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A new method has been developed for testing the optical quality of ground-based telescopes. Aberrations are
estimated from wideband long-exposure defocused stellar images recorded with current astronomical CCD
cameras. An iterative algorithm is used that simulates closed-loop wave-front compensation in adaptive optics.
Compared with the conventional Hartmann test, the new method is easier to implement, has similar accuracy,
and provides a higher spatial resolution on the reconstructed wave front. It has been applied to several astro-
nomical telescopes and has been found to be a powerful diagnostic tool for improving image quality.

1. INTRODUCTION

During the past 25 years new astronomical observatories
have been built on high-altitude mountain sites that have
excellent seeing conditions. In addition, progress has
been made in reducing dome seeing effects by proper con-
trol of the telescope thermal environment. As a result, it
is now found that the aberrations of optical telescopes
often limit the angular resolution of the telescopes. Con-
trolling large optics is not an easy task in the shop and is
even less easy on a mountain site under observing condi-
tions. The Hartmann test is the traditionally preferred
technique. However, for telescope quality to be controlled
on a permanent basis, there is a definite need for a simpler,
but still highly accurate, optical testing method. Such a
method is needed not only for maintaining proper tele-
scope alignment but also for actively controlling the thin
primary mirrors of large telescopes now under construc-
tion. It is shown here that one can quantitatively analyze
the optical quality of a telescope by simply recording a
small set of properly defocused stellar images with a CCD
camera of good photometric quality. Image-processing
algorithms have been developed for obtaining accurate es-
timates of the aberration terms as well as high-resolution
maps of the wave-front errors.

Two different techniques must be distinguished. One
technique, known as phase retrieval, is already widely
used to control millimetric telescopes.! It has recently
been successfully applied in the visible by several groups,
including ourselves, in analyzing the aberrations of the
Hubble Space Telescope.? The method works in the
diffraction regime and requires taking monochromatic
images of point sources either in focus or with a small
amount of defocus. Like any other interferometric tech-
nique, it is sensitive to vibrations (the jitter of the Space
Telescope was the main limitation) and to turbulence,
which limits its application to ground-based telescopes at
long wavelengths. On a good site such as Mauna Kea, we
recently applied this technique to short exposures taken
at 4 pum. We retrieved permanent telescope aberrations
by averaging several reconstructed wave fronts.?

In this paper we describe a different technique that
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works with wideband long exposures taken in the visible
with ground-based telescopes. Like the Hartmann test,
it works in the geometrical optics regime and relies on
long exposures for averaging out the effects of atmo-
spheric turbulence. Best results are obtained with a
large amount of defocus, well outside the so-called caustic
zone. In this regime, intensity variations over the extra-
focal image essentially reflect local changes in the wave-
front total curvature (Laplacian). The observation of
such images has long been known as a sensitive test for
telescope alignment or mirror figure errors. It has some-
times been referred to as the eye-piece test or the inside-
and-outside test. Surprisingly, there has been little
attempt to extract quantitative information from such ob-
servations. In 1973 Behr! described the effect of coma
and proposed the test as a means of aligning telescope
optics. In a technical memorandum dated June 1980,
Wilson® described also the effect of astigmatism and
spherical aberration and gave simple formulas based on
geometrical optics to estimate these aberrations from the
location of the shadows produced by the edge of the pupil
and its central obstruction. In 1988 one of us® showed
that the defocused images contain information on both
the wave-front Laplacian and the wave-front radial tilt at
the edges. As a result, one can reconstruct the wave-
front surface by solving a Poisson equation, using the edge
tilt as a Neumann-type boundary condition. Compared
with the Hartmann test, the technique has the advantages
of simplicity, high throughput, and avoidance of calibra-
tion difficulties. In this paper we describe the latest al-
gorithms that we developed to reconstruct the wave front
accurately, together with the results of several different
tests performed on different astronomical telescopes.

2. THEORY

The technique consists of recording the illuminations I;
and I, in two out-of-focus beam cross sections on each side
of the focal plane (Fig. 1, top). One records the illumina-
tion in plane P, at a distance [ before the focal plane F and
the illumination in plane P; at a similar distance !’ after F.
In the object space (Fig. 1, bottom), the recorded illumina-
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Fig. 1. In the image space (top), the recorded illuminations I;
and I, appear as defocused stellar images. In the conjugate ob-
ject space (bottom), they appear as defocused pupil images.

tions are conjugates of two cross sections of the incoming
beam, one before the entrance pupil and one beyond the
pupil. Hence I, and I, also can be considered defocused
pupil images. In what follows, we assume that they are
symmetrically defocused; that is, that the distances from
the two beam cross sections to the pupil plane are the
same and are equal to Az. The theory is best described in
terms of the irradiance transport equation,” which relates
the illuminations I, and I, along the propagation path.5
Assuming a paraxial beam propagating along the z axis,
the irradiance transport equation states that

alfoz = —(VI - VW + IV?*W), (0]

where I(x, ¥, z) is the distribution of the illumination along
the beam, W(x, y) is the wave-front surface, and V is the
d/dx, 3/dy operator.

