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Abstract. We study the 2 × 2 system of conservation laws of the form vt − ux =
ut + p(v)x = 0, p = k2v−γ(γ ≥ 1), which are the model equations of isentropic gas
dynamics. Weak global in time solutions are obtained by Nishida-Smoller (CPAM 1973)
provided (γ−1) times the total variation of the initial data is sufficiently small. The aim
of this paper is to give an alternative proof by using the Dafermos-Bressan-Risebro wave-
front tracking scheme. We obtain new estimates of the total amount of interactions, which
also imply the asymptotic decay of the solution. The main idea is to define appropriate
amplitude to the path that is a continuation of shock fronts.

1. Introduction. The equations of one dimensional isentropic gas dynamics in La-
grangian coordinates are given by{

vt − ux = 0
ut + p(v)x = 0, (x, t) ∈ R × R+.

(1.1)

Here u is the velocity, p the pressure, and v the specific volume satisfying v > 0. If the gas
is ideal : pv = RΘ and polytropic: e = CvΘ (Θ: temperature, e : internal energy), then
it follows from the first and second laws of gas dynamics that the entropy η is expressed
as

η = Cv{log p + (1 + R
Cv

) log v} + const.

Setting η = constant, we obtain the pressure in the form

p = k2v−γ , γ = 1 + R
Cv

> 1. (1.2)

Note that p = k2v−1 for γ = 1, which coincides with the isothermal gas.
In this paper, we will be mainly concerned with the Cauchy problem for the equations

(1.1) with pressure in the above form, but our study will certainly cover the case γ = 1.
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WAVE-FRONT TRACKING FOR THE EQUATIONS OF ISENTROPIC GAS DYNAMICS 21

Since the equations (1.1) constitute a nonlinear hyperbolic system, jump discontinuities
will appear in a solution even if the initial data are sufficiently smooth. Hence, the weak
solution will be taken into account. These theories go as far back as Riemann [12] and
various studies before 1948 are presented in Courant-Friedrichs [5]. By setting ρ = v−1

(mass) and U = t(ρ, u), initial data are given by

U(x, 0) = t(ρ0(x), u0(x)), (1.3)

where ρ0(x) ≥ ρ > 0 and ρ0(x), u0(x) ∈ BV (R) : the space of functions having bounded
total variation in R. If the initial data have small total variation, Glimm [7] says that
there exists a global in time weak solution. For the isothermal gas equations (γ =
1), Nishida [10] has proved the existence of global weak solutions for the initial data
having arbitrarily large total variation. Nishida-Smoller [11] has shown that global weak
solutions exist if (γ − 1) times the total variation of the initial data is sufficiently small,
which is a generalisation of [10]. These authors use Glimm’s random choice scheme.

The aim of this paper is to show that Nishida-Smoller solutions are also constructed
by the wave-front tracking method that has been developed by Dafermos [6] for scalar
conservation laws, and by Bressan [3], [4] and Risebro [13] for systems. In order to control
the large total variation, we define a path and its strength. A path is a continuation of
shock fronts. A single shock front is a part of a finite number of paths and the strength
of the shock front is the summation of the strength of these paths. The notion of the
path has been introduced by Temple-Young [15] and the idea of this decomposition
has already been used in this author’s previous paper [1]. In sections 2, 3 and 4, we
will summarise basic results on the Riemann problem, the wave-front tracking scheme
following [4], and the interaction estimates obtained by [11]. In Sec. 5, we will define a
path and its strength; the stability of the front tracking scheme will be proved in Sec.
7. Our estimates also imply the decay of the solution that will be discussed in the last
section.

2. Riemann Problem. We find by direct computation that the characteristic speeds
are the roots of the equation λ2 + p′(v) = 0 :

λ1(U) = −k
√

γρε−1, λ2(U) = k
√

γρε−1 (γ = 1 + 2ε) (2.1)

and the corresponding characteristic fields are

R1(U) = t(1,
√
−p′(v)), R2(U) = t(1,−

√
−p′(v)). (2.2)

Following Nishida-Smoller [11], we define the Riemann invariants:

z = u +
k
√

γ

ε
(ρε − 1) : 1-invariant, w = u − k

√
γ

ε
(ρε − 1) : 2-invariant. (2.3)

We note that if γ = 1 (ε → 0), then

z = u + log ρ, w = u − log ρ

that coincide with the Riemann invariants defined in Nishida [10]. Moreover, the region
{(ρ, u); ρ > 0} corresponds to {(w, z); z − w > − 2k

√
γ

ε } in wz coordinates.
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22 FUMIOKI ASAKURA

