
 Open access  Journal Article  DOI:10.1103/PHYSREVB.85.165303

Wave-function Monte Carlo method for polariton condensates — Source link 

Michiel Wouters

Institutions: University of Antwerp

Published on: 06 Apr 2012 - Physical Review B (American Physical Society (APS))

Topics: Polariton, Master equation, Wave function and Monte Carlo method

Related papers:

 Truncated Wigner Approximation for Nonequilibrium Polariton Quantum Fluids

 Quantum stochastic theory of phonon scattering between polaritons

 Polariton-polariton scattering in microcavities: A microscopic theory

 Quantum Theory of Exciton-Polaritons with Spatial Dispersion

 Quantum theory of polaritons with spatial dispersion: Exact solutions

Share this paper:    

View more about this paper here: https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-
4wf26usmno

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVB.85.165303
https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-4wf26usmno
https://typeset.io/authors/michiel-wouters-1u24qbj89y
https://typeset.io/institutions/university-of-antwerp-2gqodjhv
https://typeset.io/journals/physical-review-b-282iy1ig
https://typeset.io/topics/polariton-2711jjc1
https://typeset.io/topics/master-equation-3c366ftv
https://typeset.io/topics/wave-function-19mywn8x
https://typeset.io/topics/monte-carlo-method-15rzfqou
https://typeset.io/papers/truncated-wigner-approximation-for-nonequilibrium-polariton-31rvusyqw6
https://typeset.io/papers/quantum-stochastic-theory-of-phonon-scattering-between-59y2rin4ca
https://typeset.io/papers/polariton-polariton-scattering-in-microcavities-a-v8u1ngrfx6
https://typeset.io/papers/quantum-theory-of-exciton-polaritons-with-spatial-dispersion-11tn42c78w
https://typeset.io/papers/quantum-theory-of-polaritons-with-spatial-dispersion-exact-486we0wyku
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-4wf26usmno
https://twitter.com/intent/tweet?text=Wave-function%20Monte%20Carlo%20method%20for%20polariton%20condensates&url=https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-4wf26usmno
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-4wf26usmno
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-4wf26usmno
https://typeset.io/papers/wave-function-monte-carlo-method-for-polariton-condensates-4wf26usmno


PHYSICAL REVIEW B 85, 165303 (2012)

Wave-function Monte Carlo method for polariton condensates
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We present a quantum jump approach to describe coupled quantum and classical systems in the context of

Bose-Einstein condensation in the solid state. In our formalism, the excitonic gain medium is described by

classical rate equations, while the polariton modes are described fully quantum-mechanically. We show the

equivalence of our method with a master equation approach. As an application, we compute the linewidth of a

single-mode polariton condensate. The line broadening due both to the interactions between polaritons and to

the interactions with the reservoir excitons is taken into account.

DOI: 10.1103/PhysRevB.85.165303 PACS number(s): 03.75.Kk, 71.36.+c, 67.90.+z

I. INTRODUCTION

The achievement of strong light-matter coupling in semi-

conductor micro-1 and nanocavities2,3 has led to the manifes-

tation of several novel quantum effects in the solid state. A

prominent example is Bose-Einstein condensation of exciton-

polaritons.4 A second important topic is the dynamics of

nanocavities in the strong-coupling regime with a quantum

dot, where lasing was recently observed.5 These phenomena

are characterized by a large degree of complexity, due to the

coupling of quantum dynamics with the nontrivial dynamics

of the injected incoherent particles. The physics that these

solid-state systems have in common is that there are some

degrees of freedom for which the quantum-mechanical nature

is important, while other degrees of freedom are essentially

classical. This is illustrated in Fig. 1. Due to their cou-

pling, it is not straightforward to construct a model for the

combined dynamics of the classical and quantum parts. The

typical approach is an adiabatic elimination of the classical

reservoir, assuming that it adapts instantaneously to the state

of the quantum part.6 For polariton condensation, this type

of approach was developed by Laussy et al.7 In Keldysh

Green function treatments also, the bath degrees of freedom

are usually integrated out,8 which again limits the types of

interaction between bath and system that can be taken into

account.

In this article, we want to construct a theory that goes

beyond such approximations and does not make any other

approximations apart from a classical treatment of the reservoir

and the assumption that the coupling between the reservoir and

quantum system is weak. We will show that a master equation

approach leads in general to an infinite hierarchy of equations

that does not allow for an easy truncation. We subsequently

show that a quantum jump model can be constructed that

is equivalent to the infinite set of coupled master equations.