We apply this equation to the pupil plane (z = 0), where
we assume the illumination to be fairly uniform and equal
to I, inside the pupil and 0 outside. In this plane VI = 0
everywhere but at the pupil edge, where

VI = —Io#i8, (2)

Here 6. is a linear Dirac distribution around the pupil
edge and 7 is a unit vector perpendicular to the edge and
pointing outward. Putting Eq. (2) into Eq. (1) yields

a—I = Ioﬂsc - IoPV2W, (3)
a9z an

where dW/an = A - VW is the wave-front derivative in the
outward direction perpendicular to the pupil edge. P(x,y)
is a function equal to 1 inside the pupil and 0 outside. At
the near-field, or geometrical optics, approximation the
recorded illumination I; and I, are

h=1-2a, @
9z

I2 = Io + i{AZ. (5)
0z
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The following quantity S, called the sensor signal, is com-
puted:

S =————=——Az. (6)

It should be noted that, since in practice images are
recorded in the image space, one has to invert (rotate by
180 deg) the outside-focus image before computing S.
Putting Eq. (3) into Eq. (6) gives

S = (?—vzﬁc - PV2W>Az. @)
an

The telescope objective reimages the beam cross section
that is beyond the pupil plane at a distance ! before the
focal plane. According to Newton’s law,

Az + I = 2. t2))
Hence
Az ___f(fl— D, ©)
Putting Eq. (9) into Eq. (7) yields
§= f(—f_—”@z 5. — PV2W). (10)
l an

Equation (10) shows that the sensor signal consists of
two terms. The first term is proportional to the wave-
front radial slope at the pupil edge and is localized at
the beam edge. The second term maps the wave-front
Laplacian across the beam. Since these two terms do not
overlap, one can measure them separately and reconstruct
the wave-front surface by solving a Poisson equation,
using the wave-front derivative normal to the edge as a
Neumann-type boundary condition. However, Eq. (10) is
only a first-order approximation valid for small Az values,
that is, highly defocused stellar images. The algorithm
described in the following section uses the solution of the
Poisson equation as a first-order solution that is further
refined in an iterative process.

3. CLOSED-LOOP WAVE-FRONT
RECONSTRUCTION TECHNIQUE

Earlier attempts to reconstruct the wave front from defo-
cused images consisted of simply solving Eq. (10) with
either direct integration™ or fast Fourier transforms.!?
However, in the presence of large aberrations the recon-
struction becomes inaccurate. We found that we could
improve the accuracy of the wave-front reconstruction by
iteratively compensating the effect of the estimated aber-
rations on the defocused images as in an active optics con-
trol loop. Residual aberrations are again estimated and
compensated until the noise level is reached. The algo-
rithm simulates the use of the wave-front sensing method
in active optics. It generalizes a method, which we have
described previously, for removing the effect of defocus
and spherical aberration in the recorded images.”* Com-
pensation is done by geometrically distorting the images,
as discussed below.

Let D, R, and f be the aperture diameter, the radius,
and the focal length, respectively, of the telescope. We
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Fig. 2. Geometrical scheme showing the distortion introduced in
plane P; by a wave-front slope error in pupil plane P,. The ray
that would otherwise go through focus F and cross the plane P; at
point N(z,v) will in fact cross the plane at point N'(,v).

denote by U,V the Cartesian coordinates in the pupil plane
P, and by u,v the coordinates in a plane P, normal to the
optical axis, at a distance ! from the focal plane (Fig. 2).
We define reduced coordinates as x = U/R andy = V/R in
the pupil plane Py and x = u/r,y = u/r in plane P, where
r = [R/f is the radius of the beam cross section.

An aberration W(x,y) at point M(U,V) in the pupil
plane produces a deviation of the optical ray da whose
components are —dW/aU and —dW/éV. The ray that would
otherwise converge toward focus F and cross the plane P,
at point N(u,v) will cross the plane at point N'(w/,v'). For
the inside-focus image, vector NN’ is equal to (f — [)éa
with components

f—1

NN': —"—
R

W/ox )
W/oy

In reduced coordinates, the displacement is given by vec-
tor SN = NNY/r with components

o LD
hence
{;c’ = x + CoW(x, y)/ox an
"=y + CoW(x, y)/ay
with
c=-L-B2. 12)

A similar expression can be found for the outside-focus
image. In practice, distance [ is negligible compared with

Vol. 10, No. 11/November 1993/J. Opt. Soc. Am. A 2279

the focal distance f; and within a good approximation the
displacements are the same at the same distance to focus.
The signs are opposite because beyond the focal plane
the coordinates are inverted. One achieves compensation
by moving point N'(x’, y") back to location N(x, y) accord-
ing to Eq. (11).

If I(x, y) is the intensity at point N and I'(x’, ') the in-
tensity at point N’, flux conservation requires that

I(x, y)d®N = I'(x', y)d?N' = I'(x’, y)Jd°N,

where d°N is the elementary area and ¢J the Jacobian of
the transformation:

dx'/ox dx'/ay
0y/ox oy/ay

2

that is,

1 + Co?W/ox?
Co?W/oxy

Co*W/axy

I, /I, y) = J = 1+ Co?W/ay?|

Hence image compensation also requires changing the in-
tensity I'(x, y) into
PW aZW)

I(x,y) = I'(x', y’){l + C(W + e

2 2 2 2

L | P
ax* dy oxy

Because in our program the optical aberrations are
expressed in terms of Zernike polynomials, we have com-
puted the derivatives and Jacobians for the first 15 poly-
nomials. The coefficients of the first- and second-order
terms of the Jacobians are given in Table 1. The quantity
p? is defined as p® = x* + y®. A wave-front tilt correc-
tion is tantamount to a recentering of the images. A cor-
rection of defocus is tantamount to a rescaling. At each
iteration the coefficients of a Zernike expansion are esti-
mated and a given number of terms are compensated in the
recorded images with use of the tabulated analytic expres-

sions. The reconstructed wave front is obtained by addi-
tion of the compensated Zernike terms to the residuals.

