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S U M M A R Y

The fast marching method (FMM) is a grid based numerical scheme for tracking the evolution of

monotonically advancing interfaces via finite-difference solution of the eikonal equation. Like

many other grid based techniques, FMM is only capable of finding the first-arriving phase in

continuous media; however, it distinguishes itself by combining both unconditional stability and

rapid computation, making it a truly practical scheme for velocity fields of arbitrary complexity.

The aim of this paper is to investigate the potential of FMM for finding later arriving phases

in layered media. In particular, we focus on reflections from smooth subhorizontal interfaces

that separate regions of continuous velocity variation. The method we adopt for calculating

reflected phases involves two stages: the first stage initializes FMM at the source and tracks the

incident wave front to all points on the reflector surface; the second stage tracks the reflected

wave front by reinitializing FMM from the interface point with minimum traveltime. Layer

velocities are described by a regular grid of velocity nodes and layer boundaries are described

by a set of interface nodes that may be irregularly distributed. A triangulation routine is used to

locally suture interface nodes to neighbouring velocity nodes in order to facilitate the tracking

of wave fronts to and from the reflector. A number of synthetic tests are carried out to assess the

accuracy, speed and robustness of the new scheme. These include comparisons with analytic

solutions and with solutions obtained from a shooting method of ray tracing. The convergence

of traveltimes as grid spacing is reduced is also examined. Results from these tests indicate that

wave fronts can be accurately tracked with minimal computational effort, even in the presence

of complex velocity fields and layer boundaries with high curvature. Incident wave fronts

containing gradient discontinuities or shocks also pose no difficulty. Further development of

the wave front reinitialization scheme should allow other later arrivals such as multiples to be

successfully located.

Key words: fast marching method, finite-difference methods, ray tracing, reflection seismol-

ogy, seismic-wave propagation, traveltime.

1 I N T RO D U C T I O N

Seismic traveltimes are used in a variety of ways to construct images

of the Earth’s interior. One commonly used approach, called seismic

traveltime tomography, constructs 2-D and 3-D maps of wave speed

variation by inversion of source–receiver traveltimes. Tomographic

methods work by representing the seismic structure of the region

being mapped with a set of model parameters, predicting the model

data for a given a priori model, and then adjusting the values of the

model parameters to better match the model data with the observed

data. Much has been learned concerning the structure of the Earth

at local (e.g. Aki et al. 1977; Thurber 1983; Oncescu et al. 1984;

Hole et al. 1992; Eberhart-Phillips & Michael 1993; Darbyshire

et al. 1998; Graeber & Asch 1999; Zelt et al. 2001; Graeber et al.

2002), regional (e.g. Spakman 1991; Widiyantoro & van der Hilst

1997; Gorbatov et al. 2000, 2001) and global (e.g. Dziewonski &

Woodhouse 1987; Inoue et al. 1990; Morelli 1993; van der Hilst

et al. 1997; Bijwaard & Spakman 2000) scales through the applica-

tion of seismic traveltime tomography. Another method of imaging

structure that is frequently used by the exploration industry involves

mapping the recorded wavefield directly into model space. This is

done using coincident reflection data, which allows reflected phases

to be associated with the Earth’s impulse response and hence Earth

structure. A popular method for producing images from this class

of data is Kirchhoff migration (Sena & Toksöz 1993; Gray & May

1994; Epili & McMechan 1996; Buske 1999), which requires the

traveltimes to all points in the medium to be calculated.

The important role seismic traveltimes play in modern seismol-

ogy is reflected in the number of methods that have been devised

for their prediction. These include shooting and bending methods

of ray tracing, finite-difference solution of the eikonal equation on

a grid, wave front construction using local ray tracing and network
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methods. Shooting methods of ray tracing formulate the ray equa-

tion as an initial-value problem, which allows a complete ray path to

be traced provided the source coordinate and initial ray direction are

known. The boundary value problem of locating a source–receiver

ray path can then be solved by shooting rays through the medium

and using information from the computed paths to update the initial

ray trajectories. Numerous ray tracing schemes that use this basic

approach have been developed (e.g. Julian & Gubbins 1977; Cas-

sell 1982; Červený 1987; Sambridge & Kennett 1990; Bulant 1996;

Rawlinson et al. 2001a). The bending method of ray tracing itera-

tively adjusts the geometry of an initial arbitrary path that joins the

source and receiver until it becomes a true ray path (i.e. it satisfies

Fermat’s principle). Bending methods are well suited to media in

which velocity varies smoothly (e.g. Julian & Gubbins 1977; Um &

Thurber 1987; Prothero et al. 1988; Grechka & McMechan 1996)

and have also been developed for layered media (e.g. Pereyra et al.

1980; Zhao et al. 1992).

The principal drawbacks of ray tracing are related to robustness,

speed and ray selection. In the presence of velocity variations, both

shooting and bending schemes may fail to converge on true two

point ray paths; this lack of robustness becomes more evident as the

complexity of the medium increases. Ray tracing can also be a time

consuming process, especially if a large number of sources and/or

receivers are involved and the medium is 3-D. The final difficulty,

that of ray selection, is due to the possibility of more than one

traveltime and path existing for a source–receiver pair. Usually, one

attempts to pick the first-arrival from a seismogram (or the first-

arrival of a later phase), but it is difficult to ascertain with both

shooting and bending whether the predicted traveltime is a global

minimum. Of course, stability, speed and ray selection all trade-off

with each other to some extent. For example, increasing the number

of initial rays in a shooting scheme may result in more source–

receiver paths being found, but will also increase computation time.

A comprehensive exploration of ray theory can be found in Červený

(2001).

Another more recently developed class of methods for predicting

traveltimes seek finite-difference solutions to the eikonal equation

throughout a gridded velocity field. Vidale (1988) proposes a finite-

difference scheme that progressively integrates traveltimes along

an expanding square in 2-D, and later extends the method to 3-D

(Vidale 1990). Since then, numerous studies have sought to develop

and refine this basic scheme. For example, Hole & Zelt (1995) and

Afnimar & Koketsu (2000) improve the stability of the expanding

square formalism so that it may be used more effectively in complex

media; Qin et al. (1992) use the same finite-difference operators as

Vidale (1988) but calculates the traveltime field along the shape

of the expanding wave front; Podvin & Lecomte (1991) and van

Trier & Symes (1991) seek to improve algorithm stability by using

Huygen’s principle in the finite-difference approximation and up-

wind difference operators, respectively.

A characteristic shared by most finite-difference schemes is that

they are only capable of finding the absolute first-arrival traveltimes

in continuous media. While this may be advantageous for some to-

mographic schemes and Kirchhoff migration, there are many occa-

sions in which later arrivals are of interest. However, certain classes

of later arriving phases such as reflections from specified interfaces

can be calculated with finite-difference schemes (Podvin & Lecomte

1991; Riahi & Juhlin 1994; Hole & Zelt 1995). Another limita-

tion of finite-difference schemes is that they may suffer from sta-

bility problems; in particular, an expanding square formalism may

breech causality in the presence of large velocity gradients (Qin et al.

1992).

