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Abstract

The main objective of this report is to describe how to compufe wave drift forces and wave
drift damping for marine structures of arbitrary three-dimensional shape.

A boundary integral method is developed for computing first-order and mean second-
order wave forces on floating bodies with small forward speed in three dimensions. The
method is based on applying Green’s theorem and linearizing the Green function and
velocity potential in the forward speed. The velocity potential on the wetted body surface
is then given as the solution of two sets of integral equations with unknowns only on the
body. The equations contain no waterline integral, and the free surface integral decays
rapidly.

The Timman-Newman relations for the added mass and damping are derived for the
case when the double-body flow around the body is included in the free surface condition.
The mean drift force is found by far-field analysis. A far-field form of the Haskind relations
with forward speed is also derived. All the derivations are made for an arbitrary wave
heading.

A boundary element program utilizing the new method has been developed. Numerical
results and convergence tests are presented for several body geometries. It is found that
interference phenomena may lead to negative wave drift damping for bodies of complicated
shape. The results are compared to those of Zhao and Faltinsen (1989), with quite good
agreement.
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Chapter 1
Introduction

An important problem in offshore technology is the slow drift motions of floating marine
structures. Large horizontal excursions of oil platforms and drilling ships may lead to
critical loads on the mooring systems. The slow drift motions are excited by nonlinear wave
forces. Damping of the slow-drift escillations is provided by skin friction, viscous pressure
forces and wave drift damping. Since experiments are expensive and time consuming, it is
important to be able to predict the wave drift forces theoretically. In this paper, we will
present a new method to compute first-order unsteady forces and wave drift forces at small '
forward speed. Numerical results are shown for a variety of geometries. '

The viscous forces are neglected, under the assumption that inertial and viscous effects
may be separated. We are not concerned with wave resistance or steady viscous drag, but
viscous effects resulting from separation of the boundary layer may still have appreciable
effect on the wave forces. It is assumed that these effects are small when the body is
large compared to the wave amplitude. Consequently the fluid is assumed irrotational and
incompressible. Potential theory is used, and the boundary conditions are linearized with
respect to the incident-wave amplitude.

" ‘We still have a nonlinear boundary value problem, as long as no restrictions are made
upon the body shape or the Froude number. The steady part of the velocity potential,
corresponding to the disturbance imposed on the uniform current by the body, satisfies a

nonlinear free surface condition, except for deeply submerged bodies.

Tn ship hydrodynamnics, this difficulty is often overcome by sssuming that the bodyis——— - --
thin or slender, so it only makes a slight disturbance of the steady flow. A perturbation
expansion with respect to a slenderness parameter is then used. We are, however, interested -
in finding the responses of more generally shaped bodies, such as oil platforms, storage
tanks or catamaran ships.

For floating bodies of general shape, it has been customary to separate wave and current



effects, computing the wave forces at zero forward speed. However, this is not satisfactory

because the forward speed may alter the wave forces considerably. More recently, Chang
(1977) and Inglis and Price (1981) have taken account of the coupling between waves

and current partially by including the constant forward speed in the boundary conditions,

but neglecting the steady disturbance imposed by the body. This gives an inconsistently

linearized three-dimensional theory. The agreement with experiment is only partially sat-

isfying. In particular, the roll and pitch damping are very unsatisfactory. This indicates

that the steady disturbance of the body may be important.

In many practical problems, the actual forward speed may be quite small, especially
in the case of oil platforms. Perturbation expansions can then be used with respect to
both wave amplitude and forward speed. If the problem is solved to first order in the
forward speed, a rigid wall condition applies on the free surface in the steady problem.
This approach has been used by Zhao and Faltinsen (1987,1989), who found that even a
small forward speed affects the wave drift force significantly. They used a hybrid method,
with the velocity potential being represented by a boundary mtegral in the inner domain
and by a multipole expansion in the outer domain.

We will examine the problem somewhat differently, using a boundary element method
where the solution is expressed as an integral over the wetted body surface and the free
surface. By using a Green function satisfying the correct radiation condition, we will not
need to discretize any control surface far away from the body, as is necessary with methods
using a Rankine singularity as the Green function. Also, the contribution from the free
surface decays rapidly with increasing distance from the body, and is thus easy to handle
numerically.

. To solve the integral equations, the velocity potential is expanded in an asymptotic
series in powers of the dimensionless forward speed (reduced frequency), retaining linear
terms. This expansion is not uniformly valid, and is therefore only used in the vicinity
of the body. (When we calculate the potential far away from the body, we return to the
unperturbed integral equations.) Perturbing the equations moves the free surface integral,
which is of higher order in the reduced frequency, to the right hand side of the integral
equations, thus reducmg the number of unknowns necessary for numerical solution. We will
‘ 7 condition on the body in the steady problem

eliminates the usual wa,terlme integral fm wall»mded bodies, as opposed to the methods of
Chang or Inglis and Price, where the neglection of the steady disturbance potential in the
free surface condition leads to integral equations containing a waterline integral.

A special numerical problem arises if the body has sharp edges. The boundary con-
dition is ill-posed at sharp edges and corners, and the resulting boundary integrals are



not integrable. This is circumvented by rewriting the integral equations using a special
variety of Stokes theorem known to marine hydrodynamicists as Tuck’s theorem (Ogilvie
and Tuck, 1969). This reduces the order of the derivatives in the body boundary condition
by one, rendering the boundary integrals singular but integrable.

In the integral formulation, we need to calculate the translating pulsating source in
~ three dimensions. This function is in general hard to compute efficiently. However, since
the forward speed is small, we can use an asymptotic expansion of the source potentlal
which only involves the zero-speed pulsating source and its derivatives.

When the potential has been found, the first order forces can be found by simple pressure
integration over the body. The Timman-Newman symmetry relations for the added mass
and damping are derived for the case when the steady double-body flow around the body
is included in the free surface condition, which has not been done in previous theories
(Timman and Newman (1962), Newman{1978)). A far-field form of the Haskind relations
with forward speed is derived. The mean second-order force is obtained by far-field analysis,
and the energy equation for the diffraction problem is derived. This is used to check the
consistency of the results. All the derivations are made for an arbltra.ry heading angle of
the incident wave.

In summary, the advantages of the present method are:

e The wave motion is described by simple integral equations that are well suited for
evaluating wave forces.

e We consistently include all first-order forward-speed effects, and simultaneously sim-
plify the equations by linearizing the equations in the forward speed.

¢ The Green function takes proper care of the radla:tlon condltmn, even with a variable-
coeflicient free surface condition.

o The fast-decaying free surface integral is easy to compute numerically.
e Corner singularities are treated more easily by means of Tuck’s thorem.

o Linearization with respect to forward speed sunphﬁes the computatmn of the Green

function.

¢ The Timman-Newman relations are satisfied even with the variable-coefficient free
surface condition.

o Both the linear exciting force and the wave drift force with forward speed are ex-
pressed by simple far-field quantities for an arbitrary wave heading.



Numerical examples are presented for several different body geometries and ranges of pa-
rameters, and with extensive convergence tests. It is found that for a body of simple

~ shape, the wave drift damping is usually positive, while for a body of more complicated
shape, interference between different parts of the structure may lead to negative wave drift
damping for some frequencies. Some of the results are compared to the results of Zhao and
Faltinsen (1989), with quite good agreement.



Chapter 2
The integral equations

In this chapter, we will develop the governing equations for the fluid motion. No restrictions
- are made upon the shape of the body, except that lifting or cavitating surfaces are not
allowed. We will assume that the incident waves are long-crested and regular. Viscous
effects are also neglected, assuming that the body is large compared to the wave amplitude.
In the common jargon of marine hydrodynamics, this means that the Keulegan-Carpenter
number is small. It is also assumed that boundary layer separation due to the steady flow
has negligible effect on the wave forces. With these assumptions, linear potential theory
may be applied. We can then use Green's second identity to obtain a set of boundary
integral expressions for the radiation and diffraction potentials and the steady potential.

