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ABSTRACT 

We consider wave generation by turbulent convection in a plane parallel, stratified atmosphere that sits in a 
gravitational field, g. The atmosphere consists of two semi-infinite layers, the lower adiabatic and polytropic 
and the upper isothermal. The adiabatic layer supports a convective energy flux given by mixing length 
theory; Fe ""'pv~, where pis mass density and v8 is the velocity of the energy bearing turbulent eddies. 

Acoustic waves with ro > roac and gravity waves with ro < 2khHirob propagate in the isothermal layer whose 
acoustic cutoff frequency, roaco and Brunt-Vliisiilii frequency, rob, satisfy ro:C = ygf4H; and ro: = (y- 1)gfyH;, 
where y and H; denote the adiabatic index and scale height. The atmosphere traps acoustic waves in upper 
part of the adiabatic layer (p-modes) and gravity waves on the interface between the adiabatic and isothermal 
layers (f-modes). These modes obey the dispersion relation 

ro2 ~ ; gk{ n + ~) , 

for ro < roac. Here, m is the polytropic index, kh is the magnitude of the horizontal wave vector, and n is the 
number of nodes in the radial displacement eigenfunction; n = 0 for /-modes. 

Wave generation is concentrated at the top of the convection zone since the turbulent Mach number, M = 
v8 jc, peaks there; we assume M, ~ 1. The dimensionless efficiency, '1· for the conversion of the energy carried 
by convection into wave energy is calculated to be '1 ""'Mf 512 for p-modes,J-modes, and propagating acoustic 
waves, and '1 ""' M, for propagating gravity waves. Most of the energy going into p-modes, /-modes, and prop
agating acoustic waves is emitted by inertial range eddies of size h""' M:12H, at ro""' roac and kh""' 1/H,. The 
energy emission into propagating gravity waves is dominated by energy bearing eddies of size ""'H, and is 

concentrated at ro""' v,/H,""' M,roac and kh""' 1/H,. 
We find the power input to individual p-modes, E,, to vary as ro<2m2 +7m- 3Ji<m+ 3 l at frequencies ro ~ v,/H,. 

Libbrecht has shown that the amplitudes and linewidths of the solar p-modes imply E, oc ro8 for 
ro ~ 2 x 10- 2 s- 1 • The theoretical exponent matches the observational one form~ 4, a value obtained from 
the density profile in the upper part of the solar convection zone. This agreement supports the hypothesis that 
the solar p-modes are stochastically excited by turbulent convection. 

Subject headings: convection - Sun: atmosphere - Sun: oscillations - turbulence - wave motions 

I. INTRODUCTION 

Lighthill (1952) wrote the seminal paper on the generation of acoustic waves by turbulence in homogeneous fluids. Stein (1967) 
extended Lighthill's techniques to stratified fluids and also treated the emission of gravity waves. We reconsider Stein's problem for 
a more realistic model atmosphere and relate the turbulent spectrum to the convective energy flux via the Kolmogorov scaling and 
the mixing length hypothesis. Our goal is to estimate efficiencies for the conversion of the convective energy flux into both trapped 
and propagating waves. We treat mode excitation but not mode damping. Thus, we cannot estimate the energies of trapped modes 
which depend upon the balance between these two effects. 

The plan of our paper is as follows. In § II we describe the model atmosphere and its eigenmodes. Next, in § III, we derive 
expressions for the rates at which individual modes gain energy from turbulent convection. In § IV, we estimate the total emissivities 
for the different wave types, p-modes,f-modes, propagating acoustic waves, and propagating gravity waves. A comparison of our 
results with those obtained in earlier studies, and a discussion of their implications, is given in§ V. 

