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Magnetic adsorbates on superconductors induce local bound states within the superconducting gap.

These Yu-Shiba-Rusinov (YSR) states decay slowly away from the impurity compared to atomic orbitals,

even in 3D bulk crystals. Here, we use scanning tunneling spectroscopy to investigate their hybridization

between two nearby magnetic Mn adatoms on a superconducting Pb(001) surface. We observe that the

hybridization leads to the formation of symmetric and antisymmetric combinations of YSR states. We

investigate how the structure of the dimer wave functions and the energy splitting depend on the shape of

the underlying monomer orbitals and the orientation of the dimer with respect to the Pb lattice.

DOI: 10.1103/PhysRevLett.120.156803

Magnetic adatoms on superconductors induce a local
pair-breaking potential which binds Yu-Shiba-Rusinov
(YSR) states inside the superconducting energy gap
[1–3]. The symmetry of the potential derives from the
orbital symmetry of the spin-polarized states of the adsorb-
ate [4–6]. If the substrate imposes a sufficiently strong
crystal field, the degeneracy of the adatom d levels, and
consequently also of the YSR states, will be lifted [6,7]. It
was already predicted by Rusinov that the YSR wave
functions of two nearby adatoms hybridize and form
bonding and antibonding combinations when the magnetic
moments of the adatoms align ferromagnetically [3].
Subsequent theoretical studies explored the spatial structure
of the YSR patterns [8,9] and the phase diagram [10] for
YSR dimers. Many theoretical treatments assumed
classical adatom spins with fixed alignment. Additional
energy scales such as Hund couplings, crystal fields, and
magnetocrystalline anisotropies affect the interaction of
the magnetic adatoms [11,12]. In quantum spin systems,
Kondo screening also needs to be considered [12–14].
YSR states have considerable lateral extent away from

the magnetic adatom [15,16]. This leads to wave-function
hybridization and energy splitting of YSR states in dimers
of magnetic adatoms. Recent experimental studies
observed these splittings for manganese (Mn) atoms on
Pb(111), cobalt-phthalocyanine on NbSe2, and chromium
on β-Bi2Pd [17–19]. While the latter two systems exhibit
only a single YSR resonance, Mn adatoms on Pb(111)
show several crystal-field-split YSR states [6]. Starting
with Ref. [17], the earlier experiments already provided
some indications of bonding and antibonding YSR states,
but did not resolve how different YSR states are affected by
the coupling to a neighboring adatom and how the orbital
nature of the YSR states influences their hybridization.

Here, we present a scanning tunneling microscopy and

spectroscopy (STM/STS) study of dimers of Mn adatoms

on Pb(001). The Mn adatoms adsorb in hollow sites with a

square-pyramidal crystal field that governs the orbital wave

functions of the YSR states. We resolve symmetric and

antisymmetric combinations of the individual YSR wave

functions as well as a distinct distance and angle depend-

ence of the hybridization of the YSR states. Our exper-

imental study is complemented by a theoretical analysis of

YSR dimers that takes the orbital structure of the impurity

states into account.
We used a SPECS JT-STM under UHV conditions at a

base temperature of 1.2 K. The Pb(001) single crystal

(Tc ¼ 7.2 K) was cleaned by cycles of Neþ sputtering and

annealing. Mn adatoms were evaporated onto the cold

sample in the STM (T < 10 K). We only analyzed pairs of

adatoms that retain a distance ≥ 2.3 nm to other impurities.

Within our resolution, this ensures the absence of any

influence of other adatoms on the YSR states of the dimers.

Energy resolution beyond the Fermi-Dirac limit is achieved

by covering the W tips with a layer of Pb until the tip shows

bulklike superconductivity [20]. This allows us to reach an

effective energy resolution of ≈ 80 μeV. In first approxi-

mation, measurements with a superconducting tip probe a

convolution of tip and sample density of states, which shifts

all spectral features by the tip’s gap parameter �Δtip=e.