4. PRACTICAL IMPLEMENTATION

First one must determine quite accurately the geometrical
radii of the observed beam cross sections. This could be
done qualitatively on the screen of a workstation or in a
program that uses different kinds of threshold on the in-
tensity. However, if the f ratio of the telescope and the
positions of the images are sufficiently well known, it is
preferable to infer the radii from the image distances to
the estimated focal position. Before any computation, we
approximately cocenter our images and occasionally re-
scale them to make the estimated geometrical radii equal
(tip/tilt and defocus compensation). Then we subtract the
two images and compute the sensor signal S [Eq. (6)]. We
solve the Poisson equation numerically and get our first es-
timate of the aberrations by least-squares fitting Zernike
polynomials to the reconstructed wave front.

Let Z, be the coefficient of polynomial W,. Coeffi-
cients Z,, Z3, and Z, express tip, tilt, and defocus errors,
respectively. Compensation of these terms deserves
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special attention because the error can be large and
detrimental to the accuracy of the wave-front reconstruc-
tion process. First the defocus error can be translated
into a new focus position that differs from the previous
estimate by an amount

AF = 16(f/DY’Z,. (14

From this new focus position we determine new geometri-
cal radii for the images. Similarly, from the tip/tilt error
we determine new centers for the images. Using these
new values, we then compensate the effects of the higher-
order aberrations. First we select a vector r with integer
coordinates (Z, j), and we calculate the coordinates of vec-
tor r’ as given by Eq. (11). The value of the illumination
I(x") at point r’ is interpolated as the weighted sum of the
illuminations of the four neighboring points with use of a
standard bilinear interpolation routine.”* The value of
the new illumination at point r(,j) is given by Eq. (13).
Images are then again recentered, rescaled, and sub-
tracted to produce a new sensor signal S from which a
new wave front is estimated.

From now on, two different algorithms are imple-
mented. In one algorithm, called A, we correct 15
Zernike polynomials, and the whole set of aberration co-
efficients is determined at each iteration. In another
algorithm, called B, used when aberrations (mainly coma
and spherical) are large, we correct 22 polynomials, and
the coefficients are determined sequentially in a specific
order. The first set of coefficients to be determined
congsists of the terms in sin/cos 8(Z2,3, 278, Z16,17). Only
these terms are compensated at each iteration. When the
algorithm has converged for these terms, their value is
considered the final value. The second set of coefficients
to be determined consists of the terms independent of
0(Z4,Z11,Z5). At each iteration both these terms and the
sin/cos @ terms are compensated until convergence is ob-
served. The third set consists of the terms in sin/cos 26
(Zs,6,Z12,13). Only these terms and again the sin/cos 6
terms are compensated. The final set consists of both the
sin/cos 30 and the sin/cos 40 terms. The cos/sin 6 terms
are again compensated with them. We found that this
procedure minimizes error propagation, especially the
centering of (tip/tilt) errors. Simulations show that,
when the aberrations are large, algorithm B gives the best
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results, When aberrations are small, the algorithms give
the same results, but algorithm A runs faster.

A major source of uncertainty was found to come from
the estimation of the coefficients Z, by a least-squares fit
over the reconstructed wave front. We believe that this
problem is general and independent of the wave-front
sensing method. If the wave front is quite smooth, the
estimate of Z, is fairly independent of the domain over
which the least-squares fitting is done. But this is seldom
the case: Most optical surfaces have large errors near the
edges. Taking more or fewer of the edges into account
may give dramatically different results. Cross talk occurs
mainly between aberration terms with the same azimuthal

~ frequency. For instance, the value of the third-order

spherical aberration (which we call just spherical aberra-
tion) may differ appreciably, depending on whether fifth-
order spherical aberration is also estimated. In our
applications, although we sometimes correct only 15
Zernike terms, we have always fitted 22 terms, thus
taking fifth-order spherical aberration into account. We
found it difficult to estimate a priori the uncertainty in
the reconstructed wave front. It depends on the position
and size of the images and on the quality of seeing when
the images were taken. In what follows, we call error the
dispersion of our measurements on independent sets of de-
focused images. The accuracy of the method was investi-
gated by means of both computer-simulated images and
real images, with independent measurements of the tele-
scope aberrations.

5. TESTS ON SIMULATED IMAGES

The linear mapping technique used to compensate image
distortions produced by optical aberrations can also be
used to simulate distorted images. However, the approxi-
mation is valid only outside the caustic zone. Close to
focus, it breaks down. A more accurate way of simulating
defocused images consists of computing diffraction pat-
terns by means of fast Fourier transforms. We have used
this method extensively to analyze data from the Space
Telescope and have discussed the sampling conditions in
the literature.? A way of checking our linear mapping
algorithm was in fact to compare the results with those of
a diffraction calculation. Within the range of validity of

Table 1. Analytic Expression of the First- and Second-Order Terms of the Jacobian of
the Transformation

Polynomial Number

First Order

Second Order

W2 (x tilt) 0 0

W3 (y tilt) 0 0

W4 (defocus) 8 16

W5 (x astigmatism) 0 -4

W6 (y astigmatism) 0 -4

W7 (x coma) 24x 108x* — 36y°
W8 (y coma) 24y 108y* — 362>
W9 (x triangular coma) 0 —36p>