II. ATMOSPHERE AND EIGENMODES 

a) Static Atmosphere 

Our model atmosphere is plane parallel, sits in a constant gravitational field, g, and consists of two semi-infinite layers, the lower 
adiabatic and polytropic and the upper isothermal. The pressure, p, density, p, and temperature, T, are continuous across the 

interface between the two layers. In the lower layer the adiabatic and polytropic indices are related by r = 1 + 1/m. The adiabatic 

1 The National Center for Atmospheric Research is sponsored by the National Science Foundation. 
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WAVE GENERATION BY TURBULENT CONVECTION 695 

index in the upper layer, y, may differ from r. The z coordinate measures depth below the level at which the adiabatic layer would 
terminate in the absence of the isothermal layer. We denote quantities evaluated at the top of the adiabatic layer by a subscript t. 
Parameters in the isothermal layer are distinguished by a subscript i. Note, the ratio of the sound speeds cJc1 = (y/f1 1' 2 . 

In the adiabatic layer the thermodynamic variables exhibit a power-law behavior with depth: 

(z)m+l 
p=pt- ' 

Zt 
T = r{~). (1) 

The sound speed, c, and the pressure scale height, H, satisfy c2 = gz/m and H = z/(m + 1). 
The isothermal atmosphere is still simpler: T = T;, c = c;, and H = H; are all constant, whereas p and p are proportional to 

exp (z/H;). 

b) Normal Modes 

We choose the Eulerian enthalpy perturbation, Q = ptfp, as the dependent variable in the linear wave equations. These read 

d2Q + ~ dQ + ((02 - k~)Q = 0 ' 
dz2 z dz c2 

(2) 

in the adiabatic layer, and 

d2Q 1 dQ [w2 2( (!)~)] 
dz2 + H; dz + cf - kh 1 - w2 Q = 0 ' (3) 

in the isothermal layer (Kumar and Goldreich 1989). Here, w is the wave frequency and kh is the horizontal wavevector (I = kh R0 ). 

The displacement vector,~. is related to Q by 

in the adiabatic layer, and by 

in the isothermal layer. 

. kh 
~h= 12 Q' 

(0 

1 oQ 
~. = 2-;-' 

(0 uz 

. kh 
~h=l2Q' 

(0 

1 [aQ (y- 1) J 
~. = ( 2 2) -;- + -H Q , 

w -cob uz y ; 

(4) 

(5) 

The normal modes are obtained by solving equations (2) and (3) subject to Q -+ 0 as z-+ oo, Q and ~. continuous across the 
interface at z1, and the appropriate boundary conditions as z-+ - oo. The continuity of ~h follows from that of Q. 

The modes are classified as trapped or propagating, and as composed of acoustic or gravity waves. The adiabatic layer supports 
acoustic waves, but not gravity waves. Moreover, it refracts acoustic waves upward. Thus, propagating modes must be traveling 
waves in the isothermal atmosphere. 

Solutions of the wave equation in the isothermal atmosphere are proportional to exp (- K ± z), with 

where wac and cob are the acoustic cutoff and Brunt-Vaisiila frequencies: 

and 

2 yg 
Wac= 4H-' 

I 

(6) 

(7) 

(0~ = (y - 1)g (8) 
yH; 

Thus w~ = 4(y- 1)w;Jy2 • There are two branches to the dispersion curve for traveling waves. For 2khHi ~ 1, these are a high 
frequency, acoustic wave, branch with w > wac• and a low-frequency, gravity-wave, branch with w < 2kh H; cob. 

Wave excitation by turbulent convection is concentrated in the upper adiabatic layer where the convective velocity peaks. We 
seek analytic expressions for the normalized eigenfunctions in this region. Since the dominant interactions are proportional to 
o2Qfoz2 (see§ lllb), we explicitly evaluate this quantity for each mode. In doing so, we drop factors of order unity including, in 
places, y, r, and m. 

i) Trapped Modes 

Trapped modes correspond to evanescent solutions in the isothermal layer and are restricted to a discrete set of eigenfrequencies 
for fixed kh. In the limit that the adiabatic layer extends to vanishing surface pressure, the eigenfunctions may be expressed in terms 
of associated Laguerre polynomials and the dispersion relation reads 

w2 = ; gkh( n + ~) , (9) 
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where the integer n denotes the number of nodes in the radial displacement eigenfunction (Christensen-Dalsgaard 1980; 