We begin by reviewing the YSR states of isolated Mn

adatoms on Pb(001) [Fig. 1(a)] [6]. Differential conduct-

ance spectra acquired with a superconducting tip show two

pairs of Bardeen-Cooper-Schrieffer (BCS) singularities

near a sample bias of �2.65 mV [20]. For a single Mn

adatom, we find three additional pairs of YSR resonances

inside the superconducting gap [Fig. 1(a)]. Assuming that
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the Mn adatom is in a d5 configuration, it conserves the
orbital angular momentum of electrons in the superconduc-

tor and binds them in the d channel [4,6]. The hollow

adsorption site imposes a square pyramidal crystal field,

which lifts the degeneracy of the d states. Simple consid-
erations of crystal field theory can be applied to deduce the

order of the energy levels. The dx2−y2 state lies highest in

energy, followed by the dz2 orbital at an intermediate and the

degenerate dxy, dxz, dyz states at the lowest energy. This

explains the characteristic shapes of the YSR states in the

dI=dV maps [Fig. 1(c)] [6]. Moreover, the observation of

distinct d-orbital-like bound-state patterns implies that
Hund’s energy is larger than the energy splitting of the

adatom d levels. The most intense resonance labeled by β

arises from the dz2 state. The faint resonance close to the

superconducting gap edge (labeled α) derives from the

dx2−y2 state, and the lowest lying resonance (labeled γ) is a

mixture of scattering at the degenerate dxy, dxz, and dyz
states. Tunneling into the dxy state is less favorable than into

the dxz, and dyz states, so that the dI=dVmaps are dominated

by the shapes of the dxz- and dyz-like orbitals [6].

Now consider a dimer of Mn adatoms oriented along the

½11̄0� direction [topography in Fig. 1(e)]. The Mn-Mn
distance of 1.38� 0.08 nm corresponds to a separation
of four lattice spacings (i.e., the distance between nearest-
neighbor adsorption sites along h110i). dI=dV spectra on
the adatoms of the dimer reveal that each single-atom YSR
resonance splits into two [Fig. 1(d)]. Moreover, dI=dV
maps at the energies of the YSR resonances again exhibit
characteristic shapes [Fig. 1(f)]. Many features of the maps
for individual atoms can be recognized. For instance, the

clover shapes of the dx2−y2 and of the dxz, dyz states are still

seen in the split α and γ states, respectively. The strong
intensity of the dz2-derived YSR resonance β is also found

on the dimer constituents.
However, a more detailed inspection reveals distinct

differences between the maps for monomers and dimers.
This is most clearly observed for the split γ resonance. The
resonance þγs exhibits two pairs of overlapping lobes in
between the adatoms which are increased in intensity
compared to the outer lobes. In contrast, þγa has outer
lobes of increased intensity, while the inner lobes have
reduced intensity and do not overlap. There is a nodal line
perpendicular to the dimer axis. Similar behavior is also
observed for α, where the overall intensity is shifted out-
wards for αa, but inwards for αs. Only minor variations are
observed for β, yet with a similar trend and a nodal line in the
case of βa. We interpret these modified intensity distribu-
tions as fingerprints of symmetric (s) and antisymmetric (a)
combinations of YSR wave functions, hence the indices
used above. For sketches of the d orbitals giving rise to the
hybridized YSR states, see Fig. S1 in the Supplemental
Material [21]. Interestingly, while the antisymmetric þγa
and þβa resonances have higher energy than þγs and þβs,
respectively, it is the symmetric state that is higher in energy
in the case ofþα. The relatively small energy splittings and
the preservation of the characteristic orbital shapes indicate
a small hybridization strength which does not lead to a
change in the order or a mixture of YSR states derived from
the individual adatoms.
These observations suggest that to a good approximation,

we can describe the coupled YSR states as linear combi-
nations of individual YSR wave functions. Moreover, a
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FIG. 1. (a) dI=dV spectrum at the center of the single Mn adatom shown in (b). Three subgap resonances (�α,�β,�γ) and the tip gap
(�Δ) are marked in the spectrum by dashed vertical lines (blue, orange, red, gray). For reference, a trace taken on the pristine substrate is
superimposed (solid gray line). Set point: 300 pA, 5 mV. (c) dI=dV maps of a monomer atþα,þβ, andþγ, covering the same area as in

(b). (d) dI=dV spectrum of the dimer shown in (e), which is oriented along the ½11̄0� direction and separated by 1.38� 0.08 nm. Each
subgap state is split into two resonances αs;a, βs;a, and γs;a (marked by arrows). Set point: 200 pA, 4 mV. Lock-in: 912 Hz, 15 μVrms.