W10 (y triangular coma) 0 —36p°

W11 (spherical) 96p> — 24 144(12p* — 8p% + 1)
W12 (x spherical astigmatism) 48(x* — »% 36(8x% — 1)1 - 89
W13 (y spherical astigmatism) 96xy 36[8p% — 16(x* — y®* — 1]
W14 (x quadratic astigmatism) —144p*

W15 (y quadratic astigmatism) —144p*
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Table 2. Example of Aberrations Retrieved from Simulated Data

Zernike Aberration Terms

Iteration Zz Z 3 Z4 Z5 ZG Z7 ZB Z 9 Z 10 Z 1
Introduced
0.5 0 0 0 0.8 0 1 0 0 0.3

Retrieved

1 0.20 -0.25 —-0.010 0.04 0.50 0.01 0.96 0.02 —0.02 0.270

2 0.29 0.13 —-0.005 0.03 0.55 0.00 0.93 0.01 -0.01 0.290

3 0.30 0.14 —0.009 0.05 0.69 -0.02 0.93 0.01 -0.01 0.298

4 0.33 0.08 0.004 0.05 0.74 -0.03 0.94 0.02 -0.02 0.299

5 0.42 0.07 0.009 0.05 0.75 0.00 0.95 0.02 0.02 0.300

6 0.46 0.07 0.010 0.05 0.76 0.01 0.94 -0.01 0.02 0.301

the linear mapping, a good agreement was observed. The
only difference is that, with the geometrical transforma-
tion, all the diffraction patterns (rings, fringes,...) dis-
appear. A drawback of the diffraction calculation is that
it applies only to monochromatic images. With white
light, diffraction patterns also disappear. We have not at-
tempted to extend our diffraction calculations to wide-
band sources.

Using either algorithm, we have simulated defocused
images with known low-order aberrations (Z, = 0 if n >
15) and applied to them our wave-front-reconstruction
technique. In all cases the aberrations were retrieved
with an error less than 5%, the largest error being the
error on the astigmatism. Spherical aberration and coma
are retrieved with an error of 2-3% at the second or third
iteration, while it takes a minimum of five iterations to
get the astigmatism within the 5% range. Zernike poly-
nomials for which the azimuthal frequency equals the
radial degree (Zsg,Zg10,Z14,15) have zero Laplacian and
are therefore more difficult to retrieve from Laplacian
measurements since all the information comes from the
boundary conditions only. The term that gives the most
trouble is the astigmatism, which, in spite of great care, is
sensitive to centering errors. Only when all other aberra-
tions are removed can the astigmatism be precisely esti-
mated as a null measurement.

Next we added low-order Zernike aberration terms to
maps of the residual phase errors observed on real tele-
scopes. The results depend on the amplitude of these
residuals. For the best telescopes the errors are of the
same order of magnitude as on true simulations. For
less-good telescopes the errors can grow as high as 10%.
Table 2 shows an example of results that we obtained by
adding arbitrarily given Zernike terms to higher-order
aberrations estimated at the Cassegrain focus of the
Canada-France-Hawaii Telescope (CFHT) on Mauna Kea.
The high-order-aberration phase map was obtained from
real data after removal of the 15 first Zernike terms. The
numbers are given in micrometers on the wave front. A
contour plot of the residual phase map is given in Fig. 3.
It shows the intrinsic quality of the telescope together
with the above-mentioned edge errors.

6. EXAMPLE OF RECONSTRUCTION FROM
REAL DATA

On May 16, 1992, defocused stellar images were recorded
with the New Technology Telescope (NTT) at the Euro-

pean Southern Observatory (ESQO) in Chile. The primary
mirror of this telescope has active supports. One can in-
troduce known aberrations either by changing the distri-
bution of the forces applied by the support or by moving
the secondary mirror by a known amount. Here, as an
example, we describe the analysis of defocused images ob-
tained with a known independently calibrated coma of
585 nm rms. The telescope was first perfectly aligned by
use of the ESO Shack-Hartmann sensor. Then the sec-
ondary mirror was decentered by a known amount, in this
case 2.1 mm, which according to ray tracing should pro-
duce the indicated coma value.

The different steps of the data-reduction procedure are
illustrated in Fig. 4 and Table 3. Different rows in the
figure show the evolution of image compensation as itera-
tions proceed. The top row shows the raw data, the sec-
ond row the data after one iteration, the third row after
six iterations. The first two columns display the defo-
cused images (inside-focus and outside-focus). The third
column displays the sensor signal S: the outside gray
level represents zero signal, black is negative, and white is
positive. The fourth column shows the different domains
used in the wave-front reconstruction process and dis-
cussed below. For convenience we refer to these images
as i, m being the row number and n the column number.
iy is the raw inside-focus image, and i3, shows the do-
mains of integration at the sixth iteration.