Christensen-Dalsgaard and Gough 1980). Trapped acoustic modes, or p-modes, correspond ton#: 0. Modes with n = 0 are surface 
gravity waves, or .f-modes. Trapped g-modes with n #: 0 do not exist since the adiabatic layer is neutrally stratified, that is, its 

Brunt-Vaisala frequency vanishes. Equation (9) remains a good approximation for w < wac even with finite surface pressure. 
Only the physical solution, the one that grows less rapidly with height in the isothermal layer, is normalizable. The normalization 

condition reads 

I= W 2 I: dz P~w ' ~=· = f>w,w' , (10) 

at fixed kh. For modes with 2kh H; ~ 1, most of the contribution to the energy integral comes from the adiabatic layer. This enables 
us to reexpress the normalization condition, using equation (2), in terms of the enthalpy perturbation as 

ioo p 
I ~ dz 2 Qw Q!· = f>w,w' · 

Zt C 

(11) 

For w = w', this integral evaluates the potential energy of a trapped mode in the adiabatic layer. The potential energy is equal to the 
kinetic energy for all modes. This accounts for the relation between equations (10) and (11). 

1. P-Modes 

A p-mode is a standing acoustic wave trapped between an upper reflecting layer at z1, where w/c(z1) = 1/2H(z1), and a lower 
turning point at z2 , where w/c(z2) = kh. The requirement that there be an upper reflecting layer restricts p-modes to frequencies 

below wac. 
It is easily shown that 

(12) 

and 

.2...., n+-z ( m)2 

z1 2 
(13) 

Outside the interval z1 ;:;;; z;:;;; z2 , the mode is evanescent. Both Q and~ increase slowly with height above z1. Below z2 the kh term in 

equation (2) dominates and Q oc exp (-khz). 
We study the p-mode eigenfunctions in the dual limit w ~wac and 2khHt ~ 1. In a polytropic layer with vanishing surface 

pressure, the eigenfunctions are solutions of equation (2) that are analytic at z = 0. These solutions may be expressed in terms of 
associated Laguerre polynomials. When the polytropic layer is overlane by an isothermal layer, the eigenfunctions include a 

contribution from the solution that is singular at z = 0. However, the boundary conditions at the interface between the two layers 
ensure that the contribution from the singular solution is small for w ~ Wac. 

We can approximate the eigenfunction in the region of propagation, z1 ~ z ~ z2, by the WKB solution 

( z1)(m-1)/2 . [ (mz)l/2 J 
Q ...., - BP sm 2w - + c/Jp • 

z g 
(14) 

Below the lower turning point at z2 , the eigenfunction is exponentially small. In the evanescent zone above z1 the atmosphere 
responds stiffiy. Thus BP is approximately equal to the surface amplitude, Q(z,), for w ~ wac. 

The z derivaties of Q in the evanescent region enter into the expressions we derive for wave generation. For w ~wac, ofoz has 
magnitude w 2 fg ...., (w/wac)2 H-1, as follows directly from equation (2). This equation has a singular point at z = 0, and its regular 
solution is given by a power series in w 2zfg. This verifies our assertion about the magnitude of ofoz. Of course, the polytropic 

atmosphere does not extend to z = 0. However, this is of little consequence for the eigenfunctions that become evanescent well 

below z = z,. 
Given the properties of the eigenfunction described above, it follows from the normalization equation (11) that 

ZmW2(m-l)k 
B2...., t " 

P g<m 2)Pt 
(15) 

Evaluating o2Q/oz2 we obtain 

iJ2Q ...., (w2)2 
"2 BP' uz g 

(16) 