2.1 The boundary value problem

In this section we will state the boundary value problem for the velocity potential. We
consider a body B moving horizontally with constant forward speed U and responding
to long-crested regular incoming waves with small amplitude A. We will use a reference
frame (z,y, z) moving in the same direction as the body with forward speed U, with the
undisturbed free surface in the zy-plane, the z-axis in the direction of forward motion,
e and the z-axis vertically upwards. In this reference frame the body is pcrfdrming small
.. __oscillations due to the incoming waves, while situated in a uniform current —U at infinity.
- This configuration is shown in Fig. 2.1. We assume the fluid to be homogeneous, incom-
pressible, and of infinite extent in the lower half-space. Viscosity and surface tension are
neglected. Then there exists a velocity potential ¢ for the velocity v = V¢ that satisfies
Laplace’s equation

Vi =0 (2.1)



Figure 2.1: Coordinate system with incoming waves and current.
To first order in the wave amplitude, the velocity potential may be written
¢ = ¢,(8) + ¢D(mat) + ¢‘R(zv t) (2'2)

where ¢, is independent of time, and ¢p and @p are time harmonic with orbital frequency
o. The steady potential ¢, may be written

¢, =U(x — =) (23)
where —Uz is the ambient aniform current and Uy is the steady disturbance due to the
_body. ¢g is the total radiation potential due to the motions of the body, which may be
written .
¢R = R£ iUcMZ€j¢j(3) (24)
y=1

where ; is the amplitude of motion in the jth mode (surge, sway, heave, roll, pitch and
yaw respectwely), and 43, is the correspondm;g radiation pmtentml for unit amphtude of

ép = Re Ae“'($o(=) + ¢1(2)) | (2.5)
where ¢; is the scattering potential, and ¢y is the poténtial due to the incoming waves :
¢0 = %cKze—iK(tmsMﬁnﬁ) (2.6)



Here K = w?/g is the zero speed wavenumber, and w is the orbital frequency of the
incoming wave, given by o .
w=0+UKcosf (2.7)

B is the incidence angle of the incoming waves. The case § = 0 corresponds to following
waves, while 8 = 7 corresponds to head waves. The frequency o is called the frequency of
encounter.

2.1.1 The boundary conditions on the body
The stea,dy potential fullfills the body boundary condition

P ,
'a—:‘ =nj;.on SB (2.8)
corresponding to zero flux through the wetted surface. (ny,nj, n3) denoctes the Cartesian
components of the normal vector n pointing out of the fluid domain. The body boundary

condition for the unknown potentials ¢;, = 1,...,7, are (Newman, 1978)

%: nj+%mj,]:=1,...,6 , o (2.9)
On "%9 ]:7

where (n4,n5,n¢) = X n. my, j =1,2,3 are the components of the vector

m= —n-V{(Vy,) . (2.10)
and m;, j = 4,5,6 are the components of the vector
m' = —n - V(z x Vy,) (2.11)

where
Xs=X—7T (2.12)

Thus, the normal derivative of each radiation potential has two parts. The first, the n-
term, represents the normal velocity at the mean position of the body, while the second,

[1: - [] 3 CTEST, e ¥ cirang » A BDCad .,.ﬂ.”:" @i 116 3 ¥ [0 on. 0 R DO
Computing the m-terms accurately usually represents a difficult numerical problem. In o
case, this is circumvented by replacing the m-terms in the boundary integral formulation
by first-order derivatives of x, using a variant of Stokes’ thorem known as Tuck’s thorem

(Ogilvie and Tuck,1969). This is described in Section 2.5.



'2.1.2 The boundary conditions on the free surface

Let £ be a characteristic dimension of B. If the Froude number Fr = U /+/gZ is much less
than one, the free surface condition for the steady potential can be approximated by
| 9,
Oz
to first order in the Froude number. The radiation potentials ¢; and the diffraction poten-
tial ¢ will then satisfy the free surface condition

=0atz=0 ‘ (2.13)

—o%¢+ 210V ¢, - Vid + 109 V3, +g§é =0atz=0 (2.14) .

0z
to the same order. When ¢, is precalculated, this is a linear boundary condition with
variable coefficients. V; here means the horizontal gradient. Far away from the body,
#, = —Uz, and (2.14) simplifies to the linear boundary condition

. .0 B¢
— 2 — 1 y — ——— 1 . m—— -
0P 220Uv +gaz-0atz—0 (2.15)

which only contains known constant coefficients.

2.2 The steady problem

The steady problem for small Froude numbers, with the rigid wall condition (2.13) on the
free surface, can easily be solved with a boundary integral method. We define a Green

function .

s@8=-+= (2:16)
where - , o ,
r=y(z -+ —n?+(z— (P | (2.17)
and ' ‘
o= \/(x —P+{y—n?+(z+()? (2.18)

g(=,£) is the potential of a source of strength —4x placed in the point &= (£,9,() which
satisfies the rigid wall free surface condition (2.13). We now represent the potential in the
fluid as a distribution of sources of strength Q(z,y, z) over the body:

Applying the bouadary condition (2.8) at a field point = on the body surfak:e, we get

21Q() + [ Q‘(s)?%-s_’;@ds — arny (220)

This integral equation can easily be solved by a collocation method.

10



2.3 The oscillatory probléms

We will now consider solving the radiation and diffraction problems with the boundary
condition (2.14) at the free surface and the boundary condition (2.9) on the wetted body
surface. We will solve the boundary value problems by applying Green’s second identity to
the entire fluid domain. As the Green function we will use a pulsating source translating
with small forward speed and satisfying the free surface condition

- 02G + 210'Ué§7?- +g?;§ Oat (=0 | (2.21)
plus an appropriate radiation condition. Following Huijsmanns and Hermans (1985), the
Green function can be expanded in an asymptotic series in powers of the parameter

Ue
T= 7 | (2.22)
which is often called the reduced frequency. The first two terms in this series can be
computed from the zero forward speed pulsating source and its first-order spatial deriva-
" tives. This is shown in Section 3.2. The series expansion is not uniformly valid, but is
asymptotically valid as 7 — 0 at any finite distance from the origin.

First we will develop the equation for the diffraction potential. The variable-coefficient
condition (2.14) must be used for ¢ on the free surface, while the constant-coefficient con-
dition (2.21) is used for the forward-speed Green function. Let Sy denote the undisturbed
free surface z = 0, and let S, denote a vertical cylinder enclosing the fluid at infinity, We
apply Green’s theorem to ¢ = ¢y + ¢7 and G, and introduce the boundary condition (2.9)
on the body. This yields

[ .0G . 99 —4xg(x)
It [, (o) [L (4 -oae) o= { S0

_ (2.23)

where the first case applies to @ in the fluid domain and the second to # on the wetted

body surface.
Let Cp denote the waterline curve of the body, and C, the waterline curve of S,.

~ For the integral over the free surface in (2.23), (2.14) and the two—dlmenswnal divergence =~

theorem applied on the free surface gives

/./s, (¢% - Gan) dS = - 2“"// H(V1G - Vix + -1—GV§X)dS
- 2:1'/ $Gdn + 2:7-/ $G (_— - "1) ds (2.24)

11



fory-l , 6.

We have assumed that the body is wall-sided at the free surface to obtain the waterline
integral on the form above. Applying the boundary condition (2.8) for x, we see that the
body waterline integral in (2.24) vanishes exactly. This would not have been the case if
we had neglected the steady disturbance x in the free surface condition (2.14), as has been
done by for instance Chang (1977) and Inglis and Price (1981).

We now want to eliminate the integral over S, in (2.23) and the integral over Coo in
(2.24). By using the far-field behaviour of the scattering potential, which is given in (5.1),

we can easily show that

/ / ; (¢,-— - G%) ds — 2ir /C #iGdn=0 »(2.25)

(For details, see Appendix A).. Thus, the contributions from ¢; to the mtegra.ls over the
far-field in (2.23) and (2.24) cancel each other.

To eliminate the contributions from ¢y to the far-field integrals in (2.23) and (2.24), we
apply Green’s theorem to ¢p and G in the entire 10wer half-space, with the result

| / / i (@——Gﬁ> ds — 2ir / $oGdn = —4rdy  (2.26)

where Co, is a closed curve enclosing the free surface at infinity. Eliminating the integrals
over Sy, and C,, from the integral equation by using (2.25) and (2.26), we get the Fredholm

equation

—4rd(x)
/ / ¢——ds 2%r / / #HV1G - Vix + - GV x)dS dxdo = { Conile) D
where the first case applies to = in th'e fluid domain and the second to # on the wetted

body surface. _
Using the boundary condition (2.9) on the body, the corresponding result for the radi-.
ation problems can be shown to be

/ f (¢, n —G(n, + = v m,)) dS —2ir / / $;,(V1G- le+ law 23)dS = { :;:ﬁ:;

The mtegra.l equations (2.27) — (2.28) display some important differences from those
usually seen in ship' hydrodynamics. In the full linear three-dimensional problem, the
steady disturbance x is usually neglected. Applying Greens’s theorem then leads to integral
equations containing a waterline integral, as in the papers of Chang (1977) and Inglis and
Price (1981). In our case, this integral vanishes because the steady potential U(x — z)

12



- i8 satisfying the correct boundary condition (2.8) on the body surface. Instead of the
waterline integral, our equations contain an integral over the free surface. This integral,
however, decays very rapidly with increasing distance from the body, since it contains the
spatial derivatives of the steady disturbance x, and x behaves as a dipole far from the
body. Therefore we may always truncate the free surface at a quite short distance from
the body.