The Riemann problem is the Cauchy problem with initial data

U(x, 0) =
{

UL for x < 0,

UR for x > 0
(2.4)

where UL = t(ρL, uL), UR = t(ρR, uR) are constant vectors. A unique self-similar
solution will be constructed. Self-similar C1 solutions have the form U(x, t) = Û(x

t )
satisfying the equations if and only if

Û ′ ∝ Rj(Û),
x

t
= λj(Û) (j = 1, 2). (2.5)

Hence Û(ξ) is an integral curve of Rj(U). These solutions are called centred rarefaction
waves. In our equations, the range of centred rarefaction waves is contained in the
integral curves through (ρ0, u0), expressed as

u − u0 = −k
√

γ

ε (ρε − ρε
0) (ρ ≤ ρ0) : 1-rarefaction curve,

u − u0 = k
√

γ

ε (ρε − ρε
0) (ρ ≥ ρ0) : 2-rarefaction curve.

(2.6)

We note that the 1-rarefaction curve corresponds to the horizontal half-line z = z0 (w ≥
w0) and the 2-rarefaction curve corresponds to the vertical half-line w = w0 (z ≥ z0).
On the other hand, self-similar jump discontinuities have the form

U(x, t) =
{

U− for x < st,

U+ for x > st.
(2.7)

This jump discontinuity is called a shock wave, if and only if it satisfies the Rankine-
Hugoniot condition:

s(v+ − v−) = −(u+ − u−), s(u+ − u−) = p(v+) − p(v−) (2.8)

together with the Lax entropy condition:

λ1(U+) < s < λ1(U−), s < λ2(U+) : 1-shock wave,
λ1(U−) < s, λ2(U+) < s < λ2(U−) : 2-shock wave.

(2.9)

For fixed ρ0 = ρ−, u0 = u−, quantities ρ = ρ+, u = u+ satisfying the Rankine-Hugoniot
condition (2.8) and the Lax entropy condition (2.9) constitute pieces of smooth curves:

u − u0 = −k
√

ργ−ργ
0

ρρ0(ρ−ρ0) (ρ − ρ0) (ρ > ρ0) : 1-shock curve,

u − u0 = k
√

ργ−ργ
0

ρρ0(ρ−ρ0) (ρ − ρ0) (ρ < ρ0) : 2-shock curve.
(2.10)

In order to solve the Riemann problem, we define the forward 1-wave curve WF
1 (UL) and

the backward 2-wave curve WB
2 (UR) in the following way:

WF
1 (UL) : u − uL =

{ −k
√

γ

ε (ρε − ρε
L) (ρ ≤ ρL)

−k
√

ργ−ργ
L

ρρL(ρ−ρL) (ρ − ρL) (ρ > ρL),

WB
2 (UR) : u − uR =

{ k
√

γ

ε (ρε − ρε
R) (ρ ≤ ρR)

k
√

ργ−ργ
R

ρρR(ρ−ρR) (ρ − ρR) (ρ > ρR).

(2.11)

Each wave curve constitutes a C2-curve with Lipschitz continuous second derivative. If
(ρ, u) ∈ WF

1 (UL), then there is a 1-rarefaction wave or shock wave connecting (ρL, uL)
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and (ρ, u). If, on the other hand, (ρ, u) ∈ WF
2 (UR), then there is a 2-rarefaction wave or

shock wave connecting (ρ, u) and (ρR, uR).
The following theorem is essentially due to Riemann [12]; the proof is found in Courant-

Friedrichs [5] and Smoller [14].

Theorem 2.1. Suppose that uR − uL <
k
√

γ

ε (ρε
R + ρε

L), or equivalently zL − wR >

− 2k
√

γ

ε . Then there exists a unique solution composed of constant states UL, UM , UR

separated by centred rarefaction waves and shock waves. Moreover,

w ≥ Min {wL, wR}, z ≤ Max {zL, zR}. (2.12)

The amplitude of waves is defined by

β = wM − wL : amplitude of 1-waves,
γ = zR − zM : amplitude of 2-waves.

(2.13)

Here β, γ ≥ 0 for centred rarefaction waves and < 0 for shock waves; absolute values
|β|, |γ| are called their strengths. From now on, we also denote by β, β′ the 1-waves and
γ, γ′ the 2-waves themselves.

3. Front Tracking Scheme. Let h be a (small) positive number. The approximate
solution Uh(x, t) is constructed by following Bressan [4].