Shortest path ray tracing (SPR) offers an alternative grid method

for calculating traveltimes. A grid of nodes is specified within the

velocity medium and a network or graph is formed by connect-

ing neighbouring nodes with traveltime path segments (Nakanishi

& Yamaguchi 1986; Moser 1991; Fischer & Lees 1993; Cheng &

House 1996). The problem then reduces to one of finding the path

of minimum traveltime between the source and the receiver through

the network, which may be solved using Dijkstra-like algorithms.

Similar to finite-difference solutions of the eikonal equation, SPR is

only capable of finding first-arrivals unless specific conditions, such

as reflections from an interface, are imposed (Moser 1991). Like any

grid based method, the accuracy of SPR will improve as node spac-

ing decreases, but having large angles between adjacent connectors

can result in a poor approximation to the true path. Finite-difference

methods generally offer a better compromise between speed and

accuracy than SPR methods (Leidenfrost et al. 1999), but the latter

is often considered to be more numerically stable (e.g. Cheng &

House 1996).

Wave front construction (WC) is another recently developed nu-

merical technique for calculating traveltimes (Vinje et al. 1993;

Ettrich & Gajewski 1996; Lambaré et al. 1996; Lucio et al. 1996;

Vinje et al. 1999). The basic principle WC employs is that discrete

propagation of a wave front through a medium can be achieved by

using local ray tracing from each wave front surface. Rays are traced

for a given time step, with the end points of rays describing the ge-

ometry of the new wave front. If diverging rays cause parts of the

wave front to be poorly sampled, new rays are introduced by interpo-

lation. Advantages of WC compared with most grid based methods

include the ability to construct multi-valued traveltime fields and

the accurate calculation of amplitudes. However, WC tends to be

slower than grid-based methods for the same level of traveltime ac-

curacy (see Leidenfrost et al. 1999) and portions of the wave front

with high curvature can be poorly approximated. Lambaré et al.

(1996) introduce a uniform ray density criterion in phase space to

help overcome this problem.

Gudmundsson et al. (1994) devise a method of wave front con-

struction on a regular grid, which uses ray perturbation theory to

estimate traveltimes to nodes in the neighbourhood of the new wave

front location and then extracts the shape of the wave front using a

contouring routine. Although later arrivals are not found with this

scheme, undersampling of the wave front is avoided. A compar-

ison of finite-difference, SPR and WC methods can be found in

Leidenfrost et al. (1999).

The problem of tracking the evolution of a monotonically advanc-

ing interface is not restricted to seismic wave fronts; there are many

other areas of science in which this problem needs to be solved.

A recently introduced technique called the fast marching method

or FMM (Sethian 1996; Sethian & Popovici 1999), was developed

with this in mind. To date, FMM has been applied to a wide variety

of problems including photolithographic development, geodesics,

deposition of sediments, medical imaging and optimal path plan-

ning (Sethian 1996, 1999, 2001). At its core, FMM is a grid based

numerical algorithm, which tracks the evolving interface along a

narrow band of nodes where the values are updated by solving the

eikonal equation using upwind entropy satisfying finite-difference

approximations to the gradient term. A particular strength of FMM

is that it combines unconditional stability with rapid computation, a

property that has not been demonstrated for any of the schemes dis-

cussed previously. The unconditional stability of FMM comes from

properly addressing the development and propagation of gradient

discontinuities in the evolving wave front (Sethian 1996; Sethian &

Popovici 1999). Another useful property of FMM is that the order of
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Figure 1. A schematic illustration of how the upwind scheme obtains the entropy satisfying solution. (a) Propagating wave front with a gradient discontinuity

results in a swallow tail; (b) the viscous-limit solution is the first-arrival wave front; (c) the entropy-satisfying upwind scheme (eq. 3) finds the first-arrival to

the point Tij by separately considering the propagation of the wave front on either side of the gradient discontinuity (see text for more details). Black grid nodes

have known traveltimes while grey grid nodes have no associated traveltimes.

accuracy of the method can be controlled by using the appropriate

upwind finite-difference operators. In the seismic context, Sethian

& Popovici (1999) introduce a first-order FMM for calculating trav-

eltimes in 3-D media, Alkhalifah & Fomel (2001) compare first-

order FMMs in Cartesian and spherical coordinates, and Popovici

& Sethian (2002) introduce a higher-order scheme and apply it to

imaging of reflection data.

In this paper, we apply FMM to layered media with the aim

of tracking later phase-specific arrivals. In particular, we focus on

reflected phases from layer boundaries. Reflection traveltimes are

of great importance in many applications including reflection and

wide-angle tomography; a fast unconditionally stable scheme for

calculating these arrivals would be of significant value. The ap-

proach we adopt is to apply a local triangulation scheme to asso-

ciate irregularly spaced boundary nodes with adjacent nodes from

the regular velocity grid. First-, second- and higher-order solutions

of the eikonal equation may be simply applied within the regular

grid, while wave fronts in the vicinity of the layer boundary are

solved using a first-order version of FMM for triangulated meshes.

Reflected waves may be tracked by using a two-stage scheme, which

involves propagating the incident wave front to every point on the

interface, and then reinitializing the scheme from the interface node

with minimum traveltime in order to track the reflected wave front

back through the medium.

After presenting the necessary theory, we make a brief examina-

tion of the comparative accuracy of first-, second- and third-order

FMM schemes in order to identify the scheme that offers the op-

timum balance between accuracy and computation time. Two ex-

amples demonstrating the unconditional stability of the scheme in

highly heterogeneous media are also presented. Examples of FMM

solutions in layered media are then given, focusing on the accu-

racy of reflected traveltimes for smoothly varying interfaces. This

is achieved by comparing FMM results with those produced by a

very accurate ray-shooting method developed by Rawlinson et al.

(2001a). Our final results demonstrate the stability of the scheme in

the presence of highly complex layered structures.

2 M E T H O D

2.1 FMM in continuous media

We begin by giving a brief description of FMM in continuous media.

For more details, refer to Sethian (1996), Sethian & Popovici (1999),

Sethian (1999) and Popovici & Sethian (2002). The eikonal equation

states that the magnitude of the traveltime gradient at any point along

a wave front is equal to the inverse of the velocity at that point and

may be written as

|∇xT | = s(x), (1)

where ∇ x is the gradient operator, T is traveltime and s(x) is slow-

ness.

A significant obstacle for finite-difference methods that seek to

solve the eikonal equation for the first-arrival traveltime field is

that the wave front may be discontinuous in gradient. These dis-

continuities are especially apparent in velocity media that cause

multipathing; the wave front self-intersects but the later arriving in-

formation is discarded (e.g. Fig. 1). The eikonal equation cannot

be easily solved in the presence of gradient discontinuities because

the equation itself requires ∇ xT to be defined. One way of deal-

ing with this problem is to seek ‘weak solutions’, which result in

a continuous T(x) but not necessarily a continuous ∇ xT . One way

of obtaining a weak solution is to solve the ‘viscous’ version of the

eikonal equation:

|∇xT | = s(x) + ǫ∇2
x T (2)

as ǫ → 0 (the viscous limit), where the parameter ǫ controls the

smoothness imposed on the solution. The limit of smooth solutions

is a weak solution that corresponds to the first-arriving wave front.

By definition, the propagation of a first-arriving wave front satisfies

an entropy condition because it can only pass through a point once;

hence, information can only be lost or retained as the wave front

evolves. Sethian & Popovici (1999) state this entropy condition as

‘once a point burns, it stays burnt’. The unconditional stability of

FMM comes from strict enforcement of this entropy condition (see

Sethian 1996; Sethian & Popovici 1999, for more details).