We explicitly show that the Schawlow-Townes linewidth and

Henry linewidth enhancement factor9,10 and line broadening

due to polariton-polariton interactions11 are reproduced with

our model.

II. MASTER EQUATION

We will derive our equations for the quantum evolution

of the coupled polariton-reservoir system, assuming the

interaction between the two to be of the form

HI =
∑

k

gkqp
†
qbka

† + H.c. (1)

This Hamiltonian describes the relaxation process illustrated

in Fig. 1: a reservoir particle bk relaxes to the quantum-system

mode a, depositing its excess energy in the “phonon” mode pq ,

which we assume for simplicity to be at zero temperature. In

the usual Born-Markov approximation, the following master

equation can be derived for the reduced density matrix:

∂

∂t
TrR(ρ) =

∑

k

rk

2
TrR(a†bkρb

†
ka − b

†
kbkaa†ρ + H.c.), (2)

under the assumption that coherence in the reservoir is

negligible, so that, e.g., TrR[b2(a†)2ρ] = 0. The rate rk is the

Fermi golden rule transition rate from the state bk into states

a and pq .

Unless the reservoir density is assumed to be unaffected

by the polariton dynamics, Eq. (2) is not a closed equation

of motion for the polariton density matrix ρS = TrR(ρ),

but it is coupled to the reservoir weighted density matrices

ρk = TrR(b
†
kbkρ) as

∂

∂t
TrR(ρ) =

∑

k

rk

2
TrR(a†ρka − aa†ρk + H.c.). (3)

The dynamics of ρk is under the same assumptions that lead

to Eq. (2) described by

∂

∂t
ρk = −

∑

j

rj

2
(aa†ρj,k + ρj,kaa†), + Pk, (4)

where we have introduced ρk,j = TrR(b
†
kbkb

†
jbjρ).

For the pumping term P in Eq. (4), we take a standard gain

mechanism that does not include gain saturation (the physical

pump is assumed to be, for example, an external laser that

excites the reservoir), leading to

Pk = TrR

[

b
†
kbk

P

2
(b

†
kρbk + bkb

†
kρ + H.c.)

]

(5)

≈ P TrR (ρ) . (6)

For the last step, we have assumed that the occupation of each

mode is on average much lower than 1, so that we can neglect

Tr(b
†
kbkρ) with respect to Tr(ρ).
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FIG. 1. (Color online) Sketch of the problem under study: The

incoherent reservoir particles relax at a rate rk to the quantum system

by giving the excess energy to the environment modes p.

III. QUANTUM JUMP MODEL

It is clear that the dynamics of ρk,j will involve the

expectation values of densities in three reservoir modes and

so on. Physically, Eq. (2) expresses that gain is proportional

to the density matrix weighted with the reservoir densities.

For weak gain saturation, i.e., when the number of reservoir

particles weakly depends on the polariton number, the gain

saturation can be treated perturbatively.6 It is the aim of this

article to go beyond such a perturbative treatment and propose

a wave-function Monte Carlo method (see, e.g., Ref. 12) that

is equivalent to the hierarchy of Eqs. (2), (4), etc.

Because the reservoir is assumed to be classical, its state

can be described by the occupations alone r = {n1,n2, . . .}.
The polariton part is treated fully quantum-mechanically by

a wave function |�〉. The state S of the system and reservoir

is then S = [r,|�〉]. A stochastic dynamics for S leads to a

probability distribution P (S), which has an associated density

matrix

ρ =
∫

d�
∑

n1,n2,...

P ({ni},|�〉)|�〉〈�|, (7)

where the integration runs over all possible values of the wave

function. The reservoir weighted density matrices are defined

analogously as

ρk =
∫

d�
∑

n1,n2,...

P ({ni},|�〉) nk|�〉〈�|. (8)

For the deterministic part of the dynamics, we propose

the nonlinear dynamics that is standard in wave function

Monte Carlo: the reservoir densities are invariant under the

deterministic part of the evolution dni/dt = 0, where the wave

function evolves according to

i
∂

∂t
|�〉 =

−i

2

∑

k

rknkaa†|�〉 +
i

2
R({ni})‖a†|�〉‖2|�〉, (9)

where R({ni}) =
∑

k rknk is the total spontaneous rate for the

creation of polaritons out of the reservoir. The second term

in Eq. (9) compensates for the norm-reducing dynamics due

to the first term. After an evolution over time δt , the wave

function is transformed to

|�(t + δt)〉 =
1

√
1 − δp

[

|�(t)〉 −
R({ni})δt

2
aa†|�〉

]

, (10)

where

δp = δt R(ni)‖a†|�〉‖2 (11)

is the probability that a polariton is created out of the reservoir

during the time δt .