(1) Approximate the initial data by a step function Uh
0 (x) so that

|Uh
0 − U0|∞ ≤ h, T.V.Uh

0 ≤ T.V.U0 (3.1)

(2) Let x1 < · · · < xM be the points of discontinuity of Uh
0 (x). At each xm, we

solve the Riemann problem setting UL = Uh
0 (xm − 0), UR = Uh

0 (xm + 0) and
approximate the solution with piecewise constant function in the following way.
If the solution is composed only of shock waves, we adopt this piecewise constant
solution itself. If it contains a centred rarefaction wave, we approximate it by
several small fans consisting of constant states and jump discontinuities separat-
ing them. These constant states are located on the rarefaction curve connecting
two constant states in the solution to the Riemann problem and jump fronts
propagate with speeds close to characteristic speeds; we may assume that the
distance between the neighbouring state is less than h. We thus construct an
approximate solution Uh(x, t) composed of piecewise constant functions.

(3) Uh(x, t) is constructed until a pair of neighbouring jump discontinuities interact.
If they interact at t = t1, we construct the approximate solution by solving the
Riemann problems with initial data Uh(x, t1−0). Here, we may assume, changing
the speed of shock waves by O(1)h, there are only two incoming waves at every
interaction point.

(4) We can repeat the above construction as long as the number of jump disconti-
nuities does not diverge within a finite time.

(5) To avoid the breakdown, we introduce a new approximate solution that is called
a simplified Riemann solver (see [4] for details). At each interaction point, the
amount of waves generated by the interaction is estimated by the product of
the strengths of incoming waves |στ |. We choose a threshold ρ > 0 so that: if
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24 FUMIOKI ASAKURA

|στ | ≥ ρ, then the usual approximate solution is constructed; if |στ | < ρ, then
the new approximate solution is constructed in the following way. Suppose that
a 2-shock wave γ connects UL and UM , and a 1-shock wave β connects UM and
UR. Then we can find two states U ′

M , U ′
R so that UL and U ′

M are connected by
a 1-shock wave with strength |β|, and U ′

M and U ′
R are connected by a 2-shock

wave with strength |γ|; the states UR, U ′
R are separated simply by a discontinuous

front that propagates with a fixed speed λ̂ > max |λj |. This discontinuous front
is called the non-physical wave.

In Sec. 7, we will prove that the approximate solution Uh(x, t) is actually constructed
for all 0 ≤ t < ∞. Estimates of physical waves are settled in [11]. The remaining problem
is to choose the threshold ρ and estimate the total amount of non-physical waves, which
will be carried out also in Sec. 7.

4. Interaction Estimates. Suppose that three constant states, denoted by UL, UM ,

UR from left to right, are connected by two incoming waves. For example, let γ denote
a 2-shock wave connecting UL and UM , and let β denote a 1-shock wave connecting UM

and UR. These waves interact and generate an outgoing 1-shock wave β′ and a 2-shock
wave γ′ that constitute the solution to the Riemann problem connecting UL and UR. This
interaction is denoted, for simplicity, by γ + β → β′ + γ′. Let o denote the 1-rarefaction
front and let π denote the 2-rarefaction front. Possible interactions of two waves are the
following:

(1) γ + β, (2) γ + o (or π + β), (3) γ1 + γ2 (or β1 + β2),
(4) γ + π (or o + β), (5) π + γ (or β + o), (6) π + o.

The local interaction estimates are obtained in the following way.

Lemma 4.1 (Nishida-Smoller [11]). Assume that ρ ≤ ρL, ρR ≤ ρ. Then there exist C

and δ (0 < δ < 1) depending only on the equations and ρ, ρ, such that the following
estimates hold.

(1) γ + β → β′ + γ′ : one of the following holds:
(a) |β′| ≤ |β| + Cε|βγ|, |γ′| ≤ |γ| + Cε|βγ|
(b) |β′| = |β| − ζ, |γ′| ≤ |γ| + Cε|βγ| + η

(c) |γ′| = |γ| − ζ, |β′| ≤ |β| + Cε|βγ| + η, 0 ≤ η ≤ δζ.

(2) γ + o → o′ + γ′ : |γ′| = |γ|, |o′| ≤ |o| + Cε|oγ|.
(3) γ1 + γ2 → o′ + γ′ : |γ′| = |γ1| + |γ2|, |o′| ≤ C|γ1γ2|.
(4) γ + π → β′ + γ′ : there exist 1-shock wave β0 and 2-shock wave γ0 such that

|γ0| = |γ| − ζ , |β0| = η (0 < η ≤ δζ) and β0 + γ0 → β′ + γ′.
(5) π + γ → β′ + γ′ : |γ′| = |γ| − ζ, |β′| = η (0 < η ≤ δζ).
(6) π + o → o′ + π′.

Remark 4.2. The estimates of rarefaction waves in Cases (2) and (3) are not
contained in Lemma 4 of [11]. However, the first estimate is a direct consequence of the
basic estimate and the second follows from the mean value theorem.