Entropy satisfying weak solutions may be obtained by using up-

wind gradient operators in eq. (1), which take into account the direc-

tion of flow of information. Nodes that reside downwind from the

wave front should only be updated by using traveltime values from

nodes that lie upwind. The upwind scheme we employ is one that

has been used by a number of authors including Sethian & Popovici

(1999), Chopp (2001) and Popovici & Sethian (2002) and may be

expressed:











max
(

D−x
a T, −D+x

b T, 0
)2

+ max
(

D−y
c T, −D

+y

d T, 0
)2

+ max
(

D−z
e T, −D+z

f T, 0
)2











1/2

i jk

= si, j,k, (3)

where T is traveltime, (i, j, k) are grid increment variables in (x, y, z),

and the integer variables a, b, c, d, e, f define the order of accuracy of

the upwind finite-difference operator used in each of the six cases.
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Figure 2. (a) The principle of the narrow-band method. (b) Example of how the narrow band evolves from a source point. See the text for more details.

For example, the first three upwind operators for D−xTi are:

D−x
1 Ti =

Ti − Ti−1

δx

D−x
2 Ti =

3Ti − 4Ti−1 + Ti−2

2δx

D−x
3 Ti =

11Ti − 18Ti−1 + 9Ti−2 − 2Ti−3

6δx
,

(4)

where δx is the grid spacing in x. These operators are easily de-

rived by appropriate summation of the Taylor series expansions for

T i−1, T i−2 and T i−3. Which operator is used in eq. (3) depends on

the availability of upwind traveltimes and the maximum order al-

lowed. First-order accurate schemes only use D1 operators, second-

order accurate schemes preferentially use D2 operators and third-

order schemes preferentially use D3 operators. Strictly speaking, the

second- and third-order methods are really mixed order because they

will use lower-order approximations when causality does not per-

mit the use of the required operator. For example, if we implement

a third-order method and T i−1 > T i−2 > T i−3, then the operator

used would be D−x
3 Ti; if T i−1 > T i−2 < T i−3, then we would use

D−x
2 Ti; while if T i−1 < T i−2 we would have to resort to D−x

1Ti. For

the remainder of the paper, ‘nth-order scheme’ implies that n is the

maximum order operator allowed, and not that the scheme is strictly

nth-order accurate.

A simple example of the entropy-satisfying nature of eq. (3) is

shown in the schematic diagram of Fig. 1. Here, a wave front con-

taining a gradient discontinuity is propagated. The propagation of

the complete front produces a swallow tail solution (Fig. 1a). Using

a non-zero viscosity term (eq. 2) will smooth out the discontinuity

and eliminate the need for later arrivals. The viscous limit solution

(Fig. 1b) also discards the later-arriving swallow tail, but preserves

the discontinuity and hence correctly calculates the first-arrival wave

front. The entropy-satisfying upwind scheme will also produce the

first-arrival wave front by separately considering information on

either side of the gradient discontinuity (Fig. 1c). In quadrant A,

eq. (3) with first-order operators reduces to the quadratic:

(

Ti, j − Ti−1, j

δx

)2

+

(

Ti, j − Ti, j−1

δz

)2

= (si, j )
2. (5)

Of the two possible solutions, the larger one corresponds to the

wave front segment in quadrant A impinging upon (i, j). Similarly

in quadrant B, the appropriate quadratic is

(

Ti+1, j − Ti, j

δx

)2

+

(

Ti, j − Ti, j−1

δz

)2

= (si, j )
2 (6)

and again the larger solution corresponds to the wave segment in

quadrant B impinging upon (i, j). Of the two options from A and B,

the correct solution is the one with minimum traveltime. In Fig. 1(c),

both traveltimes are the same and (i, j) becomes a point of gradient

discontinuity, but this need not be the case in general.

The upwind scheme given by eq. (3) describes how to calculate

new traveltimes using known traveltimes from adjacent gridpoints.

Successful implementation of this scheme requires that the order in

which nodes are updated be consistent with the direction of flow

of information; that is, from smaller values of T to larger values

of T . To achieve this, FMM systematically constructs traveltimes T

in a downwind fashion from known values upwind by employing a

narrow-band approach. The narrow-band concept is illustrated in

Fig. 2(a); alive points have their values correctly calculated, close

points lie within the narrow band and have trial values, and far points

have no values calculated. Trial values are calculated using eq. (3)
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farAll velocity nodes set to

Wavefront tracked to interface

Source

Narrow band of close points
Reflected wavefront initialized from

traveltime surface

Figure 3. The principle behind the determination of reflection traveltimes. The incident wave front is tracked to all points on the interface. All velocity nodes

are then set to far, all interface nodes are set to close and the scheme is re-initialized to track the reflected wave front.

with alive points only, which by definition lie upwind of the close

points. The shape of the narrow-band approximates the shape of the

first-arrival wave front, and the idea is to propagate the band through

the grid until all points become alive.

The narrow band is evolved by identifying the close point with

minimum traveltime and tagging it as an alive point. All neigh-

bours of this point that are not alive are tagged as close and have

their traveltimes computed (or recomputed) using eq. (3). Repetition

of this process allows the traveltime to all gridpoints to be calcu-

lated. Fig. 2(b) illustrates several evolution steps of the narrow-band

method from a source point. Choosing the close points with mini-

mum traveltime guarantees that alive points are not evaluated with

partial information. In general, adjacent close points must lie up-

wind or downwind of each other; the close point with minimum

traveltime will always lie upwind of adjacent close points. A heap

sort algorithm is used to rapidly locate the gridpoint in the narrow

band with minimum traveltime. Since information in a heap sort is

stored in a binary tree, FMM will have an operation count of O(M

log M) where M is the total number of gridpoints.

Although ray paths are not explicitly found by FMM, they may

be calculated a posteriori using the computed traveltime field. The

easiest way to do this is to start at each receiver and follow the

traveltime gradient ∇T back to the source. ∇T can be approximated

by finite differences in a manner similar to the upwind scheme. The

rays traced through the models in Section 3 are computed using this

approach.

2.2 FMM in layered media

We adapt the FMM scheme described above to allow phases other

than the absolute first-arrival to be tracked in layered media. In par-

ticular, we focus on reflections from subhorizontal interfaces. The

two principal difficulties involved in the introduction of reflections

are as follows. (1) The entropy condition that is central to solving

the eikonal equation requires that once the first-arrival traveltime to

a point has been found, the wave front cannot pass through that point

again. To permit reflected waves, this condition must be breached,

but not in a way that undermines the correct calculation of travel-

times. (2) Layer boundaries that vary with depth must be described

by an irregular distribution of interface nodes, which do not conform

with the regular velocity grid.

A relatively simple way of dealing with the problem of a multi-

valued traveltime field is to adopt the following two stage approach.

First, track the incident wave front to all points on the interface.

Then set all velocity nodes above the interface to far and all interface

nodes to close and reinitialize the FMM scheme to track the reflected

wave front. Although the narrow band at the start of the second

stage ‘surrounds’ the interface and not the wave front, causality

is not breached because the first-arrival reflection wave front only

impinges on the interface once at every point. Fig. 3 illustrates the

principle behind our two stage scheme.