The jump part of the dynamics due to the creation of a

polariton from a reservoir particle in mode k is given by

nk → nk − 1, (12)

|�〉 →
a†|�〉

‖a†|�〉‖2
. (13)

Such a jump occurs in an interval dt with probabilities

δpk = δt rknk‖a†|�〉‖2 that sum as
∑

k δpk = δp.

Under the dynamics (10), (12), and (13), the expectation

value of the density matrix |�〉〈�| evolves as

E[|�(t + δt)〉〈�(t + δt)|]

= E

[

|�(t)〉〈�(t)| −
1

2
(1 − δp)R(ni)δt

aa†|�〉
√

1 − δp

〈�|
√

1 − δp

−
1

2
(1 − δp)R(ni)δt

|�〉
√

1 − δp

〈�|aa†

√
1 − δp

+ δp
a†|�〉

√
δp/δt

〈�|a
√

δp/δt

]

. (14)

With the definitions (8) and (11), Eq. (14) implies that

the expectation value E[|�(t + δt)〉〈�(t + δt)|] obeys the

equation of motion (2). In the same way, one can verify that

the evolution stochastic evolution for |�〉 leads to the equation

of motion (3) with the definition

ρj,k =
∫

d�
∑

r1,r2,...

P ({ni},|�〉) njnk|�〉〈�|. (15)

The correspondence between the master equation descrip-

tion and the quantum jump appoach is entirely clear from a

physical point of view. The classical reservoir continuously

monitors the polariton mode, which leads to the quantum

jumps. The present approach is a generalization of the usual

quantum jump models in the sense that we take into account

the back action of the system on the reservoir, which in turn

affects the system dynamics.

The pumping of the reservoir can be taken into account

by an additional jump process acting on the reservoir state

alone nk → nk + 1 with a probability in the interval δt equal

to δp = δtP . This jump process leads to a term in the evolution

of the density matrix ρk of the form

∂

∂t
ρk = P

∫

d�
∑

k

rk|�〉〈�|, (16)

which reproduces Eq. (6). In addition, all internal dynamics in

the reservoir, due, for example, to collisions between particles

in the reservoir, can be simply modeled by applying the

modification on the reservoir-mode occupations and keeping

the polariton state the same.

The dynamics (9)–(13) naturally leads to polariton states

that are in a number state, because the reservoir monitors

the polariton number by the stimulated relaxation. This

implies that a semiclassical stochastic model for a quantum

dot embedded in a nanocavity, such as, e.g., described in

Ref. 13 does not make any approximations apart from the ones

involved in the derivation of the quantum Markov dynamics
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(2). Moreover, this picture is consistent with the discussion

of the coherence properties of laser light by Mølmer,14 who

advocates the point of view that the photon state inside a laser

cavity is a number state, rather than a coherent state.

IV. TEMPORAL COHERENCE

For the computation of the temporal coherences, the

stochastic wave-function dynamics can be computed on a dou-

bled Hilbert space12 for the polariton state. More specifically,

the first-order coherence g(1)(t + τ,t) = 〈a†(t + τ )a(t)〉 can

be computed by propagating the state SE = [r,θ ], where the

normalized state vector θ (t) is proportional to [�(t) a�(t)]T ,

over a time τ according to the prescription detailed in Ref. 12,

which is to apply the evolutions (9) and (13) on the two

components of the wave function with a proper normalization

of the total wave vector. The temporal coherence is then given

by the expectation value

g(1)(t + τ,t) = E[‖〈�(t)|a|�(t)〉‖2〈θ2(t + sτ )|a†|θ1(t + τ )〉],
(17)

where θ1 and θ2 refer to the first and second parts of the doubled

Hilbert space, respectively.