2.4 Perturbation procedure

We now want to solve the integral equations (2.27) and (2.28) for the unknown pbtentials
#; and ¢p on the body. To simplify the equations further, we assume that the reduced
frequency r € 1, and expand ¢ and G in asymptotic series of T, kéeping only linear terms:

p=¢"+1¢" | : (2.29)
G =G +rG (2.30)
It must be emphasized that these expansions are local, and only valid at finite distance

from the origin.
~ Introducing the asymptotic expansions into (2.27 ) and (2.28) and collecting terms of
‘the same order in 7, we find the two sets of integral equations

8G° . | [s. Gn;dS, j=1,...,6
0 oY~ = 5 3% ’ ) 3
274 + / /s #1ds { P (2.31)

24! + / / ¢;——-ds 2% / /S BV Vi + %G’"’V:x)ds

sy (Gn; +G°24)dS, j=1,...,6 |
- $?——dS + - liss ( ! W/ o 2.32)
/./;SB¢’Bn +{ 0, i=D (2.32)
where j = D means the diffraction problem. The zero in the right hand side of the
diffraction problem stems from the fact that the incident-wave potential ¢y is independent
of 7.

onsiderably. Since the free surface integral

is hlgher order than the other terms, 1t will only occur at the right-hand side. Thus, when
discretizing the equations, we only need to solve for the unknown potentials #° and ¢! on
the body, not at the free surface.
In addition, the free surface integral decays very rapidly. Since the steady dlsturbance
x behaves like a dipole, the integrand decays like R~*, where R is the polar radius. Thus,
it is only necessary to discretize the free surface out to 2-3 body diameters.

13



2.5 The right hand sides in the radiation problems

The right-hand sides in the integral equations for the radiation potentials contain the
m-terms, which are given by (2.10) - (2.11). These terms are awkward to compute numer-
ically, since they are normal derivatives of the steady velocity. The steady velocity itself
can easily be obtained by differentiating (2.19) analytically, but the corresponding second
derivatives leads to non-existent integrals, so apparently the m-terms must be obtained
by the undesirable method of numerical differentiation. However, the right-hand sides can
be rewritten using Tuck’s theorem (Og11v1e and Tuck, 1969), which states that for any
differentiable function. f,is

// Vx, VindS = —// fmdS — - f%n-ds (2.33)

provided that the wetted surfa.ce Sp s smooth and that it is wall-sided at the free surface.
In our case, the waterline contribution in Tuck’s theorem vanishes due to the rigid wall
condition (2.13).

However, the function corresponding to f in the right hand side in (2.32) is G%(=, §),
which is not differentiable at # = £.However, if we put z in the fluid and let it approach
the body, we find that both sides of (2.33) are continuous as # — Sg. This is explained in
Appendix B. Thus, the integral equations (2.32) can be rewritten as

2ml + / / ¢;-—ds =2 / / FAV.G m+-@°vgx)ds
- / [ ¢‘;—a;—.d5‘+ /S (G" - —VG" vx,) ndS,j=1,...,8 (2.34)

which only contains first-order denvatwes of the steady potential.

For a body with sharp edges, Tuck’s theorem is not valid. In fact, even thc boundary
condition (2.9) is invalid in this case. (2.9) originates from a Taylor expansion of the time-
domain boundary condition. This expansion is only valid for smooth surfaces. The result
is that the m-terms not even are integrable at an edge. Still, frequency-domain analysis
with the boundary condition (2.9) is often used, since most offshore structures have sharp

With our reformulation, however, the right hand side is integrable as long as the field
point is not situated directly at the edge. Therefore we believe that this formulation will
lead to a better numerical behaviour at the edge. ‘

14



Chapter 3

Numerical methods

3.1 Solution of the integral equations

The integral equations (2.20), (2.31) and (2.32) are solved by a conventional panel method.
The body is approximated by plane quadrilateral elements, and the velocity potential is
assumed constant over each panel. The quadrilaterals may degenerate to triangles. Using
the panel centroids as collocation points, the integral equations are reduced to sets of
complex linear equations which for a moderate number of panels may be solved by Gaussian
elimination. v

To compute the free surface integral, the free surface iz panelized in the same manner
as the wetted body surface. Howewer, since this term only contributes to the right hand
sides of the equations, this means very little additional computer memory usage. The free
surface is truncated at about 3 body diameters’ distance from the center of the body.

In all the calculations, the singular terms of the various Green functions are integrated
by the Hess and Smith method. The logarithmic singularities have been integrated by
the method of Newman and Sclavounos (1987). Numerical integrations over each panel
are performed using mainly the mid-point rule. Our program is also designed to use four-
point Gaussian quadrature over each panel. Experience shows that this does not improve
‘the results significantly, and the four-point method increases the total CPU time of the
__computations by a factor of about 2 compared to the mid-point method.

No special algorithms are used to take care of the corner singularitites for bodies with

sharp corners. However, since the integral formmulation (2.34) is used, the right hand sides in
the radiation problems are integrable. The errors associated with these terms are therefore
assumed to be small.

15



3.2 The Green function

The translating pulsating source with small forward speed has been discussed by Huijsmans
and Hermans (1985), and we will use a similar procedure. We assume that the parameter
7 = Usfg < 1/4. The translating pulsating source can be written as (see, for example,
Newman, 1959)

G(z,8) = -~ + ¥(2,8) (31)
with r and r’ given by (2.17) and (2.18) and
E(9, k)dkdo
: ‘ ¥(=,8) = / L (k—m( V/1)+ 47 cos @
1 E(8, k)dkdf 1 peeis i B(6, k)dkdd 52)
~e/2J0a (k — K)V1 Tdrcosd xJap2 L, (k — x2)v1 +47cosd
where
E(8,k) = kexp[k(z + () + ik ((z — {) cos 8 + (y — n) sin §)] (33)

where the poles &; and x; are given by

K13 = FL—E [1 + 27 cos® F V1 + 47 cos 9'] ». | (3.4)

and the integration path L; passes above the pole at x; while the paths L, and L, pass
below and above the pole at x;, respectively, and
: o |

v="7 | | (3.5)
It is easily seen that as 7 — 0, x; — v and x2 — oc. Thus, &; approaches the zero-speed
wavenumber, while the x, waves get infinitely short. We will use a Green function without
the x, terms, which corresponds to neglecting U in the free surface condition.

We now expand the first term in ¥, which we call 1, in powers of 7 :

Y=to+ T +...  (38)
This is an asymptotic expansion, which is not uniformly valid. It can be used locally, but -

not at infinite distance from the source point. ty is the zero-speed source potential given

B

o = 2 /0‘" k: o Jo(kR)dk (3.7)

where R = \/ z —£)? n (y — n)2, Jo is the Bessel function of the first kind and zero order,
and the integration passes above the pole. To first order in 7, we have that

k1 = v(1 — 27 cos 0) (3.8)

16



and thus
1 k—v—2rkcos8

(k — k1)v/1 + 47 cos - (k —v)?
Using this expression to expand 1, we find that

+O(r%) ' (3.9)

_ (s+0)
w2zt / kg"k s ey (kR (3.10)

where J; is the Bessel functlon of the first kind and ﬁrst order, and the integration passes

above the pole. We note that

P
Y1 =2 aug‘; (3.11)

a remarkable result which will be used later. The zero-speed Green function involves the
integral ¢, given by (3.7), which may also be written as

o =2 (% +ol - mc”f%.-ro(m)) (3.12)

where the integral I is given by
1=pv [~ 50 b (kR)dk 3.13
=PV [" E—s(kR) (3.13)

where PV denotes the Cauchy principal value. Inserting the last expression for iy into
(3.11), we get

( &1 (VR)) + 4,—§£[1 +u(z+ c)] ~ain(z~€) (5 + )

(3.14)
Thus, the Green function for small forward speed, given by (3.6), (3.12) and (3.14) can be
expressed by means of the real and imaginary parts of the zero-speed Green function and
its first order derivatives. The numerical integration of (3.14) and its normal derivative
over each panel of the body surface is described in Appendix C.