2. F-Modes 

Direct substitution into equations (2) and (3) verifies that Q = B r exp (-khz), with w 2 = gkh, is an exact solution of the wave 
equations in both the adiabatic and the isothermal layers. Moreover, ez formed from equations (4) and (5) is continuous across z,. 
This family of normal modes consists of gravity waves confined near the surface of the convection zone; they are known asf-modes. 
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The !-modes are incompressible, V · ~ = 0, which accounts for their simple dispersion relation. The amplitude, B 1 , is determined 
from the normalization equation (11) to be 

(17) 

For all z, 

(18) 

ii) Propagating Waves 

Modes that propagate in the isothermal layer have continuous spectra. They are chosen to have no net flux in the isothermal 
layer; that is, they are composed of pairs of inward- and outward-propagating waves of equal amplitude. This choice ensures that 
propagating modes have real frequencies and are orthogonal to trapped modes. These modes are normalized such that 

w2 L: dzp~ ... ~:. = o(w _ w'), (19) 

at fixed kh. The upper limit on the integral in equation (19) may be taken to be z,, since the contribution from the adiabatic layer is 
finite, and therefore negligible. 

1. Acoustic Waves 

These modes have w > wac and propagate in the isothermal atmosphere and in the upper part of the adiabatic layer. They are 
evanescent below the lower turning point at z2 ~ w2fgkr We deduce the properties of the eigenfunctions in the joint limit w ~wac 

and kh ~ w/c;. 

In the isothermal layer 

. [(z,- z)J Q = ca sm [Kz(z, - z) + CJ exp ----ui;- , 

where K. ~ w/c;. Application of the normalization condition given by equation (19) to equation (20) yields 

g112z112 
c2~--'-

a Pt 

We approximate the eigenfunctions in the adiabatic layer by the WKB solutions 

(z)<m-1)/2 [ (m)l/2 J 
Q ~ ~ Ba sin 2w g (z 112 - z~i 2 ) + ¢a , 

(20) 

(21) 

(22) 

for z, s z ~ z2. The continuity of Q and~. across z, is used to relate Ba and c/Ja to Ca and (a. The phase, ¢a, is determined by the 
condition that Q oc exp (-khz) for z--+ oo. For w just above wao Biw, kh) displays sharp ridges along extensions of the p-mode 
dispersion curves. These correspond to resonances for the scattering of incoming waves by the atmosphere. These ridges flatten for 

w ~wac and 

B2 ~ ____ r_c_,_;_-=-_ 
a [1 + (r - y) cos2 c/Ja] · 

(23) 

For later use we record 

(24) 

2. Gravity Waves 

Gravity modes with w < 2kh H; wb propagate in the isothermal atmosphere but are evanescent in the neutrally stable adiabatic 
layer. We detail their properties in the double limit w ~ 2kh H; wb and 2kh H; ~ 1. 

In the isothermal atmosphere 

. [(z,- z)J Q = C9 sm [Kz(z, - z) + (9] exp 2H; , (25) 

where K. ~ (wb/w)kh. 
The amplitude C9 is determined by the normalization equation (19) to be 

g1f2 

c; ~ 112k · 
p,z, h 

(26) 
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In the adiabatic layer, for z1 ~ z ~ k#; 1, the last term in the wave equation (2) is much smaller than the first and second terms and 
may be ignored. The reduced wave equation yields 

(Z )(rn-1) 
Q ~ B9 ~ + D9 • (27) 

The ratio Dg/B9 is determined by fitting Q in the upper part of the adiabatic layer to Q oc exp (-khz) at z ~ k/; 1. For 2khH1 ~ 1, 
Dg/B9 ~ 1. 