Let Qj (j = 1, 2) denote the difference of the amplitude of j-outgoing wave and j-
incoming wave, that is: Q1 = β′ − β, Q2 = γ′ − γ in Case (1) and Q1 = o, Q2 =
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γ′ − (γ1 + γ2) = 0 in Case (3), etc. Qj is the amount of j-wave generated by the
interaction. Let σ, τ be the amplitude of incoming waves. Then Qj is a C2 function of σ

and τ satisfying

Qj(σ, 0) = Qj(0, τ) = 0 for all σ, τ (j = 1, 2).

Hence Qj(σ, τ) has the basic estimate

|Qj(σ, τ)| ≤ C|στ |, (4.1)

where the constant C depends only on the equations and ρ, ρ.

Suppose that the approximate solution Uh(x, t) is constructed for 0 ≤ t < T . The
global interaction estimate of the total amount of shock waves can be carried out in the
same way as [11]. A Lipschitz curve J defined by t = T (x), x ∈ R is called an I-curve,
if |T ′(x)| < 1

λ̂
. We denote J2 > J1, if T1 �= T2 and T2(x) ≥ T1(x) (x ∈ R). Denoting by

Sj(J) the set of j-shock waves crossing J and S(J) = S1(J) ∪ S2(J), we define

L−(J) =
∑

α∈S(J)

|α|, Q(J)=
∑

β∈S1(J),γ∈S2(J)

|βγ| : approaching. (4.2)

We set F (J) = L−(J) + 4CεQ(J).

Lemma 4.3 ([11]). If CεF (O) ≤ min{ 1
2 , 1−δ

4δ }, then it follows that F (J2) ≤ F (J1) for
J2 > J1. Particularly, L−(J) ≤ F (O).

Since L−(J) is the sum of the negative variation of w and z along J , their positive
variation, the total amount of rarefaction waves, is also less than F (O). We also notice
that the above estimates are independent of T and valid as long as the approximate
solution Uh is constructed.

5. Decomposition by Paths. Let us consider an approximate solution Uh(x, t)
for 0 ≤ t < T. A sequence of interaction points P0, P1, . . . , Pn constitutes a path, if
P0 ∈ {t = 0} and each segment Pj−1Pj is a shock front; this path is denoted by

Γ : P0 → P1 → · · · → Pn.

As in Temple-Young [15], we define the index (cj , kj) of each segment Pj−1Pj in the
following way: by setting k1 = 1,

cj =
{

1, if Pj−1Pj is a 1-shock
2, if Pj−1Pj is a 2-shock,

kj =
{

kj−1, if cj = cj−1

kj−1 + 1, if cj �= cj−1.

Each kj is called the generation order of the segment and the sequence (c1, k1), (c2, k2),
. . . , (cn, kn) is called the index of the path.

We define the strength of the segment in a path in the following inductive way. Let
t1 be the first interaction time. Suppose that a shock wave β is issuing from a point
P0 ∈ {t = 0}. The segment connecting P0 and its first interaction point P1 will belong
to several paths. But at first, we regard the segment P0P1 as a single path Γ : P0 → P1

and the strength is given by |β|. In this way, the strength is defined up to t = t1 for each
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26 FUMIOKI ASAKURA

segment that constitutes a shock front issuing from {t = 0}. Suppose that a (1, 1)-wave
β and a (2, 1)-wave γ interact at P1 and β′ and γ′ are generated. After the interaction,
the strengths for β′ and γ′ are defined according to Case (1)-(a), (b), (c) of Lemma 4.1
in the following way.

Case (1)-(a): by Lemma 4.1, there exist positive constants C1, C2 such that

|β′| = (1 + C1ε|γ|)|β|, |γ′| = (1 + C2ε|β|)|γ|. (5.1)

The indices of β′, γ′, respectively, are defined to be (1, 1), (2, 1), respectively and their
strengths are defined to be |β′|, |γ′|, respectively.

Case (1)-(b): in this case, there exist positive constants C2, δ2 such that C2 ≤ C, δ2 ≤ δ

and
|β′| = |β| − ζ, |γ′| = (1 + C2ε|β|)|γ| + δ2ζ. (5.2)

The (1, 1)-segment β is divided into two (1, 1)-segments β(1) and β(2) so that |β(1)| = |β|−
ζ and |β(2)| = ζ. The index of β′ is defined to be (1, 1). We define a (2, 1)-segment γ(1)′

and (2, 2)-segment γ(2)′ so that |γ(2)′| = δ2ζ and |γ′| = |γ(1)′|+ |γ(2)′|. Thus Γ is divided
into two paths and extended beyond P1 such that Γ(1) = β(1) ∪ β′, Γ(2) = β(2) ∪ γ(2)′.
Case (1)-(c) is treated in the same way.