¢1 = —43'

3.3 The far-field expansion of the Green function

 When we compute the mean second-order wave forces on the body, we will use far-field
analysis, in which we need to know the velocity potential as R — co. From the integral
formulations (2. 27) and (2.27), we see that we then need to compute the Green function
with forward speed at large distances from the origin.

Newman (1959) has developed the far-field expansion of the Green function with ar-
bitrary forward speed for R — oo. Haskind (1946) has given a far-field expansion of the
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* Green function for small values of 7. Since there seems to be a disagreement between the
expressions of Newman and Haskind, we have found it necessary to recompute the far-field
expansion for small 7. Let us introduce cylindrical coordinates £ = Rcosd, y = Rsiné.
Using contour integration and the method of stationary phase, we find that for large R,

G(R,9,z;¢,9,() = k1(30) c]"(’”){"“ Rtigcosbotinsindol-in/4(1 4 O(72, R~1/?)) (3.15)

where the wave number is

k1 () = —-—"—;b—[ 21’(‘,0300—\/1—41'00300] (3.16)

where the rela,tlon between the wave angle 6, and the space angle 6 is given in Newman
(1959) for arbitrary values of r. (3.15) agrees with Newman (1959) to first order in 7.
We are only interested in using the far-field expansion (3.15) of the Green function to
compute wave forces at small ﬁorwmd speed. In this context, the wave number &, may be
written
k1(8o) = »(1 + 27 cos 6p) + a(r“) (3.17)

where the relation between the wave angle 8, and the spatial angle 8 is given by
fo=0—2rsind+0O(r%) (3.18)

corresponding to an outgoing ring wave pattern with waves that are slightly shorter up-
stream than downstream.

Introducing this value of the wave number into {3.15) and expmdmg we find that the
final expression for the Green function may be written

G(R,0,56,m,0) = R™/h(e, e)e**“"'-'ﬂ’w( ) (3.19)

where the amplitude h(£, theta) is given by

h(f, 0) w kl(e)ckl (9)[C+i£(wll+21'sm’ 8)+in(sin #—27 cos § sin #)]—in /¢ + 0(1_2) (3_20)

| The far-field expansion of the Green function on the form (3.19) will be used in the two

next chapters to derive simple expressions for the linear exciting forces, the mean second-
~ order drift force and the energy flux at infinity in the diffraction problem, by applying the
method of stationary phase.

18



Chapter 4
The first-order wave forces

Having found the velocity potential by the method presented in the previous sections, the
- first-order wave forces can now be found by pressure integration over the body surface. We
will now develop some useful formmulae for the forces and examine some important properties
of the added mass and damping coefficients and the linear exciting force coefficients.
4.1 Added mass and damping
The added mass and damping coefficients can now be obtained from the radiation poten-
tials. Denoting the added mass coefficients by a;; and the damimag coefficients by b;, we
can express the radiation force and moment as
F;=Re (—io;e™'f;;) (4.1)
wheres,j =1,...,6, and thé complex force coefficients fi; are defined as
fii = ioa; + b =p / / (io$; + V4, - Vé;InidS (4.2)
Ss
We now use Tuck’s theorem (2.33), obtaining

fi = o [ tioni — Umgyds | (43)

Timman and Newman (1962) have shown that when the steady disturbance field x is
neglected in the free surface condition (2.14), the added mass and damping satisfy the
so-called Timman-Newman relations j

f,'_,'(U) = f,‘,‘(—U), t,] = 1,.‘. .,6 (4.4)
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That is, the hydrodynamic forces are the same when we reverse the forward speed and
exchange indices. - ’

Newman (1978) has also shown that the added mass and damping coefficients satlsfy
these relations in the special case of a slender ship, with the steady disturbance x neglected
in the free surface condition. We will now use the formula (4.3) to show that these relations
are also satisfied with the free surface condition (2.14) including x used instead of the
usual free surface condition without x, and for a body of arbitrary shape. To show this, we
introduce the reversed-flow radiation potentials y;, which satisfiy the boundary conditions
(2.9) and (2.14) with the sign of U reversed. Thus, we have

. U
%:nj-;;mj,1=l,...,6 (4.5)
. . wj . 2 a¢’
— o?p; — 20UV x - Vith; + 2;005—'3 —oUyp;Vix + g%—;’- =0atz=0 (4.6)
Using the definition of ¥;, we can write |
) = iop [ 6,90 Higs (7
f,‘.‘(-—U) = zap/[gs 'l,b,—a—n— ds (4.8) '

Applying Green's theorém to ¢; and ¥;, we obtain
d
£i(U) = f(-~V) =iop [ (¢, ¥ ¢,) ds =

—iop [ (45 -0 3)as—ion [[ (83 -s3E)as  ws)

Using the free surface conditions (2.14) and {4.6) and the two-dlmenmonai divergence
theorem, the integral over the free surface can be written

B / /s,- (¢’ '¢9¢,) = ~ur / /sr V1 - (659 V1x,)}dS (4.10)

e = 2r ‘xﬁj:,b;%ds-l-ﬁr[, diidy  (4.11)

We have assumed that the body is wall-sided at the free surface. Using the body boundary
condition (2.8) for x, = x — z, we find that the waterline integral vanishes. To evaluate
the other integrals, we need the far-field behaviour of the radiation potentials ¢; and ;.
To obtain this behaviour, we consider the Green function. The far-field expression for the
Green function is given by (3.19). From the integral equations (2.28), we see that the
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radiation potentials must have the same behaviour with respect to the field point as the
Green function when R — oo. From (3.19) we see that this behaviour must be

¢j — R—1/2HJ‘(9;YT)GV‘(1+2T“0)(3_‘.R)(l+o(fz))(1 + 0(1_2, R—l/?)) (4_12)

as R — oo, where H;(8) is the far-field amplitude distribution of the jth radiation potential.
The amplitude distributions H;(8) are obtained by inserting the far-field expansion
(3.19) of the Green function into the integral equations (2.28). We then use Tuck’s theo-

rem (2.33) to replace the m-terms by the steady velocity Vy, in the amplitude distributions -

of the radiation potentials. This yields the following expressions for the amplitude distri-
butions: .

H0) = [[ (m;‘?—ﬁ — (b= Vx, Vh)n,-) as —2ir [[ 4,(Vih-Vix + ShVix)ds
(4.13)
for j = 1,...,6, where the amplitude A(£, #) of the Green function is given by (3.20).

The expression for #; corresponding to (4.12) is obtained by reversing the sign of r,
 that is, |

ij = R—I/QHJ_(O; _T)ev(l-2?00:0){:—&!)’(14-0(1’))(1 + @(TQ, R_lﬁ),) (4.14)

Inserting these expressions into the integral over S., and integrating with respect to z, we

find that this integral exactly cancels the line integral over C,. This is shown in Appendix
A. Since the far-field intergrals over S, and C,, cancel, we obtain

s0) = f(-0) =i [ (655 — w3t ) ds =0 (4.15)

Thus, we have shown that the Timman-Newman relations are satisfied also in the case
with the free surface condition (2.14) for a body of general shape.
The figures 4.1 and 4.2 illustrate the validity of the Timman-Newman relations for
a half-immersed sphere at Froude number Fr = 0.04. The surge-heave and heave-surge
hydrodynamic coefficients are zero at F'r = 0, so at small forward speed they are éasenti-ally
proportional to Fr. The differences between the surge-heave and heave-surge coefficients
at Fr = £0.04 are at most 2% for the added mass and 7% for the damping coefficients.

neLrr w3

D11) ITAan wilrarn OT! r}

for the diagonal entries of the added-mass and damping tensors:

falU) = fal~U) | (4.16)
and thus we have éf
3], @
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Figure 4.1: Croes-coupling added-mass coeflicients a,s and a3, for a half-immersed sphere
of radius a at Fr = +0.04.

Figure 4.2: Crese-coupling dammng coefficients bys and by, for a half-immersed sphere of
radius a at Fr = £0.04. '
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Therefore the Taylor expansion of f;(r) about 7 = 0 may be written on the form -
filr) = £ul0) + o(r?) | (4.18)

Thus, to leading order the added mass and damping coefficients are mdependent of . This
is confirmed by the numerical results.