The continuity of Q and e% across Zt is used to relate Bg and Dg to cg and 'g· We find 

(28) 

The small value of tan ( 9 is due to the change in orientation of the velocity field from almost vertical in the top of the adiabatic layer 
to almost horizontal in the isothermal layer. From equation (28) it follows that 

2 z;12w2kh 
Bg "' 1/2 • 

g Pt 
(29) 

For later use we note that 

(30) 

holds for z ~ kh- 1. 

c) Turbulent Convection 

In the absence of a reliable theory for turbulent convection, we are guided by the mixing length hypothesis. According to this 
hypothesis, the convective energy flux, F0 is carried by turbulent eddies whose dimensions are of order the local pressure scale 
height, H(z) = zj(m + 1). The velocity and entropy fluctuations associated with these energy bearing eddies, vn{z) and sn{z), are 
related to the mean entropy gradient, dsjdz, by 

2 gH2 ds 
VH ----' 

cP dz 

where cP is the specific heat at constant pressure per unit mass, and 

These relations lead to 

Since Fe is independent of z, 

where V1 = vn(z1). 

ds 
sH"' H dz' 

(Z )rn/3 
vn(z) = V1 ~ , 

(31) 

(32) 

(33) 

(34) 

In treating the convection zone as adiabatic we have been neglecting the superadiabaticity of the temperature gradient, 
c; 1 T dsjdz, with respect to the adiabatic temperature gradient, gjcP. From equation (32) it follows that the ratio of these gradients 
may be expressed as 

I_ ds"' M2 

g dz ' 

where the Mach number of the turbulence, M = vHfc. Appeal to equation (33) establishes that 

( Fe ) 1
/
3 

M- -
pc3 

(35) 

(36) 

We assume that the turbulent velocities are substantially subsonic even near the top of the convection zone, that is, M 1 ~ 1. Under 
these conditions we are justified in approximating the convection zone as adiabatic when calculating eigenfunctions for the normal 
modes. 

The characteristic time scale of the energy bearing eddies is 

H 
T:H "'-. 

VH 

(37) 
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It is smallest at the top of the convection zone where 

(38) 

The velocities of smaller, h < H, inertial range eddies are related to those of the energy bearing eddies by the Kolmogorov scaling 
(Tennekes and Lumley 1972), 

vh = (~)1/3, 
VH H 

(39) 

at fixed z. The Kolmogorov spectrum applies to turbulent convection because, below the scale of the energy bearing eddies, the 
Reynolds stress provides greater accelerations than the buoyancy forces (Goldreich and Keeley 1977a). This implies that entropy 
mixes like a passive scalar contaminant in the inertial range. Thus, 

sh "'(~) 1 / 3 
SH H 

The depth dependence of the properties of eddies of fixed size h follows from equations (32), (34), (37), and (40). We find 

ITI. MODE EXCITATION 

.a) Source Terms 

(40) 

(41) 

We begin this section by adding source terms due to turbulent convection to the linear wave equation (2) for the adiabatic layer. 
Next, we classify the individual terms as sources of monopole, dipole, and quadrupole radiation. Then we evaluate the excitation of 
wave modes by these sources. 

We distinguish three principal sources of wave excitation by turbulent convection. They are, the expansion and contraction of 
fluid due to the gain and loss of specific entropy, buoyancy force variations associated with these entropy changes, and momentum 
transport by the fluctuating Reynold's stress. 

We derive the inhomogeneous wave equation from the linearized versions of the equations for mass and momentum conservation 
supplemented by the equation of state for a perfect adiabatic gas. We augment the momentum equation by the divergence of the 
turbulent Reynolds stress, and the adiabatic equation of state by the entropy fluctuations associated with turbulent convection. 
These equations now read: 

and 

ap1 
-+V·(pv)=O 
at ' 

a(pv) 
at+ Vp1 - p 1g = -V • (pvv) = F, 

P1 _ 1p1 = .!._ 

p p Cv 

(42) 

(43) 

(44) 

where p 1, p1, v, and s are the Eulerian density, pressure, velocity, and entropy perturbations associated with the turbulent 
convection and the waves it generates. The subscript 1 attached to the density and pressure perturbations denotes that only the 
lowest order variations of these quantities need be retained. Equation (44), the Eulerian form of the perturbed equation of state, 
holds because the background state is isentropic. 