A coma is easily detected in a defocused image: the il-
lumination varies linearly across the image, and the

200 i T T T T T T T T T T
100 f— _E
:
—-100 ; _f
—200_! L1 n|| | JI!I L1y n—:l
-200 -100 0 100 200

Fig. 3. CFHT Cassegrain focus phase map with 15 Zernike
terms removed. The contour intervals are 0.02 um. Gray areas
are positive; white areas are negative.
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Fig. 4. Reduction of a coma term introduced in the ESO NTT.
From left to right: inside-focus image, outside-focus image,
normalized difference between the two images (sensor signal),
and domain boundaries; from top to bottom: starting data, data
after one iteration, and data after six iterations.

shadow of the secondary mirror is decentered toward the
brightest part of the image. The effect is quite strong on
images i;; and 5, although the coma is only approximately
1 wave rms. This high sensitivity was achieved because
the excellent quality of the NTT made it possible for
images to be recorded quite close to focus. When these
images were taken, the exact position of the telescope
focus was not yet known, so their distances to focus, and
therefore their sizes, are not identical, as one can see from
both the outer and the inner boundaries. We obtained the
signal i;3 by subtracting these two images after arbitrarily
centering them on the inner boundaries. It shows both
the effect of defocus and coma.

The Poisson equation is solved with use of the iterative
Fourier-transform method described in a previous
paper.!? On simulations it gives the most-accurate re-
sults. On the right-hand side of Fig. 4 are displayed the
four domains used at each iteration. Inside the white do-
main the original signal is kept, in the light gray domain
(outside ring) the outside normal derivative of the recon-
structed aberration is put to zero, in the black domain
(inner ring) the inside normal derivative is put to zero,
and everywhere else (dark gray) the extrapolated signal is
left. One obtains the boundaries of the white domain by
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putting a threshold at approximately one tenth of the sum
of the intensities in the two images. The outer boundary
is a circle 30% larger than the pupil size. The inner
boundary is a circle 30% smaller than the diameter of the
central obstruction.

We typically run four loops to obtain our first wave-front
estimate. A least-squares fit gives a first set of Zernike
coefficients Z,. For comparison with independent esti-
mates made simultaneously at ESO we use the rms coeffi-
cients as defined by Noll.*®

Since we did not rescale the original images, in this
stage of the reconstruction the encoder value for the focus
position was assumed to be the half-sum of the encoder
positions for the two images, in our case —3.4 encoder
units, eu. From the Zernike defocus term we get a new
estimate for the focus position, —3.283 eu. Aberrations
are compensated accordingly, as described in Section 3.
51 and iz, are the compensated images. The effect of
the coma is clearly smaller, and there is no evidence for
defocus. However, both effects are still revealed on the
signal i,3. One notices that some structures in the images
get blurred when the difference is taken, because their
locations do not match exactly. In iy the domains are
nearly circular.

The last row displays the same material after six itera-
tions. One can see hardly any difference between images
o1 and iz or between iz and iz, and there is even less
difference between is4 and i3,. However, one can clearly
see a difference between iy3 and i33. The sensor signal
becomes more contrasted, because now the small struc-
tures in the two defocused images match exactly.

Table 3 gives (in nanometers) the values of the aberra-
tions estimated at each iteration together with the values
measured by the ESO Shack-Hartmann sensor. Astig-
matism clearly shows slower convergence. The agreement
with the Shack-Hartmann sensor is certainly remarkable.
Apart from coma, the largest absolute difference is 18 nm
on astigmatism.

7. COMPARISON OF OUR RESULTS WITH
OTHER INDEPENDENT ESTIMATES

In general it is difficult to compare results obtained from
real data taken with astronomical telescopes with other
independent measurements made on the same telescope,
because very few telescopes have been tested on the sky.

Table 3. Aberrations Retrieved at the ESO NTT with a Known Coma Introduced, along with Results of
the ESO Shack-Hartmann Sensor

Focus Spherical Coma Astigmatism Triangular Coma Quadratic Astigmatism
Iteration (eu) (nm) (nm) (nm) (nm) (nm)
0 —3.40 37 454 217 43 10
1 -3.28 22 545 237 62 24
2 -3.25 27 556 244 73 29
3 -3.24 29 553 248 79 28
4 —3.24 29 543 232 77 28
5 -3.24 30 535 213 74 28
6 -3.24 30 534 206 70 29
7 -3.24 30 535 202 72 31
Shack-Hartmann 25 490 184 83 27

Coma Introduced 585
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Table 4. Mean Difference and rms Dispersion
between the ESO Shack-Hartmann Sensor and
the Out-of-Focus-Image Method

Mean Difference over

Six Measurements rms

(nm) (nm)
Spherical 10 10
Coma 72 21
Astigmatism 40 42
Triangular coma 25 29
Quadratic astigmatism 5 11
Total 30 35

Fig. 5. Four independent estimates of the ESO NTT mirror
figure. Top: residual signal; bottom: associated phase map
(15 first Zernike terms removed).

In that regard, the ESO NTT is quite an exception. Here
we present results obtained with various telescopes that
confirmed the accuracy and the spatial resolution of the
technique.

A. Comparison of Our Results with These of the New
Technology Telescope Shack-Hartmann Sensor

A detailed account of the May 1992 engineering run at the
NTT will be given in another paper. Here we merely give
the results of a comparison of our measurements with
those of the ESO Shack-Hartmann sensor. The data
consist of six independent sets of measurements, some
with aberrations removed as effectively as possible, some
others with independently known aberrations applied
(spherical, coma, or triangular coma). Table 4 shows the
mean difference between the two sets of measurements
and the rms fluctuation, in nanometers. On the average,
systematic differences are of the order of 30 nm and the
dispersion of the order of 35 nm, which demonstrates that
both methods are quite precise and give consistent results.

