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Theme:

Boundary terms for the string world-sheet
action in AdS.
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Boundary terms and
wave functions



AdS./CFT, correspondence:

N =4 SU(N,) — superstring on
super Yang-Mills AdSs x S°

4d gauge theory 10d string theory



Relation between two theories

N =4 SU(N.) superstring on
super Yang-Mills AdSs x S”
.
A=gymNe - . T =\
‘t Hooft coupling constant string tension
'Y, —
N, = - Us
C N.
color string loop effect

o Strong coupling limit —# Classical string

o Large N limit —3 No string loop



A well-known example

2-BPS circular Wilson loop Minimal surface in AdS

1 ~ |
th,P exp (% (,A”rll ED Oz’?]l)(13>
(2% = 3°) A> 1, N = oo

on S'c sS4




Calculation in the gauge theory

1 .
s S . . /.[ : . 2
W .= NtrP exp (2A,z" + ¢;y°)ds
Sum of Localization
ladder diagrams of the path integral
[Erickson, Semenoff, Zarembo] [Pestun]

Exact result

<W> ~ 6\/)_‘ (A>1, N = o0)



Calculation in the string theory
(/\ >1, N — X)

—
: Roughly speaking,
<W> N e—ﬁA
A : Minimal area of a string
o attached to the loop

However, the area is divergent since the world-sheet
reaches the boundary, where the metric diverges.

A — o0



o0 obtain the correct answer, we need to

1) Regularize the divergence
by introducing a cut-off.

SR
|
O M

Aoy = i 1 4+ O(e)

€

R : radius of the Wilson loop



To obtain the correct answer, we need to
i) Add a boundary term.

[Drukker, Gross, Ooguri]

N W
|l
O M

1 g R
Abdy:%%dgxy:—?

A <IV> -~ @_\/X(AregﬂLAhdy) _ e'ﬁ



Remark:

This boundary term has a definite physical meaning.
| -
Ab(lv — % do }/7 y

o Dirichlet — Neumann.

o Necessary to realize supersymmetry
(1/2-BPS).



Lesson:

Boundary terms of a classical string
are important in AdS/CFT



Correlation functions

» Boundary terms are important also for holographic
calculations of non-BPS correlation functions.

A>1. N — o

(O1(21)O2(w2))
O, : non-BPS operator

with large charge

Area — o0



Necessary not only to cancel the divergence but also
to reproduce the correct space-time dependence.

Z = €
z=10
Without ~
boundary terms A
—V XA, &
A 6 ve8 2

1 — 9

Prediction from 1 A ‘A
the gauge theory: (-771 _ Tz) A ?é A




Previous approach

[Tsuiji], [Janik-Surowka-Wereszczynski] (cf. [Asano-Sekino-Yoneya])

Decompose the motion of the string into the
“center of mass™ motion and the “spinning” motion.




Previous approach

[Tsuiji], [Janik-Surowka-Wereszczynski] (cf. [Asano-Sekino-Yoneyal))

Perform the Legendre transformation only for the
“spinning” degrees of freedom Xepin

. _ ‘¢ 7
Sstring — Sstring _ / drdo HS[)ill()TAS])ill

(Ilspin : conjugate momenta for Xgpin)

. X

X1 — 9

“Dirichlet — Neumann” for the spinning motion



Problems in the previous approach

» Separation into the “center of mass” and the

“spinning” is ambiguous.
(The center of mass motion of a string in AdS is inherently coupled
to the spinning motion)

A Ambiguity in the final answer.
o It can be applied only to two point functions.

For multi-point function,

. . there is no globally well-defined
/ drdo HSP”'()TXSP”’ “time” on the world-sheet.

Which 7 77




Our work:

Determine the boundary terms
from first principles.

» No ambiguity.
o Applicable to multi-point functions.
o Based on integrabillity.



Our work:

Determine the boundary terms
from first principles.

» No ambiguity.
o Applicable to multi-point functions.
o Based on integrability.



What is the origin of the boundary terms?

3 \ertex operators.



o Correlation functions in the gauge theory are
(believed to be) dual to the path integral on the
worldsheet with insertions of appropriate vertex
operators.

<Ol (‘T'l) 02(37‘2) 013(5173)>ga11ge theory
/ H d"z; (Vi [X¥(21)] Vo [X¥(22)] V3 [ X*(23)] ) worldsheet

Mobius

O(2") ~—— VI[X"(2); 2"

gauge string

GKP-Witten for stringy modes



o The state-operator correspondence maps the
vertex operators to the wave functions.

o In the classical limit, the wave functions provide
the boundary terms for the worldsheet action.

Uyl l;kdy(a):

X" : saddle-point classical solution




Therefore,

we need to know wave functions to determine
correct boundary terms.



Wave functions from
integrability



o In the classical limit,

U[X] ~e ="
W : a solution to the Hamilton-Jacobi eq.
Difficult to solve...

oIn terms of action-angle variables, the Hamilton-
Jacobi eq. can be easily solved.