Eliminating p 1 and v from the left-hand sides of equations (42H44), we obtain the inhomogeneous wave equation 

2 g aQ 1 a2Q s(l> + s(2> 
V Q + c2 az- c2 at2 = p , (45) 

where 

1 a2 
( s ) a (ps) s( > = -p -2 - -g- - , 

at CP az Cp 
S(2)=V·F. (46) 
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The interpretation of equation (45) is somewhat subtle. Provided we drop the final c- 2a2Q/Bt2 term on the left-hand side as a first 
approximation in the limit of subsonic turbulence, it determines the near field turbulent pressure perturbations from the turbulent 
velocity and entropy perturbations. The c- 2a2Q/Bt2 term connects the near field perturbations to the wave field perturbations. The 
latter may be expanded in terms of the normal modes. 

The identification of sources by multi pole order is a useful device in estimating wave emission by turbulent convection. It helps to 
separate the sources that must be retained from those that may be safely discarded. For homogeneous and isotropic turbulence the 
multipole expansion may be carried out in several equivalent ways. In our application the turbulence is z-dependent, and therefore 
inhomogeneous, and the atmosphere is stratified, and therefore anisotropic. Under these circumstances the method of choice is to 
identify sources according to whether they involve a change in fluid volume (monopole terms), a source of external momentum 
(dipole terms), or merely internal stresses (quadrupole terms).2 Classification based on the angular dependence of the wave 
amplitude in the radiation zone is not useful, because the angular dependence results, in part, from the anisotropy of the medium. 3 

Identification of sources by the number of their spatial derivatives also leads to ambiguity, since it differs according to the choice of 
dependent variable. 

The first term in s<tl arises directly from the volume change due to an entropy change at fixed pressure. It is a monopole source. 
The second term in s<tl reflects the buoyancy force variation associated with this volume change. It involves a variation of the 
density of momentum supplied by the external gravitational force and is a dipole source. The double divergence of the Reynolds 
stress in s<2> reflects the redistribution of momentum by internal stresses. It is a quadrupole source. 

One might suspect that the monopole and dipole terms in so> produce more acoustic radiation than the quadrupole term in S(2). 
Treating these three terms independently appears to confirm this suspicion; the monopole and dipole terms are found to excite 
comparably greater amounts of acoustic radiation than the quadrupole term. However, the correct solution is more subtle. As we 
demonstrate shortly, destructive interference causes the total monopole plus dipole acoustic emission to be of the same order as the 
quadrupole emission. 

b) Amplitude Equation 

The total enthalpy perturbation, Q(x, t), is expanded in terms ofthe normal modes, Qa(z), as 

1 
Q = ~I [Aa Q« exp (- iwt + ikh • x) + A: Q: exp (iwt - ikh • x)] , 

....;2.54 a 

(47) 

where d is the horizontal cross section of the atmosphere.4 The mode amplitudes, Aa{t), are slowly varying functions of time, 
I dAJdt I ~ w I Aa 1. Substituting this expansion into equation (45), multiplying both sides by Q: exp (iwt - ikh • x), and integrating 
over space and time, we obtain 

A (t) = 1 It dt f d3xQ*(S0 l + s<2l) exp (iwt - ik . x) . 
« 2iwd1/2 - oo a h 

(48) 

Taking - oo for the lower limit on the integral over t involves the implicit assumption that damping erases the memory of 
excitations from the distant past. 

Next, we integrate by parts to transfer all time and space derivatives to the eigenfunctions. The contributions due to the individual 
source terms are discussed separately below. 

The monopole plus dipole terms contribute 

A~ 1 l(t) = . 1 1/2 It dt f d3x ps (w2Q: + g aaQ:) exp (iwt - ikh • x) . (49) 
2zwd _ oo cP z 

With the aid of the homogeneous wave equation (2), we transform equation (49) to 

A~ 1 >(t) ~ - . 1 
112 It dt f d 3x pc

2
s (a 2 ~: - kt Q:) exp (iwt - ikh • x) . 