The shape of a reflected wave front has a strong dependence on

the geometry of the reflecting interface, so it is essential that layer

boundaries are accurately represented by the computational grid.

The scheme we adopt defines a set of interface nodes by locating

every intersection point between the interface and the cell bound-

aries of the rectangular velocity grid (see Fig. 4). This results in an

irregular distribution of interface nodes embedded within a regular

grid of velocity nodes. Traveltime information flowing to and from

the interface nodes cannot be calculated using eq. (3) because there

is no rectangular grid association between neighbouring nodes. In-

stead, we use an irregular mesh of triangles (for 2-D velocity media

only) to locally suture the interface nodes to adjacent velocity nodes

(Fig. 4). The meshing routine is designed to minimize the presence

of obtuse triangles. Traveltimes are updated across the irregular

mesh by using the triangular first-order upwind scheme of Sethian

(1999), which is outlined below. Advantages of using irregular grids

locally at an interface, rather than globally throughout the medium,

include reduced computational requirements and the ability to retain

higher-order accuracy within the rectangular mesh.

Consider the interface node O shown in Fig. 5(a), which is sur-

rounded by a mesh of four triangles. Like FMM for a rectangular

grid, the traveltime prediction for each of these triangles needs to be

calculated and the minimum chosen as the correct solution. If we

select one of the four triangles and assume that the traveltimes to

points A (T A) and B (T B) are known (see Fig. 5b), then the eikonal

equation can be used to determine the traveltime to point O (T O)

with first-order accuracy by assuming that the traveltime gradient

within the triangle is constant. If t is the local traveltime from T A to

T O, and T B > T A, then a quadratic equation for t is given by (see

Figure 4. Interface nodes are locally sutured to adjacent velocity nodes via

a triangular mesh. Thick dashed lines represent irregular mesh boundaries

and the solid black curve represents the true layer boundary. Velocity and

interface nodes are denoted by grey circles and triangles, respectively.
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Figure 5. Updating traveltimes in a triangulated domain. (a) In order to update point O, traveltime calculations need to be considered for all four triangles. (b)

Using known traveltimes at point A and B to update point O. The traveltime gradient is assumed to be constant within a triangle. Velocity and interface nodes

are denoted by grey circles and triangles, respectively.
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Figure 6. Illustration of why acute triangulation is necessary to preserve first-order accuracy in a triangulated domain. (a) A plane wave front impinging on a

network of acute triangles; (b) on right angled triangles; (c) on obtuse triangles. In the latter case, it is possible for wave fronts to pass through only one of the

bounding nodes (A, B or C) before arriving at O. This leads to traveltimes that are not first-order accurate.

Sethian 1999 for a derivation):

(a2 + b2 − 2a · b)t2 + 2u(a · b − b2)t

+
(

b2u2 − s2
O

[

a2b2 − (a · b)2
])

= 0, (7)

where sO is slowness at O, u = T B − T A, a and b are displacement

vectors (see Fig. 5b), and a = |a| and b = |b|.

In order to correctly use eq. (7), the traveltime gradient vector at

O must lie between points A and B (see Fig. 5b) and u < t . It can

be shown that the traveltime gradient condition is satisfied provided

(see Sethian 1999):

a · b

b
<

b(t − u)

t
<

a2b

a · b
. (8)

If both conditions are satisfied, then the solution is T O = t + T A;

otherwise the solution is T O = min{bs O + T A, as O + T B}. In

the example shown in Fig. 5(a), up to four values for T O (one for

each triangle) may be obtained, but the minimum value is always

selected. Note that the expressions given in eqs (7) and (8) avoid the

trigonometric functions used in the equivalent expressions given by

Sethian (1999).

An important restriction in applying FMM to triangulated do-

mains is that angles between adjacent mesh lines emanating from

a node must be acute. To understand why this restriction exists,

consider the sequence of three diagrams in Fig. 6. In all cases, we

are aiming to calculate the traveltime to point O from an impinging

plane wave front. Mesh lines emanate from O at acute angles (72◦)

in Fig. 6(a), and it is clear that a wave front impinging on O from

any angle must first pass through at least two adjacent nodes, in

which case the update will be first-order accurate since eq. (7) will

be used. In Fig. 6(b), mesh lines emanate at right angles, and the

wave front must pass through two adjacent points before reaching O

except when the wave front is perpendicular to AO, BO, CO or DO.

Fig. 6(b) shows a wave front perpendicular to AO, with traveltime

given by T O = T A+s OAO, which is also first-order accurate.

Fig. 6(c) illustrates the case of obtuse triangles, with three grid

lines emanating from O with angular separations of 120◦. If we

consider the triangle AOB, it is clear that wave fronts with normals

that lie in the zone defined by θ will pass through both A and B

before reaching O. However, wave fronts with normals that lie within

either φ1 or φ2 will only pass through A or B, respectively, before

reaching O. For the wave front in Fig. 6(c), the traveltime to O will be

approximated by T O = T A+s OAO, which is not first-order accurate.

In general, the percentage of all incidence angles that result in less

than first-order accurate estimates of traveltime is given by

r = 100

(

2ψ − π

ψ

)

, (9)

where ψ is the angle that subtends AOB and π/2 ≤ ψ ≤ π . Ulti-

mately, the use of obtuse triangles will reduce the accuracy of the

scheme because it will no longer be truly first-order accurate.

For the local adaptive triangulation scheme illustrated in Fig. 4, it

is possible for obtuse triangles to be generated. This can only occur

when the interface cuts a corner off a cell in the manner illustrated

in Fig. 7. To fix this problem, we can simply use a different splitting

strategy that involves replacing the mesh line AC with BO; however,

this is only required when the point O is being updated. For all other

updates (i.e. to A, B, C or D), the original strategy is used. The use of

both strategies ensures that all nodes have mesh lines emanating with

acute angular separation when they are updated. This guarantees that

the correct plane-wave approximation is used to update every point

within the triangulated domain.

So far, we have only considered reflected phases in layered me-

dia, but an incident wave front will also transmit through a layer

boundary. One way of calculating transmissions is to apply the tri-

angulation routine to both sides of an interface and use a one stage
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Figure 7. Dealing with obtuse angles by using a different splitting strategy.

FMM. However, transmitted rays are generally less deviated by an

interface than reflected rays, so it is possible to obtain suitably ac-

curate refraction traveltimes without explicitly including interfaces

in the parametrization. Thus, the velocity nodes on either side of

an interface have correct layer velocities, but interface nodes are

not included. In this approach, the interface is effectively approx-

imated by a sharp velocity gradient, which makes computation a

simpler task and allows structures such as pinch outs to be more

easily represented.

3 R E S U LT S

The class of structure that our FMM scheme is applied to consists of

2-D subhorizontal layers separated by smooth interfaces. In princi-

ple, the irregular local mesh scheme that associates velocity nodes

with adjacent interface nodes could be extended to 3-D using a

tetrahedral mesh rather than a triangular one. However, as we wish

to demonstrate the stability, accuracy and further potential of our

scheme to find other later arrivals, examples in 2-D are sufficient.

We also supply the CPU times required to execute most of our FMM

examples. All calculations were performed in double precision on a

Sun Ultra 5; CPU times include reading the velocity grid from disc.