B. New Technology Telescope Residual Wave-front Error
As described in Section 4, our final phase map is obtained
with 15 Zernike terms removed and represents what we
call the residual wave-front errors. These small-scale
errors are quite insensitive to optical misalignments and
mirror-support problems. They essentially reflect mirror
figure errors left by the polishing tool on either the pri-
mary or the secondary mirror. Figure 5 shows the final
sensor signal and its associated phase map for four inde-
pendent measurements made at the NTT. For images in
the first column the telescope was perfectly tuned. For
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images in the second column a coma was introduced (the
signal is the i33 image in Fig. 4). For images in the third
column a spherical aberration, and in the fourth column a
triangular coma, was introduced. Images in the last two
columns are slightly more blurred, owing to poorer seeing
conditions.

All these images are remarkably similar, giving us
confidence that these wave-front errors are real. Two
bright spots are visible near the edge in the first quadrant
(upper right) of the phase maps. They appear to be asso-
ciated with figure errors in the primary mirror. Similar
errors are clearly seen in the primary-mirror figure ob-
tained by Zeiss during the final optical shop tests.® A
contour plot of the average phase map is given in Fig. 6
together with a cross section of the four independently ob-
tained phase maps. The uncertainty in a wave-front re-
construction process is known to be at maximum at the
pupil boundaries. Telescope mirrors often have poor
edges, which makes the reconstruction even more diffi-
cult, because boundary conditions are affected by large
edge-slope defects. For instance, the sensor signal dis-
played in image i33 (Fiig. 4) shows an edge error in the sec-
ond quadrant (upper left). A similar edge error would
have appeared with a good mirror if the coma had been
overestimated. The fact that we observe exactly the same
bad edges with four different initial aberrations gives us
confidence that the wave-front reconstruction process
is accurate.
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Fig. 6. ' ESO NTT mirror figure (15 first Zernike terms re-
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cross section was taken on four independent phase maps, along
the vertical dashed line shown on the contour plot. The contour
plot shows the average phase map. The contour intervals are
0.04 um. Gray areas are positive; white areas are negative.
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Fig. 7. Coma measured at different field positions at the prime
foxus of the NASA/Infrared Telescope. Coordinates are given in
CCD pixel units. One pixel corresponds to 0.728 arcsec on the
sky. (a) For each field position A, a vector is drawn parallel to
the coma, with its origin at point A and its length proportional to
the amount of coma. For a perfect measurement all the extremi-
ties B should fall at the same point (telescope optical axis); (b) the
enlarged portion of the field shows that all the extremities fall
within 2.5 pixel of their center of gravity, which indicates a
45-nm peak uncertainty on the coma values.

C. Coma as a Function of Field Position

We now describe results obtained at the primary focus of
the NASA Infrared Telescope Facility on Mauna Kea.
Extrafocal images were taken at various field positions
with a 512 X 512 pixel CCD camera. As is shown in
Fig. 7(a), first we took pairs of defocused images centered
at positions A;, A,, and A;. Sometime later, after having
moved the telescope and pointed it at several other stars,
we did the same at position A;. Figure 7 shows the result
of the coma measurements. The coordinates are in CCD
pixel units. One pixel corresponds to 0.728 arcsec. At
each field position A, we determined a value of the coma
and drew on Fig. 7(a) a vector parallel to the direction of
the coma, with its origin at the observing position A and
its length proportional to the amount of coma. All the
vectors are expected to point toward the same point, the
telescope optical axis. Since the amount of coma is ex-
pected to be proportional to the distance from this axis,
one can theoretically scale the vectors so that all their
extremities fall on the axis. Here, we arbitrarily scaled
the vectors so that the extremity B; of the third vector
falls at its intersection with the direction of the second
vector. As shown in the enlarged portion of the field
[Fig. 7(b)], the four vector extremities fall within 2.5 pix-
els of their center of gravity. The maximum deviation is
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1% of the value of the coma at point Aj, that is, 45 nm.
This is consistent with the 35-nm rms dispersion quoted
above. The fact that the fourth coma measurement made
later is consistent with the first three measurements is
also a good indication of the telescope’s mechanical stabil-
ity. Such measurements could be made routinely for tele-
scope alignment purposes.

D. Spherical Aberration as a Function of Focus Position
Moving the focus position away from its nominal position
by moving the secondary mirror along the optical axis pro-
duces spherical aberration. For a Ritchey-Chrétien tele-
scope, the amount of aberration introduced is given by the
following expression!”:

7 m(m? — 1) 2
" 6 X 128F°F, (m — (m — B)

]dS , (15

where

m is the secondary-mirror magnification,

F is the focal ratio at the final focus,

F, is the focal ratio at the primary focus,

B is the backfocus from the primary-mirror vertex di-
vided by the focal length of the primary mirror,

S is the distance from the focus of the primary mirror
to the vertex of the secondary mirror.