2zrod - 00 cp az 
(50) 

The contribution due to the quadrupole term is 

A~ 2 l(t) ~ . 1 
112 It dt fd 3xpvv:VVQ: exp (iwt- ikh · x). 

2zrod -oo 

(51) 

The normal mode eigenfunctions share the property that kh I Qa I ~I BQJBz I near the top of the adiabatic layer. More precisely, 
other than the .f-modes for which BQJ az = - kh Qa, the approximate mode eigenfunctions calculated in § lib satisfy the strict 

inequality. This implies that 

2 This method preserves the ordering of source terms by the efficiency with which they generate radiation. 
3 For example, a spherically symmetric point source radiates anisotropically in a stratified atmosphere. 
4 For the moment we are treating the atmosphere as being of finite horizontal extent. 
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and 

A(2)() 1 ft d fd3 2 a2Q: (' 'k ) 
« t ~ . 112 t xpv z -a 2 exp zwt - z h • x , 

2zwd -oo z 
(53) 

provide order of magnitude estimates for A~ 1 >(t) and A~ 2 >(t). However, A~ 1 >(t) = 0 for f-modes as a consequence of their incompress
ibility. 

Now we compare the relative sizes of A~ 1 >(t) and A~ 2 >(t). We start with the contributions made by energy bearing eddies and go on 
to investigate those due to smaller, inertial range eddies. 

According to equations (31H32), c2s8 fcv ~ vfc. Thus, except for the !-modes, the entropy and the Reynolds stress sources 
associated with energy bearing eddies make comparable contributions to A«(t). This illustrates the destructive interference between 
the monopole and dipole amplitudes to which we referred earlier; for energy bearing eddies and acoustic modes with w ~ v8 jH, the 
monopole and dipole terms in equation (49) are each larger by a factor ~(cjv 8 ) 2 than the combined term in equation (50). The 
destructive interference between monopole and dipole amplitudes is a consequence of the anisotropy of the adiabatic layer. This is 
expressed by the anisotropic form of equation (2) which transforms equation (49) into equation (50). 

For inertial range eddies, c2sJcv ~ v~(H/h) 1 1 3 • This suggests that, unlike energy bearing eddies, inertial range eddies might excite 
waves more by their entropy sources than by their Reynolds stress sources. In fact, this is not the case. From equation (50) we see 
that wave excitation by the entropy source depends upon the time variability of the Eulerian entropy field. Inertial range eddies 
contribute to this time variation in different ways. The kinetic energy in an eddy of size h ;:5 H may dissipate raising the local value of 
sh. Neighboring eddies of similar size having opposite signs of sh may collide and mix their fluid thereby smoothing the spatial 
variation of the entropy field on scale h. An eddy of size h carrying an entropy fluctuation sh may be advected at speeds up to v8 . Of 
these possibilities, the dissipation of kinetic energy into heat produces the largest entropy source. However, this source is just equal 
to that provided by the Reynolds stress. Thus, from here on we use equation (53) to estimate the total excitation rate of normal 
modes. 

Destructive interference between monopole and dipole radiation fields holds the acoustic emissivity of turbulent convection at the 
level characteristic of free turbulence5 for which the emissivity is dominated by acoustic quadruples. We did not appreciate this 
point in our earlier treatment of acoustic emission by turbulent fluids (Goldreich and Kumar 1988). There we discussed the 
emissivity of turbulent pseudo-convection, a surrogate for turbulent convection. Since this model has acoustic dipoles but not 
acoustic monopoles, its emissivity is greater than that of free turbulence. 

c) Excitation Rate 

Turbulent convection consists of a hierarchy of critically damped eddies. Different eddies of similar size are assumed to be 
uncorrelated. This assumption enables us to divide into several steps the calculation of the rate at which turbulent convection 
pumps energy into a wave mode. 