For the general case, suppose that a 1-wave β and a 2-wave γ interact at Pn (t =
tn) and β′ and γ′ are generated. We assume that β constitutes a segment of paths
B1, B2, . . . , respectively, with strengths |β1|, |β2|, . . . , respectively and γ a segment of
paths Γ1, Γ2, . . . , respectively, with strengths |γ1|, |γ2|, . . . , respectively so that |β| =∑

j |βj |, |γ| =
∑

j |γj |. We may assume that all shock fronts locating t < tn have such
decomposition.

Case (1)-(a), |β′| ≥ |β|, |γ′| ≥ |γ|: By Lemma 4.1, (5.1) holds. Then we extend the
path Bj to the next interaction point without changing the index; its strength is defined
by (1 + C1ε|γ|)|βj |. In the same manner, the path Γj is extended without changing the
index and with strength (1 + C1ε|β|)|γj |.

Case (1)-(b), |β′| < |β|: In this case, there exist positive constants C2, δ2 such that
equation (5.2) holds. Moreover, we find an integer l and a constant βl such that

ζ = |βl| +
∑

j≥l+1

|βj |, 0 ≤ |βl| < |βl|.

For 1 ≤ j ≤ l−1, we extend the path Bj up to the next interaction point changing neither
the index nor its strength. For j = l we first divide Bl into two paths B(1)

l and B(2)
l so

that the indices are not changed and strengths satisfy |β(1)| : |β(2)| = |βl| − |βl| : |βl|
on every segment constituting the path. Then we extend B(1)

l up to the next interaction
point changing neither the index nor its strength. Let (1, kl) be the index of Bl on β. We
extend B(2)

l in the opposite direction with the generation order kl + 1 and the strength
δ2|βl| so its index is (2, kl + 1) up to the next interaction point. For j ≥ l + 1, we
extend the path Bj up to the next interaction point changing the direction; its index
and strength are (2, kj + 1) and δ2|βj |, respectively. Γj are extended up to the next
interaction point without changing the index; its strength is (1 + C2|β|)|γj |.

Case (1)-(c), (|γ′| < |γ|) can be treated in the same manner as Case (1)-(b). If ε > 0,

the above case is the most complicated one and Cases (2) to (5) are easier. If ε = 0, Case
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(1) is harmless and other cases can be treated as Case (1)-(b). However, Case (4) needs
some accounting: here, we divide the interaction as γ + o → β0 + γ0 → β′ + γ′. The first
interaction is treated in the same manner as Case (1)-(b), but we do not increase the
generation order here; the second interaction is Case (1) itself and generation order may
change.

We have thus defined a collection of a finite number of paths Γ = {Γj} in the approx-
imation. A path Γ is considered to be a Lipschitz curve x = Γ(t). For all t different from
interaction times, we define αΓ(t): the strength of Γ at t and kΓ(t): the generation order
of Γ at t. It follows from our definition:

Lemma 5.1. For every approximate solution, we have a collection of a finite number
of paths Γ = {Γj} such that

(1) L−(t) =
∑

Γ∈Γ αΓ(t)
(2) Let Γ : P0 → P1 → · · · → Pn and (cj , kj), αj be the index and the strength,

respectively, of Pj−1Pj . Then

kj+1 = kj ⇒ αj+1 ≤ (1 + Cε|βj |)αj ,

kj+1 = kj + 1 ⇒ αj+1 ≤ δαj

where βj is the interacting shock wave.

Next, we consider the strength of a path Γ at t such that kΓ(t) = j. We will use a
simple inequality: ∏

j≥1

(1 + |βj |) ≤ 1 +
3
2

∑
j≥1

|βj |, if
∑
j≥1

|βj | ≤ 1
2

(5.3)

that comes from the inequality 1 + x ≤ ex ≤ 1 + 3
2x for 0 ≤ x ≤ 1

2 .