To understand the coherence properties of the polariton

field, it is instructive to compute the temporal coherence of a

state that is initially in a number state with a large number

of polaritons N that decay at a rate γ . The deterministic

evolution of the state θ = (u|N〉,v|N − 1〉)T gives a change

of the components on the doubled Hilbert space:

∂

∂t

(

u|N〉
v|N − 1〉

)

=

(

u(t)

u2+eγ tv2 |N〉
veγ t

u2+eγ tv2 |N − 1〉

)

. (18)

The coherence is proportional to uv = u
√

1 − u2. When a

polariton is lost due to a quantum jump after a time τ ,

the change in u under a deterministic evolution followed by

quantum jump is

u →
√

nu
√

nu2 + (N − 1)(1 − u2) exp[rτ ]
. (19)

Under this evolution, u tends to zero for long times. The

temporal coherence time is thus equal to the decay time of u

for u tending to zero. For small u, the waiting-time distribution

of τ is given by

P (τ ) = (N − 1)γ exp[−γ (N − 1)τ ]. (20)

Averaging the evolution of u over this waiting time in the

limit for small u and to leading order in 1/N leads to u →
[1 − 1/(8N2)]u. The average number of jumps per unit time

is γN , so that on average

du

dt
= −

γ

8N
u. (21)

The same calculation can be repeated including the gain due

to the reservoir r . The change in u for a single quantum jump,

either loss or gain, is still given by Eq. (19) in the large-N limit.

The number of jumps, however, doubles (on average the gain

r should compensate for the losses γ ), so that we obtain the

time

g
a

in

cavity line with

t
g

FIG. 2. (Color online) Gain as a function of time in the case of a

strong back action of the cavity dynamics on the reservoir population.

Schawlow-Townes expression for the decay of the coherence:

γc = −
γ

4N
. (22)

The equal contribution of losses and gain to the laser linewidth

was noted by Scully and Lamb.15

Equation (22) is entirely general and does not make

any assumptions on the nature of the gain medium. In the

present formulation, the robustness of the Schawlow-Townes

linewidth comes from the fact that the decoherence per

quantum jump does not depend on γ or r . It is therefore

insensitive to the fluctuations in the gain and the strength of

gain saturation.

The physics becomes more complicated when interactions

between the reservoir and polaritons are taken into account.

This effect is also important in semiconductor lasers where the

carrier concentration affects the refractive index and thus shifts

the polariton energy. Fluctuations in the reservoir occupancy

then affect the laser linewidth, leading to the well-known

Henry linewidth enhancement factor.9 We will now proceed

to discuss the enhancement of the linewidth due to such

interactions. They result in an additional phase shift of u under

the deterministic evolution, which is taken to be of the form

	φ = gR	t .

A situation in which the linewidth enhancement can be

easily computed is the one illustrated in Fig. 2. Here, the

gain due to a single particle in the reservoir is assumed to

be much larger than the cavity linewidth. As a consequence,

the reservoir occupation has a very small probability to be

occupied by more than one particle. The evolution of u under

a single gain peak is given by

u →
√

ne−igRτu
√

nu2 + (N − 1)(1 − u2) exp[γ τ ]
. (23)

Averaging again over the waiting-time distribution for τ , and

adding the decoherence due to the losses, we obtain in the

large-N limit

d

dt
u = −γ

[

i
gR

r
+

1 + 4(gR/r)2

4N

]

u, (24)

which gives a polariton linewidth

γc =
1 + 4(gR/r)2

4N
γ. (25)
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The 1/N scaling with the number of polaritons is of the

Shawlow-Townes form (22), and the increase of the linewidth

is the Henry linewidth enhancement.9 The standard deviation

of this factor is in a semiclassical approximation, which

assumes small fluctuations in the gain medium density10

and is limited to large polariton occupation numbers. It thus

turns out that the Henry linewidth enhancement is also a

robust phenomenon that is insensitive to the details of the

system-reservoir coupling.

In our formalism, this semiclassical approximation cor-

responds to approximating the quantum jump model by a

diffusion model.16 The Langevin equations for the photon and

reservoir occupations NR are taken to be

dN = [rNR(N + 1) − γN ]dt +
√

rNR(N + 1)dWG

+
√

γNdWL, (26)

dNR = −rNR(N + 1)dt −
√

rNR(N + 1)dWG. (27)

Here dWG,L are independent Gaussian noise terms with

variance 〈dWG,LdWG,L = dt〉. The stochastic terms represent

the shot noise fluctuations of the photon gain and losses.

In the large-photon limit, the Langevin equation (27) can

be solved approximately by linearizing around the mean-field

solution (N (0),N
(0)
R ): N = N (0) + δN and NR = N

(0)
R + δNR ,

yielding

d

dt

(

δN

δNR

)

=
(

0 rN0

−γ −rN0

) (

δN

δNR

)

+
(

1

−1

)

√

rNR,0N0dWG+
(

1

0

)

√

γN0dWL.