From energy conservation, the mean work done by the damping force over one cycle is
equal to the mean energy flux at infinity. Therefore the damping coefficients can be related
to the amplitude distributions H;(0) of the radiation potentials in the far-field. By using
the far-field Haskind relations (4.28) derived in the next section, it is possible to express the
diagonal damping coefficients as an integral of the corresponding exciting force coeflicients
squared over all wave incidence angles. However, since the diagonal damping coeficients are
independent of 7 to leading order, they can be found from the Haskind-Newman relations
(Newman, 1977), which relate the zero-Froude number damping coefficients and exciting
forces to each other. Thus, the diagonal damping coefficients can be obtained to first order
in 7 from the zero Froude pumber diffraction potential.

4.2 The exciting forces

The Haskind relations express the exciting force in terms of the incident-wave potential
@y and the reversed-flow radiation potentials 1;, so that the first-order exciting forces can
be computed without knowing the scattering potential ¢,. The Haskind relations for zero
forward speed have been known for a long time, see for example Newman (1977). The
generalized Haskind relations including small forward speed have been derived by Zhao
and Faltinsen (1987) for the two-dlmensmnal case. We will derive the Haskind relations
with forward speed for the three-dimensional case, and simplify them by explmtmg the fact
that the incident-wave potential satisfies the free surface condition (2.15). At last we will
use Green’s theorem to rewrite the Haskind relations into a form only involving integrals
over the far-field. Using the far-field behaviour of the radiation potentials will then give
us the far-field Haskind relations on a very convienient form. The diffraction force and
__moment is given as ' ' ' ' '

Fi=—p // (3:#;3 + V¢, - V¢D) dS - ‘ (4. 19)7’% -

where i = 1,...,6, and ¢p is the total diffraction potential given by (2.5). Inserting (2.5)
and applying Tuck’s theorem (2.33), the force and moment may be written

F;=Re {Ac'X;) | (4.20)
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where the exciting force coeflicients X; are given as

Xi=—iop [[ (40+41)5

where 1; denotes the reversed flow radiation potentials defined by (4.5) and (4.6). Applying
Green’s theorem to ¢ and ;, we find that

0% odr\ ..
JLoos. (¢7—— — i ) ds =0 | (4.22)

Using the free surface condition (2.14) on ¢o + ¢7, we have that the free surface integral

can be written
f, (#5205 ) as =

2ir [ Vo i) as +2ir [ (i Vit gaVix)ds (423

The first integral can be rewritten using Gauss’ theorem, resulting in a line integral over

C,, that cancels the surface integral over S,,, as shown in Appendix A. This is in complete

analogy to the proof of the Timman-Newman relations. Inserting (4.23) and the body
boundary condition (2.9) into (4 22) we obtain

/ / dS =/ [ —d.S' 2ir | [ (\mo Vi + %@vz'x) S (4.24) -

Inserting this into equation (4.21) for the exciting forces, we arrive at the Haskind relations

iop [, (w52~ w3 ) 5 — 207 [ 4(Tubo- Vx-+ 3 TIOMS (425

Thus, the exciting forces can be obtained as an integral of the incident-wave potential and
the reversed-flow radiation potentials over the body and the free surface. |
It is also useful to rewrite the Haskind relations into a form only containing integrals

a¢, ds ‘ (4.21)

over the far-field. By applying Green’s theorem to ; and ¢y, we can easily write the
Haskind relations in the alternative form

= igp // (qﬁo%'-— Zﬁo) ds +2U’Tp/ dothidy (4.26)

potentlals are known.

To express the exciting force by the amphtude distribution H;(8; —7) of the reversed-
flow radiation potentials ;, we now introduce the expressions (4.14) for v; and (2.6) for
¢o. Integrating with respect to z, we obtain

2 (ki (6) — K cos(6 — B) 9 -'(KMﬂ—ﬁ)+k'(0))R 1/2
; . l et d 4.27
X; =ipg— / ( O TK +2rcosf]e 1 R74df  (4.27)
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Figure 4.3: Surge exciting force X for a half-immersed sphere of radius a in head waves
and Fr = 0,40.04. _ .

where k7 (#) means k,(0; —7), and R — o0o. Applying the method of stationary phase to
the integral over 9, we finally obtain

X; = pg.\/—g—;(l — 27 cos ﬁ)H.(ﬂ + 7 4 278in 8; — 1)/t + O(r?) (4.28)

where H;(#; ) is the amplitude distribution of the ith radiation potential, which is given
by (4.13). Thus, the exciting force with forward speed can be found by evaluating the
radiation potential far-field amplitude at one spatial angle, just as in the zero-speed case.
Figs. 4.3 and 4.4 show calculations of the exciting forces for a half-immersed sphere in
head waves and Fr = 0,40.04. The far-field Haskind relations (4.28) are used. We see
that the surge exciting force always increases with the Froude number, while the heave
exciting force decreases with the Froude number for long waves and increases with the
Froude number for short waves. In general, the influence of the forward speed upon the
exciting forces is weaker than the influence upon the drift force, as shown in Fig. 5.1.
Figs. 4.5 and 4.6 show the derivatives of the exciting forces with respect to the forward

speed computed by numerical differentiation of the data in Figs. 4.3 - 4.4. The method =~

of direct pressure integration is compared to the far-field Haskind relations (4.28). The
agreement between the two methods is excellent. :
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~ Figure 4.4: Heave exciting foroe X for a half-immersed sphere of radius a in head waves
and Fr = 0,4+0.04. :
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Figure 4.5: Derivative of the surge exciting force with respect to U for a half-immersed
sphere of radius a in head waves. Comparison of near-field and far-field calculations.
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Figure 4.6: Derivative of the heave exciting force with respect to U for a half-immersed
sphere of radius a in head waves. Comparison of near-field and far-field calculations.
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Chapter 5

The drift force and the energy

equation

In this section we will show how to compute the wave drift force from far-field analysis and
check the energy conservation in the diffraction problem. |

First we need the asymptotic expansions of the radiation and scattering potentials for
large distances from the origin. The total diffraction potential is given by (2.5). For
R — oo, the scattering potential 47 is given by

by = R“/3%H7(0)eh"‘*‘a +0(r?) (5.1)

where H.{#) is the amplitude distribution of the scattering potential, and the wave number
k, is given by

ky = (1 + 27 cos 8) + O(r?) ' - (5.2)
'The amplitude distribution H7(8) of the scattering potential ¢7. is obtained by inserting
(5.1) and the far-field expansion (3.19) of the Green function into the integral equatmns
(2.27). This yields

/ / ¢—dS 2% / /5 ’ ¢(v,h-v,x+%hv§x)ds' (5.3)

. NWM e e e e . R

The total radiation potential is given by (2 4) For R — co, the radiation potentmla

#; is given by
8 = EAH (D) R 1 O(+%) (5.4

for j =1,...,6, where H;(8) are given by (4.13).
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5.1 The mean drift force

We now want to compute the mean drift force aléng the current direction. We want to
avoid direct pressure integration, which is less accurate than far-field methods. To derive
an expression for the drift force, we apply the momentum equation to the entire fluid
domain. The mean drift force on the body must be equal to the mean flux of momentum
into the fluid domain minus the mean force on a control suface at infinity. Since the
steady disturbance y() behaves as a dipole at large distances from the body, the velocity -
potential for R — oo is written ®(2) — Uz, where ® is the total wave disturbance. Thus,

the z component of the mean force must be

p/h/ [(—-— )(%—Umﬂ) p@a]dzﬁde (5.5)

where R — 00. An overbar denotes the average with respect to time. The pressure p is
- given by the Bernoulli equation, and z = ((z,y) denotes the free surface elevation. {(z,y)
is given by the dynamic free surface condition, which, since x is negligible for large R,

attains the form

od % 1 2
_— = =~ [ =00 = . .6
5 7U8m+2lv‘pl +9g(=00nz=0 » (5.6) |

Since mass is conserved, the mean mass flux across the control surface at infinity must be
zero, that is, |

p/”/_m (———Ucose) LoD = | (5.7)

Integrating the momentum equation (5.5) with respect to z and using the ooﬁtinm'ty equa-
tion (5.7), we obtain the following expresslon for the mean wave drift force in forward speed
direction:

Ezpf,{_%[(%)z-_ U,(%g)z]‘cjﬁfm B{—Wcose—g—@if—i]dz}Rjﬂs)
5.

To obtain a momentum equation more suitable for numerical computation, we insert
tI’ R.e{‘-ﬁﬂqbe”‘} into (5 8) Avera.gmg with respect to t:me, we find the eqnatlon

1 24 04" .
=1 { |¢|30030——/0 [wq2 0~ 2Re=t aR]d }Rde (5.9)

where ¢ is defined by

i4g 4= ot dr+ ng,¢, (5.10)
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Figure 5.1: Mean drift force on a half-immersed sphere of radius a in head waves and
Fr = 0,10.04.