(f) dI=dV maps taken at the positive-energy YSR resonances as marked in the figure. The scale for the resonances β in (c) and for βa;b in

(f) is cut to emphasize the laterally extended intensity around the high intensity at the impurity center.
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splitting of YSR states can only occur if their spin wave

functions are not orthogonal [22,23]. This implies that the

alignment of the adatom spins is not antiferromagnetic,
consistent with theoretical expectations [22]. The energy of

the molecular YSR states can be obtained by analogy to the

linear combination of atomic orbitals in a H2 molecule (for

details, see Supplemental Material [21]). This yields E� ¼
Es þ ðC�D=1þ SÞ for the energies of the YSR states.

Here, Es denotes the energy of the single impurity, Cij ¼R
drJðrþ dŷÞϕ†

i ðrÞϕjðrÞ a Coulomb-like integral, Dij ¼R
drJðrÞϕiðrÞ

†ϕjðrþ dŷÞ an exchangelike integral, and

Sij ¼
R
drϕiðrÞ

†ϕjðrþ dŷÞ an overlap integral with ϕi;j

being the YSRwave function deriving from one of the five d
orbitals. We notice that the Coulomb-like integral C pro-

vides a shift and the exchangelike integral D produces a

splitting.C falls off monotonically with distance dŷ (choos-

ing the dimer axis along the y direction) and has the same
sign as JðrÞ. It is thus positive or negative depending on

whether the coupling between the impurity and the itinerant

electrons is antiferromagnetic or ferromagnetic. The sign

of the exchangelike integral D alternates as a function of
separation d because the YSR wave function ϕðrÞ oscillates
with the Fermi wavelength λF. Hence, unlike the case of

atomic orbitals in H2, the order in energy does not reflect

whether thewave function is symmetric or antisymmetric. In
view of our experimental results, this explains whyþγa and

þβa have a larger energy than þγs and þβs, respectively,

whereas the order of symmetric and antisymmetric YSR
wave functions is reversed in the case of α withþαs having

larger energy than þαa. One should therefore avoid calling

these states bonding or antibonding.

To further validate these interpretations, we also inves-
tigatedMn dimers oriented along the h100i directions of the
Pb lattice. Figure 2 shows experimental results for such a
dimer with a separation of 1.47� 0.08 nm or three lattice
spacings along h100i. The dI=dV spectrum in Fig. 2(d)
shows no splitting for the α and β resonances, and the
corresponding dI=dV maps in Fig. 2(c) resemble simple
superpositions of the single-adatom maps. (Note also that
the third adatom in the vicinity exhibits the spectrum of an
isolated Mn adatom.) The γ resonance shows a sizable
splitting into two and hints of an additional resonance. The
latter remains at the original position of the γ resonance
of the monomer. The absence of a shift or splitting suggests
that its hybridization is negligible. The smallest overlap is
expected for the dxz-like YSR states. The dI=dV map of the
unshifted resonance shows faint intensity consistentwith the
shape of the dxz-like YSR state [Fig. 2(c) bottom, middle].
The split-off γ resonances would then originate from linear
combinations of the dyz- and dxy-like YSR states which have

hybridizations of (nearly) equal strength. A symmetric
combination of the dyz-like monomer states is reflected in

the strong intensity along the bonding direction at the
resonance energy deeper inside the superconducting gap
(γs). The dI=dV map of the resonance closer to the gap edge
(γa) shows no intensity along the bonding direction. It thus
indicates the antisymmetric combination ofmonomer states.
The dI=dV maps at both γs and γa exhibit intensity
perpendicular to the bonding direction. This would then
originate from the dxy-like YSR states, possibly distorted by