Application of the FMM scheme requires the velocity field to be

discretely sampled; the node spacing chosen, along with the order

of the upwind difference operator used, will determine the accuracy

of the calculated traveltimes. Thus, the velocity field and interface

surface should both be described in a way that makes discrete sam-

pling at any specified grid spacing a straightforward task. Another

important consideration when higher-order operators are used is the

smoothness of the velocity continuum. True second-order accuracy

requires the velocity field to be continuous in gradient (C1 continu-

ity), while true third-order accuracy requires the velocity field to be

continuous in curvature (C2 continuity).

With these considerations in mind, we use cubic B-spline func-

tions in parametric form (see Bartels et al. 1987) to describe the

underlying velocity field and interface structure. Variations in inter-

face and velocity structure are defined by a separate set of interface

and velocity vertices, which control the shape of the cubic func-

tions. Discrete sampling of these functions to any desired resolution

is easily accomplished. Cubic B-splines have many useful proper-

ties including local control and C2 continuity, the latter of which is

crucial for our implementation of higher-order finite-difference op-

erators to solve the eikonal equation. Smoothness and local control

also make them an attractive parametrization in seismic tomography

(e.g. Rawlinson et al. 2001a), which is one possible application for

FMM. The examples presented below examine the performance of

FMM in the presence of crustal scale structure, but the results are

also applicable to structures at different scales.

3.1 Examples in continuous media

The first set of results we present analyses the accuracy and robust-

ness of FMM in continuous media. These results will be of benefit

in helping to understand the behaviour of FMM in layered media,

examples of which are presented in the next section. A constant

velocity medium is a good starting point for analysing the perfor-

mance of FMM because analytic solutions are easy to calculate.

Fig. 8(a) shows wave fronts and rays emanating from a point source

in a medium of velocity 6.0 km s−1. Rays are traced to a set of 21

receivers positioned 5 km apart on the upper surface of the medium.

Traveltimes to these 21 receivers form the basis of our analysis. The

rms traveltime T rms of the exact solution is provided to help facilitate

error comparison between this and subsequent examples.

The accuracy of the first-order FMM for different grid sizes is

illustrated in Fig. 8(b). The misfit between the numerical solution and

the analytic solution is defined by 
t = t fmm − t a where tfmm is the

solution produced by FMM and ta is the analytic (exact) solution.

The four computational grids that are used for FMM have node

spacings of 1000, 500, 250 and 125 m. It is easy to see from Fig. 8(b)

that the accuracy of FMM increases with decreasing node spacing,

as one would expect. In fact, the rms traveltime misfit (see Table 1)

is reduced by approximately 41 per cent each time the grid spacing

is halved. The traveltime error is zero at x = 0 because the finite-

difference solution is exact along horizontal and vertical grid lines.

As expected, traveltime error is maximized when rays are oriented

near 45◦ to the x and z axes.

When second-order difference operators are used, the accuracy

of FMM is greatly improved (Fig. 8c). When computational cost is

considered (Table 1), it is clear that the first-order scheme can only

achieve similar accuracy to the second-order scheme with an or-

der of magnitude increase in computational effort. For example, the

rms error of the first-order scheme with a grid spacing of 125 m

is 32.7 ms and computation time is 5.3 s; the rms error of the

second-order scheme with a grid spacing of 1000 m is 35.5 ms

and computation time is only 0.1 s. At first glance, these results may

suggest that implementing a third-order scheme will result in simi-

lar improvements over the second-order scheme. However, Fig. 8(d)

clearly shows that this is not the case. In fact, the third-order scheme

is worse than the second-order scheme for all four grid spacings

tested.
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Figure 8. Accuracy of FMM in a uniform velocity medium (6.0 km s−1). (a) Wave fronts (at 0.3 s intervals) are denoted by thin black lines; rays are denoted

by thick grey lines; receivers are denoted by grey triangles. (b)–(d) show plots of the difference between numerical and analytic solutions (
t) using three

different FMM schemes with four different grid spacings: 1000, 500, 250 and 125 m. For the exact solution, T rms = 9.74 s.

Table 1. Summary of results from tests in a constant velocity medium (see Fig. 8).

rms error (ms) CPU time (s)
Grid spacing Number of

(m) gridpoints first-order second-order third-order first-order second-order third-order

1000 4141 171.1 35.5 46.4 0.1 0.1 0.1

500 16 281 100.3 17.5 23.2 0.3 0.3 0.3

250 64 561 57.7 8.7 11.6 1.2 1.3 1.4

125 257 121 32.7 4.3 5.8 5.3 5.8 6.3

The reason for the failure of the third-order scheme can be traced

back to the calculation of the traveltime field in the vicinity of the

source point. A wave front produced by a point source will have a

very high curvature in the vicinity of the source but will be under-

sampled and hence poorly represented by the computational grid.

In addition, only a first-order scheme can be used in the neighbour-

hood of the source. If we apply FMM in a constant velocity medium

as before in the Fig. 8 examples, but use analytic solutions in a

specified region about the source, we can observe the effects of re-

ducing source error. Fig. 9 compares the error of a second- and a

third-order scheme, which use analytic solutions out to a distance

of 10 km from the source; beyond this distance, the solutions revert

to those given by FMM on a 1000 m grid. The increase in accuracy

over the equivalent plots in Figs 8(c) and (d) is dramatic, and clearly

indicates that most of the inaccuracy in the FMM traveltime field is

generated in the source region.

The other interesting observation that can be made concerning

Fig. 9 is that the third-order scheme (rms error of 0.7 ms) is much

more accurate than the second-order scheme (rms error of 5.4 ms).

However, the size of this improvement is small compared with the

size of the error generated in the source region, which explains

why there is no real benefit in using schemes higher than second-

order without accounting for near source errors. The reason why

the second-order method gives better results than the third-order

method in Fig. 8 is due to the traveltime being overestimated about

the source; the second-order scheme tends to underestimate the trav-

eltimes away from the source while the third-order scheme tends to

Second order

Third order 1000 m

1000 m

Figure 9. Comparison of error between second- and third-order schemes

in a constant velocity medium (see Fig. 8a) using analytic solutions within

a 10 km radius of the source.

overestimate the traveltimes (Fig. 9). In the latter case, the errors

are compounded, and in the former case, the errors partially cancel

each other out. While this may not always occur, better results can-

not necessarily be assumed by using schemes higher than second

order.

In realistic applications of FMM, the velocity field is unlikely to be

constant, so we also examine the performance of FMM in a medium

in which velocity varies linearly with depth. Analytic solutions de-

scribe ray trajectories as circular arcs in this case. Fig. 10(a) shows

wave fronts and rays from a surface source propagating through a

medium with a vertical velocity gradient of 0.1 s−1 and a velocity
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Figure 10. Accuracy of FMM in a uniform velocity gradient medium (vertical gradient of 0.1 s−1 with a velocity of 4.0 km s−1 at the surface). Information

is plotted in the same way as Fig. 8. For the exact solution, T rms = 12.98 s.