We now insert the expressions (2.6) for ¢, (5.1) for the scattering potential ¢; and (5.4)

for the radiation potentials ¢;. Using the method of stationary phasc gives us the wave
dnft force as
F

PgA?

= -i' { /:’ B(8)|H(0)*d0 + 2 cos A(1 — 27 cos ﬂ)s} +O(r%) (5.11)
where .

B(0) = (1 - 21 cos B) cos § + 27 5in §

S = \/%Rc (cir/AH-(‘B + 27sin ’3)) ‘ (5.12)

H() = H1(0)+V(1+Tmﬂ)z5ﬂ

J-l

~ where H;(6) is given by (5.1) - (5.4).

Fig. 5.1 shows the mean drift force in head waves (8 = x) at Fr = 0,£0.04. The

sphere is restrained from moving in first-order motions. As this figure shows, the influence
of forward speed is much stronger on the drift force than on the first order forces.



5.2 The energy equation

To check the numerical results, it is useful to have an energy equation. Let us consider
energy conservation for the diffraction problem. For a fixed body, the energy flux across
a vertical cylinder of large radius must be zero in the mean. The energy flux across the

cylinder is given by

W= " i ‘m (p + %|V¢D|2 + gz) (-‘?9%? ~ U cos e) dzRdf (5.13)

where z = { denotes the free surface elevation given by (5.6). We now insert the pressure
p from the Bernoulli equation and use the equation (5.6) for the free surface elevation.
Integrating with respect to z, we obtain

- | 10 Gpogp, , Ucos8[¢p (ép ,04p)\]
W=-rj, {_m o oRC Tt [&t \2¢ ~ Vs o Rdd — (5.14)

where ®, means the total diffraction potential (2.5). Proceeding as in the previous section,
we insert & = Re{*44¢¢**} into (5.14) and take the average with respect to time. This
yields S '

—-——W——-"——/g' rcoaa|¢|’+f Re (1028 ) VRd0  ~ (5.15)
pgAia /2K ~ Jo | ' J—oo R | "’

We now introduce the expressions (2.6) for ¢ and (5.1) for ¢7 and use the method of
stationary phase. Then we require that the energy be conserved, which means that W = 0.
This yields ' _ .
/ " A(8)|Hx(8)2d8 — (1 — 27 cos B)S = O(r*) C (5.16)

where )
A(f) = Tcosb — 3 (5.17)

and S is given by (5.12).

The energy equation (5.16) for the diffraction problem can be used to simplify the
expression for the wave drift force for a fixed body. Eliminating the stationary phase term
S from (5.16) and inserting this into the momentum equation (5.11) yields the following

~ alternative expression for the mean drift force for a fixed body:

pgrji" = —71' oh (cos 6 — cos 8 + 27 5in” ) lHr(?)I’dﬁ + O(7?) (5.18)

Comparing the drift force equations (5.11) and (5.18) may give an idea of the degree of
energy conservation in the method. Fig. 5.2 shows the mean drift force in head waves at
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Figure 5.2: Mean drift force on a half-immersed sphere of radius @ in head waves and
Fr = 0.04. Comparison of momentum and momentum/energy computations.

Fr = 0.04. The results from the momentum equation (5.11) and the combined momentum
and energy equation (5.18) are compared. The maximum deviation is 2%, which indicates
satisfying energy conservation. Since the error is quadratic in Fr, doubling the Froude
number to 0.08 gives a deviation of about 8%.
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‘Chapter 6 )

Discussion of results

In this chapter we present some numerical examples and comparisons with other vauthofs’
results. Results for three different geometries are given: A half-immersed sphere, a trun-
cated vertical surface-piercing cylinder and an array of vertical truncated cylinders.

6.1 The half-immersed sphere |

The first example is a half-immersed sphere of radius a. The body has been discretized
with 200 panels on half of the wetted surface. The free surface has been discretized out to
a radius of 6a, with 440 panels on the halfplane z = 0, y > 0. The results presented are
for Fr = 0.03, where the Froude number is given by

Fr=—U—

VT

Computations of the cross-coupling added mass and damping coeflicients, linear exciting
force and wave drift force along the current direction ( for Fr = 0.04 ) have been shown
in the two previous chapters. Figs. 6.1 — 6.4 show convergence tests for the half-immersed
sphere. The computed values of the surge exciting force and the drift force change by
about 2% when the number of panels on half the wetted surface is increased by a factor
of 8, from 50 to 400. Curiously, the heave exciting force converges unusually fast. This

might be related to the Tact thal the agreement between pressure integratiom and the
Haskind relations is especially good for the heave exciting force. Some kind of cancellation

of numerical errors seems to occur. The convergence of the drift force is as good for the

freely moving cylinder in Fig. 6.4 as for the restrained one in Fig. 6.3, indicating that the

radiation and diffraction potentials are about équaﬂy accurate for the sphere.
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Figure 6.1: Convergence of the surge exciting force for a half-immersed sphere in head
waves and F'r = 0.03.
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Figure 6.2: Convergence of the heave exciting force for a half-immersed sphere in head

waves and Fr = 0.03.
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Figure 8.4: Convergence of the wave drift force for a half-immersed sphere free to surge in
linear motion in head waves and Fr = 0.03. ‘



Wave drift force on a cylinder
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Figure 6.5: Mean drift force on a restrained floating cylinder of radius a and draft 3a in
head waves and Fr = 0. Comparison between the present method and that of Zhao and
Faltinsen.

6.2 The vertical cylinder

The second example is a vertical surface-piercing circular cylinder of radius a and draft
3a. The body has been discretized with 280 panels on half of the wetted surface. The free
surface has been discretized out to a radius of 6a, with 224 panels on the halfplane z =0,
y>0. o

Fig. 6.5 shows a comparison of the drift force at Fr = 0 compared to the results of
Zhao and Faltinsen (1989). The drift force coefficient is defined by

| F

pgA3a

Cr =

‘The cylinder is restrained from moving in first-order motions. The agreement is very good,

with a maximum discrepancy of about 2%.
Fig. 6.6 shows a comparison of the corresponding wave drift damping. The wave

drift damping is obtained here by evaluating the drift force at Fr = 0. 0319 and using
- numerical differentiation. There is some discrepancy at the higher freqnencie :

18% in the worst case. Some of this discrepancy may be due to differences in the methods
since the method of Zhao and Faltinsen includes some nonlinear forward speed effects in
the Green function. At lower frequencies, the agreement is excellent.

Fig. 6.7 shows the mean drift force on the cylinder at Fr = 0.0226 in head waves when
the cylinder is free to surge in linear motion, but restrained in the other modes of motion.
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Wave drift damping on a cylinder
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Figure 6.6: Wave drift damping on a restrained floating cylinder of radius a and draft 3a
in head waves. Comparison between the present method and that of Zhao and Faltinsen.

The difference in the results between the present theory and that of Zhao and
Faltinsen is about 5%. For the lower frequencies, the results are almost indistinguishable.

Fig. 6.8 shows the corresponding wave drift damping, obtained by numerical differ-
entiation of the drift force at Fr = +0.0226. Surprisingly, the agreement is better than
for the restrained cylinder. The slightly lower Froude number is not enough to explain
this feature. The calculations differ by up to 10% at the higher frequencies. Some of this
might possibly be due to different treatment of the m-terms. Still, a disagreement of 10%
is not much, taking into account that the wave drift damping is computed by numerical
differentiation. The agreement at low frequencies is again very good. |

Figs. 6.9 - 6.11 show convergence of the surge exciting force and the wave drift force for
the cylinder at Fr = 0.03. The far-field Haskind relations (4.28) are used for the exciting
force. The cylinder is restrained in Fig. 6.10 and free to surge in linear motion in Fig. 6.11.
For the exciting force, the rate of convergence is about the same as for the half-immersed
sphere. Also for the restrained cylinder in Fig. 6.10, the drift force converges as fast as for
the sphere in Fig. 6.3. When the bodies are free to move in surge, the convergence seems

to be slightly slower for the cylinder in ¥ig. 8.11 than for the sphere in Fig. 6.4, Simcethe —
convergence rate is the same for the two restrained bodies, it is likely that the inaccuracy |

in the drift force for the surging cylinder is caused by the singularity in the right-hand

side of the radiation problem at the edge of the cylinder, as discussed earlier in Section

2.5. The convergence is still satisfying, with 200 panels on half of the wetted surface giving

sufficient accuracy.
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Figure 6.7: Mean drift force on a ﬂmting cylinder of radius a and draft 3a free to surge in
head waves and Fr = 0.0226. Comparison between the present method and that of Zhao

and Faltinsen.