the Pb atom lying on the dimer axis. This interpretation is in
agreement with theoretical symmetry considerations (see
discussion and Fig. S2 in the Supplemental Material [21]).
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FIG. 2. (a) dI=dV spectrum at the center of the single Mn. Three subgap resonances (�α,�β,�γ) and the tip gap (�Δ) are marked in
the spectrum by dashed vertical lines (blue, orange, red, gray). For reference, a trace taken on the pristine substrate is superimposed
(solid gray line). Set point: 300 pA, 5 mV. Lock-in: 912 Hz, 15 μVrms. (b) Topography and (c) dI=dV maps of three Mn adatoms, two of
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point: 200 pA, 4 mV.
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Figures 3 and 4 collect experimental results for the
separation dependence of the resonance splittings. Figure 3
focuses on dimers oriented along h110i. Panel (a) shows
four spectra for separations of three to six lattice spacings.
Panels (b)–(d) collect the YSR resonance energies for
additional dimers. For adatom separations of d ¼
2.77 nm (eight lattice spacings), none of the YSR reso-
nances is split within our energy resolution of ≈ 80 μeV.
The splitting of the dx2−y2-derived YSR resonance α is

resolved for one (out of four) of the observed dimers with a
separation of 1.38 nm (four lattice spacings). For smaller

adatom distances, we resolve the splitting in all dimers,
with splittings of ≈ 0.2 meV for d ¼ 1.04 nm (three lattice
spacings). The splitting of the dz2-derived YSR resonance

sets in at the same separation and is of approximately the
same magnitude. In comparison, the dxy, dxz, dyz-derived

YSR resonance γ already splits at larger distances
(d < 2.08 nm), with splittings up to ≈ 0.3 meV for the
smallest dimers.
The splittings of the YSR resonances in dimers oriented

along h100i show similar behavior. Figure 4 shows four
representative spectra as well as the extracted energy
positions of the YSR resonances. The splitting of the
dx2−y2- and the dz2-derived YSR resonance is only observ-

able for d ≤ 0.98 nm (two lattice spacings) with a splitting
of ≈ 0.1 and ≈ 0.2meV, respectively, at d ¼ 0.49 nm (one
lattice spacing). The extracted dx2−y2-derived resonances

hint at an overall downward shift with decreasing distance.
As already described above, we observe a splitting of the γ
resonance into three components for many (though not all)
dimers with the central resonance remaining at the energy
of the monomer (see the discussion of the faint resonances
at �γ seen in Fig. 2).
In addition to the decay with adatom separation, theory

predicts an oscillatory behavior of the energy splitting with
a period of half the Fermi wavelength λF (see discussion
above and Supplemental Material [21]). For Pb, λF=2 of the
outer Fermi sheet, which gives rise to the YSR states [6],
equals 0.61� 0.03 nm along the h110i direction and
0.53� 0.06 nm along the h100i direction [24]. The range
over which we resolve the energy splitting is only slightly
larger than λF=2 and contains only three distinct separa-
tions due to the discreteness of the adsorption sites. This
precludes testing the oscillatory behavior of the YSR
splitting in our experiments. Moreover, we may only
extract a hint of a distance-dependent shift of the center
of mass of the YSR resonances for the γ resonances of the
h110i dimers. Depending on the particular resonance,
theory predicts a shift of at most one quarter of the energy
splitting (see Supplemental Material [21]), which is at the
limit of our energy resolution.
In conclusion, we resolved and analyzed the hybridi-

zation of YSR states originating from Mn adatoms which
are located three to six lattice spacings apart on Pb(001)
and observe characteristic energy splittings of up to a few
hundred μeV. At these relatively large distances, direct
exchange coupling or simple superexchange via a single
substrate atom can be neglected. Instead, we show by
mapping the spatial distribution of the dimer YSR states
that the coupling hybridizes monomer YSR states into
symmetric and antisymmetric linear combinations. The
observed hybridization precludes antiferromagnetic
alignment of the adatom magnetic moments. We have
also recorded dI=dV spectra with a spin-polarized tip,
but did not observe any spin contrast with oppositely
magnetized tips or varying contrast in different dimers.
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This suggests that the spin orientation fluctuates due to
thermal excitations.
The hybridization strength is comparable to the RKKY

coupling on normal metal surfaces [25]. When coupling
adatoms in an entire chain, one expects the formation of
YSR bands. These may give rise to topological super-
conductivity and an alternative route towards the realization
of Majorana bound states [26–28]. To date, adatom-based
Majorana experiments rely on compact ferromagnetic
chains, in which the direct coupling of adatom d states
is presumably essential for the formation of a topological
superconducting phase [29–34].
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