This effect has been measured at the 4-m telescope of
the Cerro-Tololo Interamerican Observatory (CTIO) in
Chile. The results are shown in Fig. 8. We made two
independent sets of measurements. For the first set the
camera was set at the focus that corresponds to secondary-
mirror position M (encoder value 108). The mirror was
moved symmetrically at three different pairs of positions
on each side of M. The image pairs were processed as
usual. The resulting spherical-aberration values are indi-
cated by stars above the letter M in Fig. 8. For the second
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Fig. 8. Effect of the secondary-mirror position on spherical
aberration. Spherical aberration was measured for two different
focus position M and N on the CTIO 4-m telescope (stars). The
horizontal scale shows the encoder value for the secondary-mirror
position. The dashed line indicates the expected theoretical
variation of the spherical aberration as a function of focus posi-
tion. The best focus position (free from spherical aberration) is
found to be at the encoder value 134.
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Fig. 9. Estimated primary-mirror figure of the Hale telescope
after removal of 22 Zernike terms. White lines show the mirror
honeycomb structure.

set the camera was set at the focus that corresponds to
secondary-mirror position N (encoder value 131). The
mirror was moved symmetrically at two different pairs of
positions on each side of N. The spherical-aberration
value for each pair is indicated by a star above the letter N.
The dashed line is a linear fit with the theoretical slope
given by Eq. (15). It shows that our results are consistent
with theory. This measurement helped us to determine
the best focus position on the CTIO 4-m telescope. Be-
cause of this effect, one may question results obtained
when defocusing is done by moving the secondary mirror
rather than the camera. At the primary focus of a tele-
scope, defocusing can be achieved only by moving the cam-
era. At a Cassegrain focus it is much easier to move the
secondary mirror. As we have seen, this will introduce
some amount of spherical aberration. However, the effect
is a linear function of the mirror position and is opposite
on each side of the focal plane. It is expected to cancel
out when the difference between the two defocused images
is taken. In our experiments we always were careful to
take images with the secondary mirror at two positions as
symmetrical as possible on each side of the focal plane.
We did not find any systematic error that was due to the
motion of the secondary mirror.

E. Mirror Honeycomb Structure of the Hale Telescope
Extrafocal images taken at the primary focus of the Hale
telescope on Mount Palomar were given to us for analysis.
The primary mirror of this telescope was the first tele-
scope mirror with a honeycomb structure. This struc-
ture is represented by white lines in Fig. 9. Superimposed
upon this pattern is the reconstructed mirror phase map
after removal of the first 22 Zernike terms. The match is
striking, giving us again confidence that small-scale wave-
front errors are well retrieved in the wave-front recon-
struction process. The amplitude of the bumps and dips
on the wave front is typically 0.3 um peak to valley. Fig-
ure 10 shows the associated point-spread function, that is,
a stellar image that the telescope would produce at 0.5 pm
if both seeing and the first 22 Zernike terms were re-
-moved by means of adaptive optics. The Strehl ratio is
0.3, and the intensities in the six spots are approximately
one tenth of the central intensity.
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F.  Comparison of Our Estimates with Reported Encircled
Energy Distribution

On several occasions we computed the point-spread func-
tion from our reconstructed wave fronts and compared
the distribution of encircled energies with other indepen-
dent estimates. Figure 11 displays the results of such
comparisons made for the CFHT. First we compare our
results with encircled energies given in the report on the
primary-mirror acceptance tests.’® The values in the re-
port are derived from the results of Hartmann tests made
at the optical shop before mirror delivery. Comparison is
made with wave-front data obtained at the primary focus.
To make a fair comparison, we removed from our recon-
structed wave front three aberration terms that were not
taken into account during the acceptance tests. These
are coma, which is field dependent and reflects the dis-
tance from our images to the optical axis; spherical aber-
ration, which was compensated by a null lens during the
test; and astigmatism, which depends on the telescope
orientation. Astigmatism was not seen during the tests

Fig. 10. Point-spread function associated with the phase map
shown in Fig. 9.

% Encircled Energy
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Fig. 11. Estimated encircled energies for the CFHT. The
curves show our estimate from data taken at the prime focus
with coma, astigmatism, and spherical aberrations removed (solid
curve) and at the Cassegrain focus with coma removed (dashed
curve). The experimental points are from a Shack-Hartmann
spot diagram obtained during the primary-mirror acceptance test
(asterisks) and later at the Cassegrain focus (crosses).
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and is believed to be produced by the mirror supports. A
second comparison was made with encircled energies
derived from Hartmann tests made on the sky in 1983 at
the Cassegrain focus.’® Our data were also recorded at
the Cassegrain focus. Only coma was removed from our
reconstructed wave front, as it was for the Hartmann
tests. It is clear from Fig. 11 that all these results are
quite consistent. The spherical-aberration term observed
at the primary focus appears to be removed effectively by
the secondary mirror. A particularity of the CFHT is
that this term can be adjusted by changing an air bag
pressure in the back of the secondary mirror.”® The
largest discrepancy between the reported encircled ener-
gies and our estimates is in the wings. This is because
the reported energies were obtained from geometrical spot
diagrams, whereas ours were obtained from full diffrac-
tion calculations.

8. HOW TO TAKE OPTIMUM
OUT-OF-FOCUS IMAGES

The technique of taking optimum out-of-focus images re-
quires a science-grade CCD camera that is available on
most astronomical telescopes. Since it works with broad-
band light, no filter is needed. The exposure time must
be long enough to average out seeing effects but short
enough to avoid any degradation that is due to telescope
tracking errors. Experience shows that a 30-s exposure
is usually a good choice. The stellar magnitude is dictated
by the desire to obtain a good signal-to-noise ratio while
staying well within the linear range of the CCD camera.
On a 4-m telescope an 8-magnitude star taken from the
Smithsonian Astrophysical Observatory (SAO) star catalog
when it comes near zenith is appropriate.