Lemma 5.2. Assume that CεF (O) ≤ min{ 1
2 , 1−δ

4δ }. Then there exists positive constant
κ depending only on δ and satisfying 0 < κ < 1 such that

αΓ(t) ≤ 2αΓ(0) if kΓ(t) = 1,

αΓ(t) ≤ κj−1αΓ(0) if kΓ(t) = j ≥ 2.
(5.4)

Proof. We first claim that for all s, t different from interaction times and satisfying
s < t, we have

kΓ(t) = kΓ(s) + 1 ⇒ αΓ(t) ≤ καΓ(s). (5.5)

Let us denote Γ : P0 → P1 → · · · → Pn. Suppose that Γ(s) ∈ Pj0−1Pj0 , Γ(t) ∈ Pj2−1Pj2 ,

and the generation order changes at Pj1 . It follows from Lemma 5.1 that

αΓ(t) ≤ αΓ(s)
∏

j0<j≤j1

(1 + Cε|βj |)δ
∏

j1<j≤j2

(1 + Cε|βj |)

≤ δαΓ(s)
∏
j≥1

(1 + Cε|βj |)

≤ δ(1 + 3
2Cε

∑
j≥1

|βj |)αΓ(s)

≤ δ{1 + 3
2CεF (O)}αΓ(s) ≤ 1

4 (3 + δ)αΓ(s).
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28 FUMIOKI ASAKURA

Here we use the global interaction estimate Cε
∑

j≥1 |βj | ≤ CεF (O) ≤ min{ 1
2 , 1−δ

4δ }.
Thus by setting κ = 1

4 (3 + δ), we have proved the claim. We note that κ is independent
of the choice of a path. Repeating this argument, we get (5.5) for j ≥ 1. If j = 1, we
have obviously

αΓ(t) ≤ {1 + 3
2CεF (O)}αΓ(0) ≤ 2αΓ(0),

which completes the proof of the lemma. �
Using this lemma, we have∑

Γ:kΓ(t)=j

αΓ(t) ≤ κj−1
∑

Γ:kΓ(t)=1

αΓ(0) = κj−1L−(0).

Denoting L−
j (t) =

∑
Γ:kΓ(t)=j αΓ(t), we obtain

Proposition 5.3. Assume that CεF (O) ≤ min{ 1
2 , 1−δ

4δ }. Then there exists positive
constant κ depending only on δ and satisfying 0 < κ < 1 such that

L−
1 (t) ≤ 2L−(0), L−

j (t) ≤ κj−1L−(0) (j ≥ 2). (5.6)

This proposition will provide estimates of the total amount of non-physical waves
generated by the interaction of waves whose generation orders are larger than k and the
threshold parameter will be chosen according to the above estimate.

6. Estimates of Total Amount of Interactions. Now we carry out the estimates
of total amount of waves generated by all of the interactions between t = 0 and T. From
now on, we suppose that CεF (O) ≤ min{ 1

2 , 1−δ
4δ }. It follows from Lemma 4.1 that

(1) A new rarefaction wave is generated only by the interaction of two shock waves
of the same family.

(2) The amplitude of rarefaction waves decreases by the interaction with shock waves
of the same family and increases by those with shock waves of the opposite family.

(3) The above interactions generate no rarefaction wave of the opposite family.
Let {Pm} denote the collection of all points where the interactions of two shock waves
of the same family occur. The strength of interacting (incoming) shock waves at Pm are
denoted by αj(Pm) (j = 1, 2).

Lemma 6.1. The total amount of new rarefaction waves generated by the interaction
of two shock waves of the same family is estimated by∑

Pm

|α1(Pm)α2(Pm)| ≤ 2
1 − κ

L−(O)2. (6.1)

Proof. Let Γαj (Pm) denote the collection of paths composing αj(Pm) and let αΓj (Pm)
denote the strength of the path Γj ∈ Γαj

(Pm) (j = 1, 2). Then we have∑
Pm

|α1(Pm)α2(Pm)| ≤
∑
Pm

∑
Γ1∈Γα1(Pm)

∑
Γ2∈Γα2(Pm)

|αΓ1(Pm)αΓ2(Pm)|

≤ 1
2

∑
Γ∈Γ

∑
Pm∈Γ

|αΓ(Pm)|
∑

Γ∗∈Γ∗(Γ,Pm)

|αΓ∗(Pm)|,
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where Γ∗(Γ, Pm) denotes the set of paths interacting with Γ at Pm and Γ is defined in
Lemma 5.1. Since ∪Pm∈ΓΓ∗(Γ, Pm) ⊂ Γ − {Γ}, we find by interchanging the order of
summations that∑

Pm∈Γ

|αΓ(Pm)|
∑

Γ∗∈Γ∗(Γ,Pm)

|αΓ∗(Pm)| ≤
∑

Γ∗∈Γ−{Γ}

∑
Pm∈Γ∩Γ∗

|αΓ(Pm)αΓ∗(Pm)|.