Table 2. Summary of results from tests in a medium in which velocity varies linearly with depth (see Fig. 10).

rms error (ms) CPU time (s)
Grid spacing Number of

(m) gridpoints first-order second-order third-order first-order second-order third-order

1000 4141 183.1 50.0 62.0 0.1 0.1 0.1

500 16 281 112.1 25.0 31.9 0.3 0.3 0.3

250 64 561 66.8 12.5 16.2 1.2 1.3 1.4

125 257 121 39.0 6.2 8.2 5.3 5.8 6.2

at the surface of 4.0 km s−1. Figs 10(b)–(d) compare the results

of using first-, second- and third-order schemes, respectively, with

the same grid separations as in Fig. 8. The second-order scheme

is again the most accurate, and computation time (see Table 2) is

very similar to the constant velocity case. These results suggest that

FMM can work well in media which contain significant velocity

variations. Since we have demonstrated that no gain in accuracy

can be assumed by using third or higher-order schemes, we use a

second-order scheme for all remaining examples.

Although we would like to assess the accuracy of FMM in arbi-

trarily complex media, the lack of analytic solutions in all but a few

cases makes this a difficult task. However, the unconditional stability

of FMM means that as the grid sized is reduced, the computed so-

lution approaches the true solution. Fig. 11 demonstrates the effects

on traveltime of reducing grid spacing in two velocity models with

extreme velocity contrasts. In Fig. 11(a), velocity varies between

approximately 1.2 and 8.0 km s−1; admittedly such variations are

unlikely to be encountered in the Earth, but our objective here is to

demonstrate the robustness of the scheme. The traveltime residual

plot in Fig. 11(a) is constructed in a similar way to those in Figs 8

and 10 except that the true solution is replaced by a second-order

FMM solution with 50 m grid spacing. Successively halving the grid

spacing from 1000 down to 125 m results in a convergence towards

the 50 m grid solution. In fact, the difference between the 125 m

grid solution and the 50 m grid solution is so small that we can treat


t as an accurate measure of the true error. Thus, the magnitude

of the errors we observe are consistent with those determined for

the uniform velocity and velocity gradient examples. This is despite

the complexity of the evolving wave front, which includes several

propagating wave front gradient discontinuities.

To reinforce the message of unconditional stability and accu-

racy, we demonstrate the behaviour of FMM in a truly pathological

(from the point of view of seismic structure) velocity environment

(Fig. 11b). In this example, velocity varies between 1 and 70 km

s−1 and the velocity structure consists of a fast velocity path wind-

ing its way almost sinusoidally through vertically oriented slabs of

slow material. The first-arriving wave fronts and rays follow this

fast path, resulting in a highly contorted wavefield. However, as

the traveltime residual plot shows (Fig. 11b), traveltimes converge

towards the 50 m grid solution, and the difference between trav-

eltimes on a 125 m grid and a 50 m grid is extremely small. The

magnitude of the residuals in this example are smaller than those

in the Fig. 11(a) example, but it should be noted that the travel-

times in Fig. 11(b) are on average 59 per cent smaller. The CPU

times for these examples are not significantly different to the CPU

times of the earlier examples, which suggests that computational

effort is not dependent on structural complexity, a result we would

expect.

3.2 Examples in layered media

We now present a series of examples that illustrate the effectiveness

of the new FMM scheme for calculating reflected phases in layered

media. Rather than use relatively simple analytic solutions to ver-

ify the accuracy of the scheme, we use the ray tracing method of

Rawlinson et al. (2001a), which can be applied to layered media
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Figure 11. Analysing the stability and accuracy of FMM in complex media. (a) Velocity medium with contrasts as large as 800 per cent. Wave fronts (at 0.3 s

intervals) are denoted by thin black lines; rays are denoted by thick black lines. (b) Pathological medium with contrasts as large as 7000 per cent. Wave fronts

(at 0.1 s intervals) are denoted by thin black lines; rays are denoted by thick red lines. Sources are denoted by stars and receivers by triangles in both plots.

Traveltime error estimates are based on using FMM traveltimes calculated on a 50 m grid.

(b)

Ray paths

Reflected wavefront

(a) Incident wavefront (c)

(d)

RMS =13.73 s
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Figure 12. Comparison between the second-order FMM scheme and the shooting method of ray tracing for a reflected phase in a single layer. (a) Incident

wave front; (b) reflected wave front; (c) source–receiver ray paths; (d) traveltime residual for four different grid sizes. Wave fronts are contoured at a 0.3 s

interval, receivers are denoted by grey triangles and the source by a grey star. The velocity at the surface is 5.0 km s−1 and the velocity gradient in the upper

layer is 0.04 s−1. The source is located at (x , z) = (0, 0).

containing smoothly varying subhorizontal interfaces. The proper-

ties of the ray tracing scheme that are important in this application

are: (1) two point rays are located using a shooting method; (2) re-

fracted and reflected rays and traveltimes in layered media can be

found; (3) within a layer velocity varies linearly with depth, which

permits analytic solutions; (4) layer boundaries are described by cu-

bic B-spline functions; (5) the first-arrivals of specified phases are

found. Properties (3) and (4) allow direct comparison of one class

of FMM solutions (i.e. no lateral velocity variation within a layer)

with the ray tracing solutions.

When a ray is traced using the method of Rawlinson et al. (2001a),

the component of the initial value scheme that is not analytic
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Table 3. Summary of results that compare the accuracy of the second-order FMM with a shooting method of ray tracing in layered

media.

rms error (ms) CPU time (s)
Grid spacing Number of

(m) gridpoints Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 12 Fig. 13 Fig. 14 Fig. 15

1000 4141 50.6 48.6 56.6 39.4 0.1 0.1 0.1 0.1

500 16 281 23.5 23.3 25.1 22.5 0.4 0.4 0.5 0.3

250 64 561 11.3 11.2 11.8 11.2 1.7 1.7 1.9 1.3

125 257 121 5.5 5.5 6.0 5.3 7.4 7.4 8.4 5.8

(b)

Ray paths

Reflected wavefront

(a) Incident wavefront (c)

(d)

=14.09 sRMS

250 m

125 m

1000 m

500 m

T

Figure 13. Same as Fig. 12 except with the source located at (x , z) = (100, 0).

involves the location of the intersection point of the ray and inter-

face, which uses an iterative Newton scheme. However, the accuracy

of the intersection point can be controlled, so highly accurate solu-

tions are possible. For the following comparisons we require that the

ray-interface intersection point is accurate to 0.5 mm and the ray-

receiver intersection point is accurate to 5 mm. Using such small

values, we can be confident that the ray tracing traveltimes are, for

all intents and purposes, exact.

The first example (Fig. 12) shows a wave front emanating from

a point source and reflecting from an undulating interface. The ray

paths associated with the receiver array reflect from two anticlinal

structures that separate the upper and lower layers (Fig. 12c); the

crossover of the first-arrival phase from one region of the reflector

to the other is clear in the ray tracing diagram and is represented in

the reflected wave front (Fig. 12b) by a propagating discontinuity.

Comparison of FMM with the ray tracing solutions for four differ-

ent grid sizes (Fig. 12d) shows that the FMM traveltimes converge

to the exact solution as the grid size is reduced. With a 125 m grid

spacing, the rms error (see Table 3) is only 5.5 ms, which is much

smaller than would be required in most realistic applications. The

CPU times for the FMM calculations are shown in Table 3; compar-

ison of these times with those required for refracted wave fronts in

continuous media (see Table 1) suggest that the reflection scheme is

only approximately 40 per cent slower in this case. Using a source at

(x , z) = (100, 0) instead of (x , z) = (0, 0) (see Fig. 13 and Table 3)

results in almost identical rms errors and computation times.