(28)

The interaction with the reservoir induces a phase shift

between the two components in Eq. (18), which is equal to

φ(t) = gR

∫ t

0

δNR(t ′)dt ′. (29)

This phase shift causes a decoherence that is to be added to

the Shawlow-Townes decoherence mechanism, which leads to

a decrease of the absolute value of the first component of the

vector Eq. (18).

Using the expression for Gaussian variables 〈ei[φ(t)−φ(0)]〉 =
e−〈[φ(t)−φ(0)]2〉/2, we can write the first-order coherence as

g
(1)
res-pol(t) = exp [−X(t)] , (30)

where

X(t) =
g2

R

2

〈

[∫ t

0

δNR(t ′)dt ′
]2

〉

. (31)

Here, the coupling constant gR quantifies the strength of

interactions between reservoir excitons and polaritons. The

subscript “res-pol” in Eq. (30) indicates that we consider

only the effect of the reservoir-polariton interactions on the

polariton linewidth. Other contributions to the decoherence,

such as the Shawlow-Townes mechanims and the effect of

polariton-polariton interactions (see below), have to be added

to this decoherence.

The expectation value in the above expression can be

rewritten as17

〈 [∫ t

0

δNR(t ′)dt ′
]2 〉

= 2

∫ t

0

dt ′(t − t ′)�R(t ′), (32)

where we have used the fact that the reservoir correlation

function

�R(t1 − t2) = 〈δNR(t1)δNR(t2)〉 (33)

depends only on the time difference.

Equation (32) is a relation that is used in the standard Kubo

theory for the linewidth of an emitter with time-dependent

frequency.17,18 Two limiting cases of this expression are of

particular interest. For times that are short compared to the

correlation time of the reservoir fluctuations τR , the coherence

decreases as a Gaussian,

X(t) ∼ �R(0)t2, (34)

where for times much larger than the reservoir fluctuation time

X(t) ∼ �R(0)τRt ≪ �R(0)t2. (35)

The above inequality is physically described as motional

narrowing: for times much longer than the fluctuation time

of the reservoir, the decoherence effect on the system is

suppressed.

The reservoir correlation function can be easily computed

in the Fourrier domain, using the relation

�R(t) =
∫

dω

2π
e−iωt 〈|δNR(ω)|2〉. (36)

From the Fourier transform of Eq. (28), one obtains

〈|δNR(ω)|2〉 = γN0

(

ω2 + 2/γ 2

(

ω2 + Ŵ2
1

)(

ω2 + Ŵ2
2

)

)

, (37)

where the linear damping rates are given by

Ŵ1,2 = 1
2
(rN0 ∓

√

(rN0)2 − 4γ rN0.). (38)

Using Eqs. (30), (36), and (37), the motional-narrowing-

dominated long-time behavior of the decoherence induced by

the interactions between reservoir particles and the system

polaritons is given by

g
(1)
res-pol(t) ∼ exp

[

−
(

gR

r

)2
γ

N0

T

]

for t ≫ 1/Ŵ1, (39)

which is, despite the very different approximations, identical

to the interaction contribution in Eq. (24).

The Shawlow-Townes contribution to the coherence decay

(22) is to be added to this expression. Mathematically, it comes

from the decrease in magnitude of u(t) in Eq. (18), where the

decay (39) is due to the scrambling of its phase.

The Gaussian short-time behavior is governed by

g
(1)
res-pol(t) =exp

(

−
g2

R

r2

γ (2γ + rN0)

4N0

T 2

)

for T ≪ 1/Ŵ1,2,

(40)

The Gaussian early-time decay was not obtained in the case of

large gain saturation, described by Eq. (24). This is consistent
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with the fact that the reservoir correlation time vanishes in this

approximation.

Entirely analogously, the line broadening due to the

interactions between the polaritons can be computed. Within

the linearized model (28), the polariton fluctuations are

〈|δN (ω)|2〉 =
2ω2 + (rN0)2

(

ω2 + Ŵ2
1

)(

ω2 + Ŵ2
2

) . (41)

The contribution to the long-time decoherence is

g
(1)
pol-pol(t) = exp

(

−g2
p

N0

2γ
T

)

for T ≫ 1/Ŵ1, (42)

where gp is the interaction strength between polaritons. The

dependence on particle number N0 and linewidth γ is the same

as that obtained by Whittaker and Eastham.11 Note that it scales

very differently than the linewidth induced by the interactions

with the reservoir, (39). In particular, the line broadening

due to the polariton-reservoir interactions decreases with

increasing polariton number, where the broadening due to

the polariton-polariton interactions increases with increasing

polariton number.