Let Pm, P′
m ∈ Γ∩Γ∗ (Pm �= P′

m) and suppose that there is no point of Γ∩Γ∗ between
Pm and P′

m. Since it is impossible that both kΓ(Pm) = kΓ(P′
m) and kΓ∗(Pm) = kΓ∗(P′

m)
occur, the generation order of Γ or Γ∗ increases by at least one as Pm → Pm′ and we
have ∑

Pm∈Γ∩Γ∗
|αΓ(Pm)αΓ∗(Pm)| ≤ 4

∑
j≥1

κj−1|αΓ(P0)αΓ∗(P∗
0)|

≤ 4
1 − κ

|αΓ(P0)αΓ∗(P∗
0)|,

where P0 ∈ Γ, P∗
0 ∈ Γ∗ are initial points at t = 0. Using this, we obtain∑

Pm

|α1(Pm)α2(Pm)| ≤ 2
1 − κ

∑
Γ∈Γ

∑
Γ∗∈Γ

|αΓ(P0)αΓ∗(P∗
0)|

≤ 2
1 − κ

L−(O)2.

Thus the lemma follows. �
Let L+(J) denote the total amount of rarefaction waves crossing J and O, a space-like
curve lying between the initial line and the first interaction point. We have proved that
the total amount of rarefaction waves generated by the interaction of two shock waves
of the same family is estimated by 2C

1−κL−(O)2. Moreover, the amplitude of rarefaction
waves increases only by the interaction with shock waves of the opposite family and
obviously a path composing a shock wave of that family does not interact again with the
same rarefaction waves from the opposite direction. Thus by Lemma 4.1, Case (2), we
have

L+(J) ≤ {1 + CεF (O)}
{

L+(O) +
2C

1 − κ
L−(O)2

}
≤ 2L+(O) +

4C

1 − κ
L−(O)2. (6.2)

Lemma 6.2. The total amount of waves generated by the interaction of shock waves
α and rarefaction waves θ is estimated by∑

Pm

|α(Pm)θ(Pm)| ≤
{
F (O) +

2L−(O)
1 − κ

}{
L+(O) +

2C

1 − κ
L−(O)2

}
. (6.3)

Proof. It follows from the above observation that the total amount of waves generated
by the interaction of rarefaction waves and shock waves of the opposite family is at most

F (O)
{

L+(O) +
2C

1 − κ
L−(O)2

}
.

When a rarefaction wave and a shock wave of the same family interact, the cancellation
occurs and either the rarefaction wave or the shock wave remains in this family. Hence
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each rarefaction wave will not interact again with the same shock (path) with its gener-
ation order unchanged and the amount of interactions is enumerated over all generation
orders. Thus the total amount of waves generated by these interactions is estimated by

2
∑
j≥1

κj−1L−(O)
{

L+(O) +
2C

1 − κ
L−(O)2

}
≤ 2L−(O)

1 − κ

{
L+(O) +

2C

1 − κ
L−(O)2

}
,

which proves the lemma. �
Let σ, τ denote the incoming waves at Pm. We set Q(Pm) = |στ | that estimates the
amount of waves generated by the interaction at Pm (see (4.1)). Combining the above
propositions, we have

Proposition 6.3. Assume that CεF (O) ≤ min{ 1
2 , 1−δ

4δ }. Then the total amount of
waves generated by the interaction is uniformly bounded: there exists a constant C

depending only on the equations, ρ, ρ, and T.V.U0 such that∑
Pm

Q(Pm) ≤ C. (6.4)

7. Estimates of Non-Physical Waves. First we prove that the approximate solu-
tion is constructed for all 0 ≤ t < ∞. Let us assume the contrary. Suppose that there is
a sequence of interaction time Tm such that limm→∞ Tm = T∞ < ∞. Since the estimates
in Sec. 6 are all true for 0 < t < T∞, there exists a uniform constant C∞ such that∑

0<tm<T∞

Q(Pm) ≤ C∞ (7.1)

where tm denotes the interaction time at Pm and the summation runs over all of the
interaction points between t = 0 and T∞. Let ρ be a threshold introduced in Sec. 3.
The above estimate says that there are less than C∞/ρ interaction points such that the
strengths of incoming waves satisfy Q(Pm) ≥ ρ: Since new physical fronts are generated
only at such points, the number of physical fronts is thus finite. A new non-physical front
is generated through the interaction of two physical fronts and any two physical fronts can
interact only once. Hence the number of non-physical fronts is also finite. Consequently,
we conclude that the total number of fronts is finite; this is the contradiction.