The question then arises of how much defocus should be
introduced for best results. To a first approximation, the
defocused stellar image can be viewed as a blurred pupil
image. The width of the blurring function is the width of
the focal-plane image. Hence one can determine the
width of the defocused image by multiplying the width of
the focal plane image by the desired spatial resolution ex-
pressed in resolved wave-front elements per image diame-
ter. For a given telescope, under a given seeing condition,
the width of the required defocused image grows as the
beam f ratio and may exceed the size of a standard CCD
chip. For instance, at the f/30 Cassegrain focus of a 4-m
telescope, a 1l-arcsec seeing disk produces a 0.6-mm-
diameter spot. Hence filling a 12-mm diameter CCD chip
with a defocused image yields a maximum resolution of
20 independent wave-front elements across the pupil di-
ameter. In the case of large f ratios, lenses can be used to
reimage the beam cross sections onto the CCD camera
with the desired magnification.

One must keep in mind that increasing the distance to
focus increases the spatial resolution on the reconstructed
wave front but decreases the sensitivity of the method.
Hence the optimum distance depends also on the applica-
tion. For telescope alignment, a smaller distance yields a
higher sensitivity on the low-order terms such as coma.
Moreover, there are fewer pixels to process in the image,
which speeds up the computation. For example, the re-
sults on coma described in Subsection 7.C were obtained
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with images taken rather close to focus. Images shown in
Fig. 4 were taken farther away to produce a good balance
between sensitivity and resolution. Finally the primary-
mirror figure of the Hale telescope shown in Fig. 9 was
obtained with highly defocused images emphasizing spa-
tial resolution. The images, which have 520 pixels across
a diameter, have been smoothed. The mirror figure
shown in Fig. 9 still has 340 pixels across a diameter,
which corresponds to 1.5 cm/pixel on the mirror surface.

In choosing the distance to focus, one must also pay at-
tention to another condition that has to be met. Qur re-
duction process is valid only for images taken outside the
caustic zone, that is, the zone inside which rays coming
from different sampled pupil points intersect. One must
take images far enough from the focal plane for this condi-
tion to apply. Unfortunately the size of the caustic zone
depends on the aberrations of the telescope that we are
supposed to measure, and no general rule can be given.
The same situation arises for the classical Hartmann
test. One can state that the distance to focus must be at
least the same as that at which a Hartmann plate would
be taken.

In some cases a particular telescope aberration domi-
nates, and the dimensions of the caustic zone can be pre-
cisely stated. This is the case for extrafocal images taken
at the (uncorrected) primary focus of a Ritchey—Chrétien
telescope. In this case the primary mirror is hyperbolic
and the primary focus is not stigmatic. It shows a strong
negative spherical aberration. One can still record out-
of-focus images to reconstruct the primary-mirror figure
and measure its conical constant accurately.® We found
that errors in the conical constant were a major source of
aberration in most of the telescopes that we tested.”® In
the case of a negative spherical aberration, the caustic
zone extends beyond the paraxial focus over a distance
equal to three times the longitudinal aberration.”’ At
this distance the diameter of the beam is eight times
larger than the diameter of the circle of least confusion.
Therefore the minimum defocus distance is the distance
at which the diameter of the defocused image is eight
times the diameter of the image at best focus. One must
also allow for the seeing blur that must be added to the
image diameter. In practice, a value at least twice as
large will allow the algorithm to converge more easily. An
even greater distance is desirable if one wishes to resolve
any smaller feature on the reconstructed wave front.

Our experience is that in most cases satisfactory results
are obtained when the telescope spider arms are clearly
visible on the defocused images but the effect of the aber-
rations is only barely visible.

9. CONCLUSION

A new wave-front-sensing method was developed. It con-
sists of reconstructing the wave front from defocused
point-source images. The method works with broadband
long-exposure stellar images taken by a ground-based op-
tical telescope through the turbulent atmosphere and re-
quires only a science-grade astronomical CCD camera.
As originally proposed,® the wave-front reconstruction
algorithm is based on the solution of a Poisson equation.
The solution is further refined by means of an iterative
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algorithm that simulates an adaptive optics control loop.
This refinement considerably increases the dynamic range
of the original method, allowing small aberrations to be
- retrieved in the presence of much larger ones.

The results were compared with those of a conventional
Shack-Hartmann sensor. The accuracy appears to be
similar. However, the new method is easier to implement,
does not require the use of a flat reference wave-front,
and generally provides a higher spatial resolution on the
reconstructed wave front. It was successfully tested on
several astronomical telescopes and was found to be a
powerful diagnostic tool for telescope aberrations. The
most frequently encountered aberrations are coma result-
ing from misalignment and spherical aberration resulting
from inaccurate conical constants. Other aberration
terms were often found to be related to mirror-support
problems. Astigmatism and triangular coma (trefoil)
were found to depend on the distance of the star to zenith
and were related to primary-mirror-support adjustments.
Higher-order terms were found to rotate with the second-
ary mirror and were related to the secondary-mirror sup-
port (mainly for infrared chopping secondaries). The
information gathered in these tests is now being used on
several telescopes to improve image quality.

A user-friendly interactive algorithm has been written,
with instructions on how to use it. It is available on re-
quest to the authors. When the algorithm is automated on
a SUN SPARC-2 work station, the computation time can
be less than the time required for acquiring both images
on a CCD camera. Application of this method to the
active control of the primary-mirror supports and the
alignment of large telescopes is now envisaged.
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Note added in proof: Since this paper was accepted, a
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avoids the need for fitting Zernike polynomials, has been
fully automated without any loss of accuracy.
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