Figure 6.8: Wave drift damping on a floating cylinder of radius a and draft 3a free to surge
in head waves. Comparison between the present method and that of Zhao and Faltinsen.
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Figure 6.9: Convergence of the surge exciting force for a vertical cylinder in head waves -
and Fr = 0.03. ‘
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Figure 6.10: Convergence of the wave drift force for a restrained vertical cylinder in head

waves. Fr = 0.03.
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Figure 6.11: Convergence of the wave drift force for a vertical byli’miaer free to surge in
linear motion in head waves. Fr = 0.03.

6.3 The array of vertical cylinders

The third example is an array of four vertical cylinders, each one identical to the one in
the previous example, with radius ¢ and draft 3a. The centres of the cylinders generate

a square with sides 7a. This configuration, shown in Fig. 6.12, resembles the four corner

columns of a tension-leg platform. The geometry is discretized with 192 panels on each
column and with 468 panels on half of the free surface. The discretization of the free
surface is shown in Fig. 6.13. Figure 6.14 shows the wave drift force for this geometry
at zero forward speed, with typical interference phenomena acting between the different
columns. As Fig. 6.14 shows, the mean drift force on each cylinder in the array may
be considerably greater than the drift force on a single cylinder, which is given in Fig.
6.7. This is of course caused by the nonlinear interactions between the scattered and
radiated waves from the different columns. Fig. 6.15 shows the corresponding wave drift
damping. Due to interference phenomena, the wave drift damping oscillates quite rapidly
and becomes negative at some frequencies. This means that the mean drift force decreases

nereasingfo d speed hese frequencies, while for a single column, the mean

drift force always increases with increasing forward speed, as shown in Fig. 6.8. Thus, the
interference between different structure changes the behaviour of the wave drift
damping radically. Remarkably, the frequency interval in which the wave drift damping
is negative for the cylinder array is approximately the interval for which the wave drift
force decreases with increasing frequency. This is not easy to interpret physically, but this
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Figure 6.12: Geometry of cylinder array viewed from above.

interval ( 0.5 < Ka < 0.7 ) is clearly the interval in which the interaction between the
columns has the most dramatic consequences.
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Figure 6.13: Discretization of the free surface around the cylinder array in the halfplane
y > 0.

Drift force on a cylinder array
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Figure 6.14: mean drift force on a fleating cylinder array free tomr,gem head waves and
Fr = 0. Cylinder radius a, draft 3a, distance between centers 7a.
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Figure 6.15: Wave drift damping on a floating cylinder array free to surge in head waves.
Cylinder radius a, draft 3a, distance between centers Ta.
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Appendix A

The far-field terms in the integral
equations

We will now proceed to show that the integral expression in (2.25) vanishes. We then
need the far-field behaviour of the Green function and the potentials, as in the section
on the added mass and damping coefficients. Since we now integrate with respect to the
source point coordinates, we need to replace the condition |#] — oo with |£| — 00. This
is accomplished by noting that

G’(z',ﬁ;‘f) = G(§,2;—T) | (A1)

Letting £ = Rcos#,n = Rsinf and using (3.19), the Green function for R — oo can be
written N
G(R,9,(;z,y,2) = RVh(=, §; —r)eh 1R (A.2)

where h(€,8; 7) is given by (3.20). From (5.1) — (5.4), we also have the fa.r—ﬁeld behaviour
of the radiation and scattering potentials
é; = RVZH(9)eh =R s 7 (A.3)

where R — oo, and the amplitude distributions H;(#) are given by (4.13) - (5.3). Using
- these expressions and integrating with respect to (, we obtain

. 2x
/ (¢,-— ~go% ¢J) dS = 2ire~ %R L H;(®)h(z,0;—r)cosbdd  (A.4)
Similarly, we get |

5 I ]
22'7"/0 ¢de‘17 = 2iTB-2’VR-[) Hj‘(ﬂ)h(m,ﬂ; —~-r) cos Bdb (A.5)
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which finally shows that

// (¢’6n ¢)d5 217/ $:Gdn =0 (a9

for j = 1,...,7. Thus, the far-field integrals in (2.23) and (2.24) cancel each other in both
the rad.mtmn and diffraction problems.

A similar derivation is needed to prove the Timman-Newman relations (4.4). The far-
field behaviour of the reversed-flow radiation potentials ¥; is the same as (5.4), with the
sign of T reversed. This means that #; plays a role similar to G in the far-field integrals
over So, and C,,. Therefore we obtain, in analogy with (A.6),

//,, (¢, an ¥ o2 )ds 2"/ ¢ipidy = 0 (A.T)

which completes the proof of the Timman-Newman relations (4.4).
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Appendix B

Application of Tuck’s theorem to
the source potential |

In the formulation of the integral equations for the radiation potentials with forward speed,
we have used Tuck’s theorem in the form |

JL, 9x®) - v& @, omdse = - [ G, E)midS, (B.1)

As stated previously, Tuck’s theorem is clearly valid when x is outside thie body, since
Gz, &) is differentiable for = # €. However, G is singular at & = £, so it’s not obvious
that Tuck’s theorem can be applied when the field point is situated on the body.

But since G° itself is integrable, the right hand side in (B.1) is obvicusly continuous for
# — Sp. VG° is not integrable, but for any regular source distribution Q{z) we have

Jm [[ Q©Ve@ odsc = Q@+ [[ Q@vVe= s (B2)

where the last integral is interpreted in a principal-value manner. Applying this result to
(B.1), we have

9%+ [ Vx(€) 96%a, enids, = - [ [ @ emds.  (B3)

~ Since x,/On = 0, the residual contribution to the normal velocity drops out, and thus

the left-hand side of (B.1) is also continuous # — Sp, which means that Tuck’s theorem
is valid. o :
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Appendix C

Numerical integration of the Green

function

To solve the integral equations (2.31), (2.32) and (2.34) numerically, we need to integrate
the Green functions (3.12) and (3.14) numerically over each panel. The integration of the
zero-speed Green function (3.12) and its normal derivative is well documented in Newman
and Sclavounos (1987). Here we will describe briefly how the forward speed Green function
(3.14) and its normal derivative are integrated numerically.

Using the coordinates

R = -+ -y
o= le— P+ —nP +(z 400
y—1n
z—¢§
we find that (3.14) can be written
1 = —4rcosbue" ™ [(1 4 u(z + )L (VR) + vRI(vE)

+ 4icosfl + v(z + C)]?i — div(z — §) ( + VI) (C.1)

tand =

where the integral I is given by (3.13). The gra.dlent of (3. 14) with respect to the source
point coordinates i is given by

%—é— = 4mlerFH) [ (3 + v(z +¢))Jo(vR) — vRcos? 9J1(vR)]

tamiA ) [5(1 +{z+0)){1 - 2 cos® v)J,(uR)]

+4i? [(1+(1+v(z+C))cos’0)I+ (I—i%ﬂ-)(l 2ein’ ) + v Rcos 9) gJIz]
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+ 41v° [-l-(l + vz + {) cos? 0)% + cos? 03(?2) (;177)] , (C.2)

M _ -—41&'1/ @sﬂ sind e*C+9 (1 4+ v(z + ¢))2(vR) + vRJ, (VR)]

an :
+ 4i1% cos Osin 8 [(1 +v(z+ ) + (21—-*-'/7(;1@ + R) o1 = + i + a(lzz) (zj")]
. (C.3)
%ﬁ_—l = —4rv cos§ T [(2 4+ v(z + () Sy (vR) + ”RJD(’VR)]
+ 4112 cosd [(2 +v(z+ C))— —vRI - E] +4zga— (%) (C.4)

Newman (1984) gives the integral ] as an ascending series expansion in X = vR and
Y = —v(z + (). Using this series and its derivative, we find that the singular behaviours
of I and its derivatives are '

I = —lny(r'+|z+¢]) +0(1)
oI R o :
R = m +0(1) | | (C.5)
191 14w

ROR = “vir+lsd) T2 Vzlny(r+]z+d)+o(l)

To evaluate the integrals of ; and its normal derivate over a panel, we split the integrand
into a regular and a singular part. The regular part is integrated by the mid-point rule or

by the four-point Gaussian rule. Each term in the singular part is then treated separately.