Let α be a shock wave at t. This shock wave contains several paths which can be
arranged so that

Γ1(t), Γ2(t), Γ3(t), . . . (kΓ1(t) ≤ kΓ2(t) ≤ kΓ3(t) ≤ · · · ). (7.2)

The generation order of α is defined by kΓ1(t) and denoted by kα that accords with
the definition of Bressan [4]. Let V −

j (t) be the total amount of shock waves at t whose
generation orders are larger than j. Then it follows that V −

j (t) =
∑

l≥j L−
l (t) and from

Proposition 5.3,

sup
t≥0

V −
j (t) ≤ L−(0)

∑
l≥j

κl−1 =
κj−1L−(0)

1 − κ
. (7.3)
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Now we shall carry out the estimates of non-physical waves. Note that only the
simplified Riemann solver generates a non-physical wave; in particular, one or two shock
waves have to be involved in the interaction. Since |β′| = |β|, |γ′| = |γ| in the simplified
Riemann solver, the total amount of shock waves L−(t) does not increase and L−(t) is
estimated by Lemma 4.3. Suppose that the shock waves β and γ interact. Then the
generation order of the generated non-physical wave is defined to be max{kβ, kγ} + 1; if
a shock wave β and a rarefaction wave interact, then it is defined to be kβ + 1. Let us
denote by NP the set of all non-physical waves. Note that non-physical waves do not
interact with each other.

Lemma 7.1. Let ε denote an arbitrary non-physical wave. There exists a constant
depending only on the equations and ρ, ρ such that the following estimates hold.

(1) |ε| ≤ ρ, (2)
∑

ε∈NP
kε≥j

|ε| ≤ C sup
t≥0

V −
j (t). (7.4)

Proof. (1) is obvious by definition. (2) can be easily seen from∑
ε∈NP
kε≥j

|ε| ≤ 2CεF (O) sup
t≥0

V −
j (t).

�
We have by the above lemma

Proposition 7.2. For given h > 0, there exists a threshold ρ > 0 so that the approx-
imate solution constructed by the front tracking scheme satisfies

∑
ε∈NP

|ε| ≤ h. (7.5)

The proof is carried out in the same way as [4]. Let N0 be the number of shock waves
at t = 0. Then there exists a certain polynomial P (ξ, η) such that∑

ε∈NP
|ε| =

∑
ε∈NP
kε≤j

|ε| +
∑

ε∈NP
kε≥j+1

|ε|

= O(1)P (N0, h
−1)ρ + O(1)

∑
k≥j+1

V −
j

= O(1)P (N0, h
−1)ρ + O(1)κj .

Hence, we choose j such that O(1)κj ≤ h
2 and then ρ so that (7.5) holds.

In this way, we have obtained a uniform bound of non-physical waves and hence
T.V.Uh(∗, t). The existence of a global solution is proved by the usual argument in [4]
and Smoller [14].

Theorem 7.3. Assume that (γ−1)T.V.U0 is sufficiently small; then the front tracking
scheme is stable and provides a global in time solution.
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8. Asymptotic Behaviour. As Risebro [13] shows, our approximate solutions in-
dicate the asymptotic behaviour of solutions. Since the total number of wave-fronts is
finite in an approximate solution, we can see that the approximate solution eventually
consists of a finite number of non-interacting wave-fronts. More precisely, there exist cer-
tain intermediate states UM and U ′∞ such that Uh(−∞, t) = U∞ and UM are connected
by a single 1-shock front or a collection of 1-fronts that come from 1-rarefaction waves,
UM and U ′

∞ by similar 2-fronts, and finally U ′
∞ and Uh(∞, t) = U∞ are connected by

a collection of non-physical fronts. We find by Proposition 7.2 that the total amount of
non-physical waves is less than h. Hence there exists a certain T h such that

T.V.Uh(∗, t) ≤ 3h for t ≥ T h. (8.1)

Then it follows that for every bounded interval I

lim
t→∞ ‖U(∗, t) − U∞‖L1(I) = 0. (8.2)

Employing the Glimm-Lax theory [8], we can say more about the asymptotic behaviour.
Since the approximate solutions are constructed globally in time, (6.4) is true for all
0 < t < ∞. This estimate shows that the above theory can be built up for our large
amplitude solutions in the framework of the wave-front tracking method (see Bressan
[4], chap. 10 and also Asakura [2]). We can also verify that our solutions fulfill all
requirements of Theorem 5.7 in Liu [9], which implies

Theorem 8.1. Assume that (γ − 1)T.V.U0 is sufficiently small; then

lim
t→∞T.V.U(∗, t) = 0.

Remark 8.2. If we assume further that there is a constant M > 0 such that the
initial value satisfies U0(x) = U∞ for |x| ≥ M , then the argument in Asakura [1] shows
that T.V.U(∗, t) approaches zero at the rate t−1/2 .

Acknowledgement. The author thanks Professor Naoki Tanaka for pointing out
gaps in the original manuscript.
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