If more than one interface is present, the local triangular mesh is

still only used to suture the interface nodes of the reflector to adjacent

velocity nodes above the reflector. Any interface above the reflector

will be approximated by a velocity gradient: interface nodes are only

used to define the geometry of the reflector. Fig. 14 demonstrates the

accuracy of FMM in such a situation. Here, the reflected wave front

from the lower interface of a two interface model is tracked. Many

of the ray paths (Fig. 14c) experience a significant deflection (par-

ticularly evident in the reflected branches) as they pass through the

upper interface. The rms traveltime errors associated with different

grid sizes (see Table 3) are very similar to those of the single in-

terface model and suggest that approximating a refracting interface

with a sharp velocity gradient does not compromise the accuracy of

the scheme. However, the spikes observed in the error plot (Fig. 14d)

for the 1000 m grid (in particular) correspond to those rays that have

experienced the greatest deflection at the upper interface, and it may

be that in extreme cases the interface approximation for refractions

results in significant error; this is examined more closely in the next

example.

One common scenario that involves transmitted rays deviating

significantly at layer boundaries occurs when rays turn back to the

surface within a layer. Fig. 15 shows refracted rays turning back to

the surface in a half-space below a single layer. The velocity contrast

across the interface (∼3.1 km s−1) and the velocity gradient in the

half-space (∼0.1 s−1) have been deliberately chosen to be large

partly to help the ray tracer to locate turning rays and partly to test

the method in extreme circumstances. Fig. 15(b) clearly shows that

most paths are strongly deflected on both entry to and exit from

the half-space. The traveltime errors (Fig. 15c) fluctuate between

adjacent stations but the general accuracy (Table 3) is similar to the
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Figure 14. Comparison between the second-order FMM scheme and the shooting method of ray tracing in a medium containing two interfaces. The velocity

at the surface is 4.5 km s−1 and the velocity gradients in the first and second layers are 0.04 and 0.05 s−1, respectively. The velocity contrast across the top

interface is approximately 1.2 km s−1. Wave fronts are contoured at 0.3 s intervals.

reflected traveltimes of previous examples. Some of the observed

fluctuation may be due to the use of second-order finite-difference

operators in the presence of velocity discontinuities and the way in

which the layer boundary is approximated.

We now investigate the effects of including lateral velocity vari-

ations within a layer in addition to variations in interface structure.

At this point, the ray tracing method of Rawlinson et al. (2001a) can

no longer be used for comparison because it requires velocity within

a layer to vary with depth only. Therefore, we revert to the scheme

used for analysing error in the Fig. 11 examples, which appeals to

the stability of FMM and uses traveltimes calculated on a 50 m grid

as a proxy for the exact traveltimes.

The example shown in Fig. 16(a) includes a strongly undulating

interface within a medium that contains significant lateral velocity

variation. The incident wave front is distorted by the velocity field

before it impinges on the interface and the reflected wave front is

dominated by the effects of the anticlinal interface structures. Each

of these peaks act as a kind of virtual source for the reflections,

as demonstrated by the almost spherical wave fronts that emanate

from them. As these fronts propagate back towards the surface, they

compete with the fronts generated by adjacent peaks for first-arrival

status. Which wave front succeeds is easily seen in the ray path

plots. An interesting feature of the rms traveltime error for the four

different grid sizes (Table 4) is that it drops by more than half each

time the grid spacing is halved. The final rms error estimate for the

125 m grid is only 3.0 ms.

The objective of the final example (Fig. 16b) is to emphasize the

stability of the new scheme by applying it to a pathological velocity

model. The model consists of three layers overlying a half-space;

within each layer, velocity contrasts may be as large as 800 per

cent, and interfaces have extreme curvature. In addition, the second

layer below the surface pinches out at either end. The incident and

reflected wave fronts are highly distorted by these structures, and

many wave front gradient discontinuities may be observed. Note

that the scheme is able to deal with a propagating shock in the in-

cident field that impinges on the reflector (the bottom interface)

at approximately x = 65 km. The rms traveltime error estimates

(Table 4) for this example are significantly larger than the corre-

sponding estimates for the previous example at larger grid spacing,

but it is interesting to note that as the grid spacing is reduced, the

errors converge. For example, the rms errors for the 1000 m grid are

62.6 and 104.3 ms for Figs 16(a) and (b), respectively, while for the

125 m grid they are only 3.0 and 3.5 ms, respectively.

4 D I S C U S S I O N

First-arrival traveltimes are commonly used in seismic imaging, the

appeal being that they are often straightforward to pick from a seis-

mogram and simplify the modelling of the wavefield (i.e. only the

path of minimum traveltime is required). In this regard, FMM is

ideal because it is fast, unconditionally stable and guarantees that

the first-arrival traveltime field is found. However, in some velocity

media, the absolute first-arrival may be of such small amplitude that

it will not be visible on a seismic record. An example of where this

phenomenon might be observed is Fig. 11(b), where the first-arrival

wave front is always strongly convex in the direction of ray propaga-

tion. As a result, the rays to all 21 receivers begin along practically

identical paths and subsequent geometric spreading is extremely

large. Even though this is an extreme example, similar behaviour

can be observed in relatively simple media. For instance, first-arrival

head waves, which can be generated in most layered media, carry

very little energy.

Our extension of FMM to permit reflected phases to be calculated

means that we are able to simulate a greater proportion of the total

wavefield. In reflection and refraction seismology for example, re-

flected phases are often of far greater amplitude than first-arrival re-

fractions, which make them relatively easy to pick (Rawlinson et al.

2001b). When non-planar interfaces are present, multiple two-point

paths are usually possible; the FMM scheme will always locate the

first-arrival reflection traveltime field in these cases. The examples

we have illustrated in Section 3.2 show that first-arrival reflections

tend to reflect from the elevated regions of the interfaces (the peaks).
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Figure 15. Comparison between the second-order FMM scheme and the shooting method of ray tracing for a refracted wave front. (a) First-arrival wave front

(0.3 s contours); (b) first-arrival ray paths to all stations; (c) difference between FMM solution and shooting solution for four different grid sizes.

This means that the first-arrivals may only sample small portions of

the interface and the wealth of later arriving reflection information

is not considered.

Delprat-Jannaud & Lailly (1995) use a ray parameter based

scheme to show that inclusion of later arrival reflection traveltimes

in reflection tomography improves the imaging of complex struc-

ture. In particular, the inclusion of multi-valued traveltimes caused

by triplications associated with synclines allows a much greater pro-

portion of the reflector to be illuminated. Clarke et al. (2001) extend

the method to 3-D and demonstrate the superiority of using multi-

arrival reflections compared with only first-arrival reflections in the

imaging of a 3-D salt dome structure.