1/r" and its derivatives are integrated by the Hess and Smith method. The logarithmic

singularity in (C.5) is integrated by the method described in Newman and Sclavounos

(1987). The remaining singular terms to be treated are then those involving the derivatives

of the logarithmic singularity, given by (C.5). Note that we can write

i = (o)
ralz+d APtz
1 7/ 1 ; .
P ¥l C) (r'+lz+d) r ©o

R A o= £ T NG )+ 242 ()]

From the integral equations (2.31), (2.32) and (2.34), we see that the Green function vy
and its normal derivative only are integrated over the body surface, not over the free
surface. From (3.14), we know that ¢, does not contain the Rankine source, and thus it
is only singular at the free surface. We also see that the coefficients in front of 1/r' and
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its derivatives in (C.6) always lie between 1 and -1. Thus, when the source point and the
field point are close together and simultaneously close to the free surface, the expressions
in (C.6) can be integrated by keeping the coefficients constant under the integration. The
coefficients are then replaced with their mean values over the panel, computed by the
four-point Gaussian rule. 1/r’ and its derivatives are integrated by the Hess and Smith '
method. _ , ‘

If the source and field points are not close together or not close to the free surface, the
entire forward speed Green function ¥, and its derivatives are integrated by the mid-point
rule or by the four-point Gaussian rule.
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Appendix D
The program structure

Our program is an extended version of the radiation/diffraction program WAMIT, devel-
oped at the MIT. WAMIT solves the radiation and diffraction problems at zero Froude
number and computes the first-order forces and motions and the drift forces. This is doc-
umented in Newman and Sclavounos (1987). The program consists of two modules. The
first module, POTEN, computes the velocity poteatial, while the second module, FORCE,
computes the forces. The subroutine structure of our extended forward-speed WAMIT
program 1is listed below. ‘

D.1 The structure of the POTEN module

Ths subroutine calls made im POTEN are listsd below. Indented
subroutine names indicate calls made by leading subroutine name
Subroutine Source—cods Description

name file
CHECK Checks input parameters
GEDN Sets-up pansl geometrical data

, for the body surface :
___PANEL _ Evaluates data for givam pamsl . .. . .o o
GEOMSF ‘ Sets-up panel geometrical data ,
for the free surface

PANEL Evaluates data for given pansl
MODE Sets-up mode symmetry indices
POPEN Opens files
SAVINP Saves input data for use with FORCE

cuI Computes derivatives of steady potential
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NATSTD

INTSTD
QUADR

RIGIDG

DBINIT
DBSOLY
SGECO
SGESL
FSFCHI
INTSTD
NHAST
INTSTD
RARKIN

QuUaDR
SAVRNK

INITLS
VAVEGR

DIFRES

SOLYR

SAVDIF
QUADR
PGREEN

PHIDSF

GREEN
QUADR

OO0 aao0naao0aononoaoaaagaao0aoc0a0ag0aacaoaoonaao0n00a0ao0ca0ac0o00a0a0a0aa0annna

FGREEN
SAVFSF
TAUINI
BODIRT

GREENS

Sets-up Rankine influence matrix
for the steady problem
Computes source and dipole integrals

" Computes the 1/r + 1/r’ Green function

Initializes double-body matrix

Solves double-body problem

LINPACK Gauss reduction

LINPACK back substitution

Computes derivatives at the free surface

Computes derivatives on the body

Sets-up Rankine influence matrix

Reflects field points wrt symmetry planes
Computes coordinats tramsformations
Evaluates Rankine infiweace coefficisnts
Saves Rankins watrix

Retrieves Rankine matrix

Initializes solmution matrix

Sets-up solution matrix

Raflects field points wrt symmetry planes
Evaluates wave source potsmtial
Dstermines real root in dispersion relat.
Sets-up RES of diffractiom problem
Evaluates incident-wave potemtial

Solves linesar gystsms by Gauss reduction
LINPACK complex Gamss reduction

LINPACK complex back substitution

Saves solution radiation potemtials

Saves solution diffraction potentials

Computes the zero-speed potential at the
ires surface
Integrates G and 4G/dn over a panel

Saves quantities at tha frse surfacs
Initializes forward-speed potentials
Computes integral over the b'cﬁdy of
phi0dG1/dn

Computes the gradient of the Green function
wrt source poimt
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INTDG1
QUADR
BEGPAR

FGREEN

INTFPAN

QUADR

QUADR
FGREEN
F180LY

SAVRAD
BAYDIF

SRCMAT

Computes the integral of dG1l/dn over a panel

Computes the regular part of dGi/dm

Computes integral over the free

surfacs of the steady disturbance
Computes the integral over a surface panel
of the gradient terms

Computes the integral over a surface panal
of the second derivative terms

Sclves the phil problem

LINPACK complax back substitutiom

Saves the speed-dependent radiation poteatial
Saves the spesd-depsndant diffraction potemtial
Initializes ths velocity on the body

Sets-up equation system for gero-spsed source
density ' '

Computes zaro-spsed unsteady velocity on the body
Savas the unstemdy nmity to bimary fils
Closes files

D.2 The structure of the FORCE module

c

c The subroutine calls made in FORCE are listed balow. Indented

¢ subroutine names indicate calls made by leading subroutine name

c [P
- U e e e

c Subroutine Source-code Description

c name file

c ——

c CHECKF FORCE Checks input parameters

c ROOT KERNEL Solves for real root of dispersion relat.
c ADMDNP FORCE Evaluates hydrodynamic coefficients
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HASKMD
INCWAVE
TRESFR
CGECO
BPRESS
FPRESS
INCPOT
REFL
GREEN
FVEL
INCPOT
RE¥L
GREEN

KOCEIN
INCWAVE

RETINP
FOPEN
RETRAD
RETDIF

_
OPEASK
OPXFAC
CPTRY¥S
OPBPRS
QPFPRS
OPPVEL
OPDRFT
OPTAU

- —GPDFOR

PRIADD

AIIBI}

HASKIN

FORCE
FORCE

FORCE
LINPACK
LINPACK

FORCE
KERNEL
KERNEL
FORCE

FORCEIOD
FORCEID
FORCEID

FORCEIO
FORCEIO
FORCEIO
FORCEIO
FORCEIO
FORCEIO
FORCEIO

FORCEIO

Evaluates Haskind exciting forces
Evaluates inc. potential & normal deriv.
Evaluates diffraction exciting forces
Evaluates body motions

Carries out complex Gauss reduction
Complex back substitutiom

Evaluates hydrodynamic pressure on body
Evaluates pressure in fluid domain
Evaluates incident potential

Reflects field points wrt symmetry planes
Bvaluates field potential and velocity
Evaluates velocity in fluid domain
Evaluates incident potential

Reflects field points wrt symmetry planes
Evaluates field potemtial and velocity
Evaluates field potential and velocity
Evaluates pazel coordinate tramsformation
Evaluates Rankime integrals over i panel
Evaluates wave source potemtial

Evaluates sucrge, svay & yaw drift forces
Sets-up Kochin fumctions for drift forces
Evaluates inc. potemtial & normal deriv.
Retrisves input and geometry data

Opens files .
Retrieves solution radiatiom potemtials
Retrieves solution diffraction potentials

_Cutputs wave psxriod

Header for hydrodymamic coefficients

- ‘Header for Haskind exciting forcss

Header for diffraction excitiang force
Header for body motions

Header for body pressure

Header for field pressure

Header for field velocity

Headexr for drift forces

Header for reducsd frequency

Header for forward-speed drift force

Adds zaxo and first order velocity
potentials

Computas spesd-dependent added nuss

and damping

Computes spesd-dependent exciting force
from far-field Naskind relations
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FAMPR2

EXCIT
FORCEX

FANPD2

FORCEX2

FANPD2

ENFLUX2
FANPD2

FFDANP

FANPR2

TRANSF

DFDRCX

Computes the amplitude distribution of
the radiation potentials

Computes speed-dependent exciting force
Computes the drift force with forward
speed from momentum equation

Computes thes amplitude distribution of
the scattering potential

Computes the drift force with forward
speed from momentum/energy equation
Computes the amplitude distribution of
the scattering potential

Checks enexgy coaservation

Computes the amplitude distribution of
thes scattering potential

Compute speed-depandent damping from
energy flux in the far-field

Computes the amplitude distribution of
the radiatisn potentials

Computes body motious, using far-fiel
Hagkind exciting forces ‘
Computes drift force with forward speed
for a freely floating body

Closes files
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