\IJ [9 ei Z I J y { 0 I Jr : action-variable
7] =

0; : angle-variable

o Fortunately, the powerful integrability-based
method to construct such variables is known:
Sklyanin’s magic recipe



=
7 Magic recipe

k\



Consider a harmonic oscillator.

q=—q
Action-angle variables can be easily obtained.
) —_ ,.
D (p=4q)
1
J = pdq

o
9,

al
NPARS I8

o.J




Reformulation
Eq. of motion is equivalent to the following eq.

dQ(x) . B
. oz, Q(z)] =0

“Monodromy matrix”

N o i,  p—iq
(z) := poy + qos + ixo3 = (p-i—iq? —iT )

x : spectral parameter (independent of time)
Spectral curve (independent of time):
det (y — Q(z)) =0
= gt 4zt =p°+ q2(: 2F)



A pair of canonical variables (q,p) appears as a
pole of the normalized eigenvector of Q(x).

Oz) - = y(x)b

Normalization condition:

—

- ) = 1 7z arbitrary constant vector

e.d.
J Forﬁ:<i>.

) ((f — 2 —ipg +iz/p? + ¢? — :172)
A A pole at x = ¢
( pole 1/( pole )) — (([1))

12




In this formulation, action-angle variables can be
constructed as follows.

- period integral
J = % Qj(T)dT on the spectral curve

0 “pole 8y(x ) p motion of the pole
— ,./I; : e oo b e 11TVEe
O.] on the spectral curve

o Both are characterized by
the spectral curve and the motion of the pole.

o Generalizable to a string on AdS.



In summary,

Conserved charges
from the spectral curve.

Canonical variables
from poles of the eigenvector.



Generalization to string on AdS
Consider, "
AdS3: X2, + X2 -X2-X?=-1

Eq. of motion: 995 X+ + (5X’/5X,,)X“ — ()

z2 =T+ 10



Generalization to string on AdS
Consider, "~ |

AdS3: X2, + X2 -X2-X?=-1

Factor [00X" + (0XY0X,) X" = 0]



Consider,

Generalization to string on AdS

NN

C AdSs

AdS3: X2, + X2 -X2-X?=-1

9,

J-

I

1l —=x

J 1 2 X 2 matrix

O - —
’ 1+ 0

x : arbitrary parameter

X_1+ X4 Xo + X4 )

—1 -
Jz:g 8,297 g_<—X0+X1 X_1— X34



» Monodromy matrix:

;- Js .
Q(zx) := Pexp (74 T /Edz+ 1+xdz>

o Normalized eigenvector:

Sz( )l/)norm(T) == 6)?p(rl)zr)norm(fr) n - ﬁ(/;n()rm(.’lf) == ]
» Poles of the eigenvector:

djnom,(fl,‘,,;) — OO In general, infinitely many.
o A complete set of canonical variables:
1
{Z(:EZ) ,p(:l;'])} = 5ij z2(x) ;== x + — : Zhukovski map

" /]

{z(z:), 2(z;)} = {p(z:) , p(z;)} =0



Spectral curve: det (y — Q(x)) =0
= (y—e?)(y—e ") =0

X,
x Ty -
o " > (,y) = (2:,e™)
N T e T3
CTT>

T~ ——

Action variables: S; = ¢ p(x)dz(x) Integrals along various
. . | cycles on the curve
(Filling fraction) a;

x3 _ _
Angle variables: ¢; = Z / wi W normalized

(Abel-Jacobi map) holomorphic 1-form

J



Relation to the gauge theory

gauge string
O(z") U[g;] = €' 2%
Charges: A,S,--- - - Spectral curve
P — n

(ﬁ ) Q/;norm(x) = ]-)



Applications and
Prospects



Three point functions

Combining with other integrability-based techniques, we can
calculate three point functions holographically.
o [Kazama-Komatsu ’10, “11], [work in progress]

Cl JK
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For GKP strings...

In CIJK = —% ™7 [—h’ll\’(h’l) — Kol (ko) — kg X (K3)
Ki+ Ko+ Kz .. K1+ Ko+ K3
5 K 5 )

—K1 1+ K2 T K3 —HK1 + Ko + K3
o) .)

I

)

Ky — K2+ Kg| . |K1 — K2 + K3
T 5 K ( = )

K14+ ke —Ks| | Ky Ka — K

F: = K| = )] TR

1\'(.1') = _i/ ([H('—() 1“}% (l i —vlmrcosh())

o0



Three point functions

Combining with other integrability-based techniques, we can
calculate three point functions holographically.
[Kazama-Komatsu ’10, “11], [work in progress]

A
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_If.z'-SlA.l"}‘Al\' “‘AI |_-r3] l.ﬁ]\'-.*-.'.&]—.ﬁ./
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Prospects

o Four point functions. o Semi-classical calculation.

o Magic recipe for

h o ohain? 2 Other backgrounds.
e spin-chain”



Thank you for listening



