment occur almost ninety degrees out of phase with the crest of the
wave, that is approximately at the time the wave is passing through
the still-water level.,

In the formulas thus far presented the linear theory has been
strictly followed. Approximations to the effects of steeper waves may
be obtained by making some additional assumptions. It has been shown
previously that in the case of small piles the force, F,, given by
equation 7' is exactly twice that of the incident wave alone., Assuming
that this is a ﬁeneral result, the second and higher order terms in
the parameter (f) may be introduced into the force calculations. To

the second order, the force obtained in this manner is,

2 Fy, cosh k (d+z)

Dy _. 3 cosh 2 k (d+z
PTgDH * cosh kd (1'1'5) sing't + )( )

91nh3kd cosh kd

1 ) (21rD

"2 simh 2 Kd ) sin 20t (3h4)

for the surface elevation of,

N/H = 5_ cosg t + % T (H) ctnh kd (1 +

3
2 sinh? ' kd

) cos 20t

(35)

For purpose of calculation a set of force distribution curves
has been presented in Figures 6 and 7. The corresponding moments may
be computed graphically according to the following procedure, For
the moment about a hinge at depth z, compute 2z /4 on the vertical
scale. A new curve then may be plotted with abscissa zq

(a )d
times the old abscissa, and the corresponding moment will be equal to
the area under this curve, after multiplication by the respective
numerical factors. The coefficients of the sin ot, and sin 2 a’t
terms in the force equation have been designated F (1 and F, )
respectively.

The finite height of the waves introduces a second correction to
the calculated moments, namely the contribution to the total moment
of that portion of the wave above or below the still-water level.

For a pile hinged at position u +this correction term is,
approximately,



H2 D
Amu=_pgk—u £ (57 )cos (0t-a)sinot (36)
Comparison with Lxperiment. A series of experiments has been carried

out by Morison{>) in the wave channel to measure moments on cylindrical
piles under varying sets of wave conditions. The cyliinders were

hinged at varying depths and subjected to regular wave trains which

were of essentially three types; moderately sieep waves in shallow

water, steep waves in deep water and low waves in deep water. In Table I
are presented the results of these experiments for piles hinged on

the bottom in low waves in deep water. The theoretical moments, mg,
computed from the graphs of Figwes L4 and 5, are corrected for the

finite height of the waves by adding Am_y as given by equation 36,

In Table II the results for the largest cylinder in the same
wave conditions are presented with the pile hinged at varying depths,
Zs It is seen that in both of these tables, in which the actual
conditions approximate the assumptions made in solution, the agreement
is good.

In Table IIT the results for the first two types of waves are
presented. The first three entries correspond to moderately steep
waves in shallow water, and the last three to sieep waves in deep water.
The deviations here are seen to be quite large, reflecting the fact
that the waves cannot be closely approximated by sine waves in this
range of H and d . ‘

L L

Conclusions and Recommendations for Further Work. The rather large
deviations of the experimental results from calculated values, which
are indicated in Table III, give rise to the need for a consideration
of possible sources of error together with possible modifications.

In order to obtain agreement with experiment Morison(3} has intro-
duced a second comporent of force on the pile which he designates as

a "drag" force. It has been previously pointed out that his accelera-
tive force, in the special case of small piles, may be identified
with the diffraction theory of this report, provided C; is taken
equal to two. The introduction of the drag force is then eguivalent
to the assumption that drag and diffraction forces may be separated,
each being considered to act independently of the other, an assumption
which may not be well justified.

The force attributed to '"drag® is essentially of two parts. One
arises from the viscosity of the fluid and the corresponding
frictional drag exerted by the fluid moving past the cylinder. This
problem has been considered approximately using Schlicting's theory
of pericdic boundary layers and the results indicate that frictional
effects are unimportant. The second part of the drag force is due
to the separation of the lines of flow, with the resultant decrease

10



in pressure behind the cylinder. The wake behind the cylinder is
then essentially a region of no-motion except for the possible forma-
tion of vortices. The exact nature of this wake is not well. under-
stood even for the case of steady flow and very little is known
about periodic motion, for then there is continual change with in-
creasing and decreasing velocity.

For the diffraction theory presented in this report the motion is
symmetrical around the cylinder. Hence no separation occurs and the
wake drag must be zero. In light of this result it seems doubtful that
the correction due to drag could be made simply by addition of a term
corresponding to a wake while still maintaining the same diffraction
force, '

Drag forces are determined experimentally for the case of steady
flow past a cylinder in the following manner. The assumption is made
that the drag force is proportional to the square of the velocity,
the diameter of the cylinder and the density of the fluid. The con-
stant of proportionality, called Cp, is then determined empirically
for various values of the Reynolds number. MHorison has assumed that
this result will also hold for periodic motion, an assumption which
needs considerable investigation, since the flow behind the cylinder
may not be able to adjust rapidly enough to maintain steady state
conditions., Some calculations have been made, however, using Morison's
assumptions and it is found that the introduction of drag does not
appreciably improve the results.

The results of this report indicate that a great deal of additional
work might profitably be carried out. In particular a detailed ex-
perimental study, with photographs, of the actual state of motion be-
hind the cylinder would be of considerable value in estimating the
effect of drag. It might be expected that for moderately small
velocities the motion up to a certain point on the cylinder is well
approximated by the diffraction theory, while beyond that point the
flow separates leaving a dead water region. If this should prove to
be the case, additional theoretical results are possible.
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D d H
(in.) T T
: 0.40 0,037
3 0.1 0,038
1 0.40 0.036
1 0.40 0.037
2 00  0.037
2 0.40 0.037
2 d H
d_ L L
0.25  0.39 0.037
0i2  0.LO 0,039
0,52 0.40 0,037
0.68 0,40 0.038
0.78 0439 0.037
0.98 0.0 0.037
0.98 0,40 0,037

* TABLE I

(g'. )1§§p5 (g‘.’)l&?c})' (. oo )
0.0207 0.0202 © 0.0205
0.0203 10,0207 0.0211
0.0903 0.080L £ 0.0816
0.0998 0.0813 0.0825
0.2910 0.31L 0.320
0.2905 0,310 0.315

TABLE II

D= 2 inches

SRLE i (R
0.0335 0.0311 0.0373
0.0836 0.0808 " 0.089L
0.112 0.110 0.120
0.154L 0,176 0.187
0,205 0.221 0.232
0.291 0.315 04320
0.291 0.310 0.315
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TABLE TII

D d H (mg) exp. (m,) theo. (m + An)
(in.) L _L {ft. 1bs.) (fte 1bs.)  (ft. 1bs.)
: 0.15 0.0l 0,1158 0,0650 0.0703
1 0.16 0.0LL 0.0785 0.0408 09,0428
1 039 0.093 043900 0.2055 0.22140
2 0.16 0.045 0,2205 0.1530 0,2.610
2 0.L0 0.090 0,962 0.822 0.886
TABLE 1V

Asymptotic Expansions for Bessel's Functions and Theixr
Derivatives for Small x.

Jo (x) ~ 1 Jot (x) ~ ~5§

Jgp (x) ~ 3 Jf(x) ~ 3 -

T GO dy (®)° O e T =l
Yo ()~ £ (lnx = 7) Yo (x}(;;-:‘:_ y = 0.1159
Yy (x) ~ —T;'}z‘c Y, (x)f\iz

IO LV L L v, Gom 2L (Z) med
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