For short times, the coherence decays as

g
(1)
pol-pol(t) = exp

(

−g2
p

(2γ + rN0)

4r
T 2

)

for T ≪ 1/Ŵ1,2.

(43)

Compared to the result for reservoir-polariton interactions

(40), a large polariton population is less favorable for good

temporal coherence.

It is also interesting to notice the different dependence of the

coherence on the gain saturation parameter r . The coherence

times due to the reservoir-polariton interactions in Eqs. (39)

and (40) scale as ∼r2. The coherence time in Eq. (43) scales

more weakly, as ∼r , and at long times, the coherence decay

(42) even becomes independent of the gain saturation.

V. CONCLUSIONS

We have constructed a quantum jump model that is able to

describe the dynamics of a coupled quantum-classical system,

where the quantum system enjoys gain from the classical one.

Our model makes it possible to describe arbitrarily complex

dynamics in the reservoir and energy-dependent gain. As a first

application of the theory, we have investigated the linewidth

of a single-mode polariton condensate. The Shawlow-Townes

linewidth and line broadening due to polariton-reservoir inter-

actions and polariton-polariton interactions can be described

with this formalism. We have shown that the these two

mechanisms for line broadening exhibit a different dependence

on the number of polaritons and on the reservoir gain

saturation.

Our approach can be staightforwardly combined with a

full Boltzmann dynamics of the reservoir, so as to give

an ab initio quantum description of polariton condensation

in semiconductor micro- and nanocavities. Moreover, the

formalism can be applied to spatially extended systems as well,

which requires the energy dependence of the gain process to

be taken into account.19
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6Y. Yamamoto and Ataç İmamoğlu, Mesoscopic Quantum Optics

(Wiley-Interscience, New York, 1999).
7F. P. Laussy, G. Malpuech, A. Kavokin, and P. Bigenwald, Phys.

Rev. Lett. 93, 016402 (2004).
8M. H. Szymanska, J. Keeling, and P. B. Littlewood, Phys. Rev. Lett.

96, 230602 (2006).
9C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).

10H. Haug and S. W. Koch, Quantum Theory of the Optical

and Electronic Properties of Semiconductors (World Scientific,

Singapore, 2004).
11D. M. Whittaker and P. R. Eastham, Europhys. Lett. 87, 27002

(2009).
12H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, New York, 2002).
13M. Winger et al., Phys. Rev. Lett. 103, 207403 (2009).
14K. Mølmer, Phys. Rev. A 55, 3195 (1997).
15M. O. Scully and W. E. Lamb Jr., Phys. Rev. 159, 208 (1967).
16C. W. Gardiner, Handbook of Stochastic Processes (Springer,

Heidelberg, 1997).
17P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269

(1953).
18R. Kubo, J. Phys. Soc. Jpn. 9, 935 (1954).
19M. Wouters and V. Savona, Phys. Rev. B 79, 165302 (2009).

165303-5

http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1103/PhysRevLett.103.027401
http://dx.doi.org/10.1103/PhysRevLett.103.027401
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nphys1518
http://dx.doi.org/10.1038/nphys1518
http://dx.doi.org/10.1103/PhysRevLett.93.016402
http://dx.doi.org/10.1103/PhysRevLett.93.016402
http://dx.doi.org/10.1103/PhysRevLett.96.230602
http://dx.doi.org/10.1103/PhysRevLett.96.230602
http://dx.doi.org/10.1109/JQE.1982.1071522
http://dx.doi.org/10.1209/0295-5075/87/27002
http://dx.doi.org/10.1209/0295-5075/87/27002
http://dx.doi.org/10.1103/PhysRevLett.103.207403
http://dx.doi.org/10.1103/PhysRevA.55.3195
http://dx.doi.org/10.1103/PhysRev.159.208
http://dx.doi.org/10.1103/RevModPhys.25.269
http://dx.doi.org/10.1103/RevModPhys.25.269
http://dx.doi.org/10.1143/JPSJ.9.935
http://dx.doi.org/10.1103/PhysRevB.79.165302