Clearly, our scheme would benefit from being able to track multi-

pathing reflections and, more generally, triplications caused by con-

tinuous variations in wave speed. To date, a variety of methods

have been proposed to solve the latter problem, including big ray
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Figure 16. Reflection traveltime fields in complex media. (a) Single interface model; (b) multiple interface model with velocity contrasts as large as 800 per

cent. Wave fronts are contoured at 0.3 s intervals in both examples. Traveltime error estimates are based on using FMM traveltimes from a 50 m grid.
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Table 4. Summary of speed and accuracy tests for the two complex layered

examples shown in Fig. 16.

rms error (ms) CPU time (s)
Grid spacing Number of

(m) gridpoints Fig. 16(a) Fig. 16(b) Fig. 16(a) Fig. 16(b)

1000 4141 62.6 104.3 0.1 0.2

500 16 281 22.6 43.5 0.5 0.5

250 64 561 8.5 10.0 1.9 2.0

125 257 121 3.0 3.5 8.3 8.9

tracing (Abgrall 1999; Benamou 1996), dynamic surface evolution

(Steinhoff et al. 2000) and wave front construction (Vinje et al.

1993; Lambaré et al. 1996). Recently, Fomel & Sethian (2002) in-

troduced a scheme for computing phase space solutions of static

Hamilton–Jacobi equations. Multiple arrivals in continuous media

are found by solving partial differential equations on a grid using

several ideas drawn from the fast marching method. The idea of

exploiting phase space to find multi-valued solutions of partial dif-

ferential equations that describe high frequency wave propagation

has also been explored by Engquist et al. (2002) and Osher et al.

(2002). Our scheme for layered media would benefit greatly from

implementing these generalized techniques, but the computational

cost would be significant.

Another way of tracking multiple arrivals in continuous media

is to partition the multi-valued solution into a series of single val-

ued solutions. A detailed examination of this approach is given by

Benamou (1999); other interesting papers on the subject include

those by Symes (1998) and Bevc (1997). The main advantage of

this approach is that a first-arrival scheme is used to track wave

fronts, so rapid computation can be achieved. To some extent, the

scheme we propose is the layered equivalent of this approach, in that

we partition the problem into separate computational domains and

obtain later arriving phases (reflections) with a first-arrival solver.

Despite the problems associated with finding only the first-arrival

component of phases as discussed above, the scheme we have pro-

posed in this paper is practical for a variety of applications. These

include reflection tomography, wide-angle tomography, local earth-

quake tomography, hypocentre relocation and migration. The results

we have presented in Section 3 provide a general guideline for the ac-

curacy of FMM in the presence of simple and complex structures.

The required precision of model traveltimes is generally depen-

dent on how accurately phases can be picked from seismograms. In

crustal scale wide-angle tomography, for example, typical picking

errors range from around 50 ms for first-arrivals to around 150 ms

for later arriving reflections (e.g. Zelt & Smith 1992). Our results

suggest that a 500 m computational grid with a second-order FMM

would be sufficient for both phase types, although a 250 m grid may

be required for the more accurately picked refraction arrivals.

Future development of the FMM scheme is possible on several

fronts. As mentioned above, allowing phase-space computed mul-

tiple arrivals would increase the flexibility of the scheme but at

significant computational cost. Partitioning the multi-valued solu-

tion as described by Benamou (1999) and others may be a better

option as it is more compatible with the current scheme. One obvi-

ous area of development is to try and improve the accuracy of the

scheme in the vicinity of the source. We demonstrate in Fig. 9 that

if the large curvature of the wave front near the source is accounted

for, the accuracy of the computed traveltimes can be improved by

an order of magnitude in the constant velocity case. One way of

doing this is to use a much finer computational grid in the vicinity

of the source (e.g. Qian & Symes 2002). Alkhalifah & Fomel (2001)

and Pica (1997) describe other schemes, based on spherical grids

and celerity, for overcoming errors generated in the vicinity of the

source.

If local triangulation were permitted on the underside of an in-

terface, then more phase types, such as later arriving refractions

and multiples, could be calculated. The same principle for calcu-

lating reflections, i.e. propagate the wave front to all points on the

interface and then reinitialize the scheme, could be extended to find

multiple bounces or transmissions. Finally, the FMM scheme we

have presented is only applicable to 2-D models; extension to 3-D

would be a logical step. In continuous media, FMM is easily applied

in 3-D, and the two step procedure for reflections is unchanged.

The only major effort would be in extending the local irregular

meshing scheme to 3-D, where tetrahedra rather than triangles are

required.

FMM was developed in the field of computational mathematics

(Sethian 1996) as a general method for tracking the evolution of

monotonically advancing fronts. To date, its applications have been

many and varied (Sethian 1999), with seismology forming only a

small subset. Although FMM is considered to be a new scheme, it is

interesting to note the similarities between it and pre-existing finite-

difference grid-based methods developed in the seismic context. For

example, van Trier & Symes (1991) use entropy-satisfying first-

order upwind difference operators to numerically solve the eikonal

equation, but also use an expanding rectangle as the computational

front rather than the wave front. Qin et al. (1992) use the same dif-

ference operators as Vidale (1988) but calculates the traveltime field

along the expanding wave front in a similar fashion to the narrow-

band approach used by FMM. Podvin & Lecomte (1991) properly

treat propagating wave front discontinuities by using Huygen’s prin-

ciple in the finite-difference approximation.

The FMM method we have presented introduces the concepts of

local triangulation about an interface and using the set of interface

nodes as the initial narrow band for evolving later arriving wave

fronts. While this has not been done previously with FMM, Li &

Ulrych (1993) use similar ideas to determine reflected and refracted

traveltime fields in 2-D. In the vicinity of an interface, they use a local

regridding technique that involves decomposing a cell containing an

interface into several rectangular and triangular cells, so that the true

interface shape is better represented on the computational grid. The

incident wave front is tracked to the grid and then the scheme is

reinitialized to track either the refracted or reflected wave front.

Although this approach appears similar to the one presented here,

entropy satisfying upwind operators are not used and Li & Ulrych

(1993) only test the scheme on relatively simple models with planar

interfaces.

We have noted that FMM encapsulates a number of ideas pre-

viously developed by the seismological community for grid-based

solutions of the eikonal equation prior to the introduction of FMM.

However, FMM is unique in that it uses entropy satisfying up-

wind difference operators along with a narrow-band approach to

produce unconditionally stable solutions with minimum computa-

tional cost. The scheme we have presented preserves these properties

and allows a larger proportion of the total seismic wavefield to be

simulated.

5 C O N C L U S I O N S

We have presented an implementation of FMM in layered media,

which allows first-arrival refraction and later arriving reflection trav-

eltimes to be calculated. The scheme uses a local triangular mesh

in the neighbourhood of the interface to suture irregularly spaced
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interface nodes to adjacent velocity nodes and a two-stage evolution

approach to propagate the incident and reflected wave fronts. In con-

tinuous media, we have shown that second-order upwind operators

result in the best trade-off between accuracy and speed; higher-order

operators will not necessarily produce more accurate solutions un-

less errors generated in the vicinity of the source are accounted for. In

layered media, we compared the traveltimes produced by our FMM

scheme with those produced by an accurate shooting method of ray

tracing. Results suggest that the FMM scheme has both the speed and

accuracy to be practical in applications that require the first-arrival

or reflected wavefield to be simulated. Significantly, the extended

scheme retains the desirable property of being unconditionally sta-

ble, as demonstrated by several examples in highly complex layered

media. Future development of the scheme will be directed towards

minimizing near source error, producing other classes of later arriv-

ing phases such as multiples, and extension to 3-D.
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