To begin, we estimate the magnitude of the incremental amplitude, ~A:, produced by a single eddy of size h located at depth z 
over its lifetime rh ~ hjvh. 

h pvhh4 a2Q: 
~A« ~ 2iwd 112 az2 ' 

(54) 

In arriving at the above equation we have assumed that the eigenfunction does not vary dramatically over ~z = h :s; H. This is a 
good approximation for all the modes we are concerned with. At frequencies much greater than r;; \ ~A: declines exponentially 
with increasing w. 

Next, we note that 

(55) 

is the mean rate at which one eddy supplies energy to mode ct. 

Then, summing over eddies of all sizes and depths, we obtain 

. 1 100 21 a2Q« 12 ihmax dh 3 4 
E« ~ 2 dzp -a 2 -h vh h , 

OJ Zt Z 0 

(56) 

where 

(57) 

In deriving equation (56) from (55), we include a factor d dz/h3 , the number of eddies in the horizontal slice of cross-sectional area d 

between vertical depths z and z + dz. The appearance of dh/h in equation (56) denotes that each inertial range eddy accounts for a 
finite range of scale size dhjh ~ 1. Carrying out the integration over h yields 

(58) 

5 Free turbulence is turbulence that is not subject to external forces. 
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where the weight factor, W, is given by 

The weight factor is sharply peaked about 

where 

1 
U*"' 1 + ( )3f(m+3)' wr, 

(59) 

(60) 

(61) 

it decays as u<m + 4 l for u ~ u* and as u- <3m+ 7li2 for u ~ u*. 

The peak in W is so sharp that E~ is dominated by contributions from z - z* for all wave modes. Physically, this means that the 
excitation is concentrated in the layer where the turnover time of the energy bearing eddies is most nearly equal to the mode period. 

This enables us to further simplify the expression for E~ to 

E "' -- ---:-:---:--::-::-:-::--~:-------::-:c::--:--:-:-:::-:--:--::-:-
. P? H~ 1 I iJ2Q~(z.) 12 
~ r, (wr,)<Sm+ 21)/(m+ 3)[1 + (wr,)3(3m+ 5)/2(m+ 3)] i)z2 

(62) 

IV. FLUXES OF ENERGY 

To evaluate the total excitation rate for each type of mode, we substitute the relevant expression for o 2 Q~(z.)joz 2 given in§ lib) 
into equation (62). Following that, we integrate E~ over all modes of the family to determine the fraction of the convective energy 

flux that family receives. 

The frequencies of trapped modes satisfy equation (9). The flux of energy going into modes of a given family is 

(63) 

where the sum over rx includes all modes in the family, the sum over n includes all dispersion ridges in the family, and J dkh is over all 

modes along a ridge. The last equality follows because the spacing between adjacent kh modes in a box of horizontal area, d, is 

equal to 2n/J"d. Therefore, the number of modes in d2khis dd2kJ(2n)2 = (d/2n)dkh kh. 
For propagating modes, wand kh are independently specified. The flux of energy into a family of modes is computed from 

1". 1f f . F~ = d ~ E = 2n dw dkh kh E~ , (64) 

where the double integral is over all modes in the family. 

a) P-Modes 

From equations (16) and (62), we obtain 

(wr )(2m2+ 7m- 3)/(m+3) 
E p H3v3 M2(m+2)k t (65) 

p"' t t t t h 1 + (wr,)3(3m+5)/2(m+3) · 

At fixed kh, EP varies as w<2m2+?m- 3li<m+ 3l for wr, < 1 and as w<4 m-?l/2 for wr, > 1. To obtain the energy input rate per mode along 

the n'th p-mode ridge, we eliminate kh from equation (65) by using equation (9). This procedure yields 

P H2v3M2(m+3) (wr)<2m2+9m+3)/(m+3) 
E: , , , , --'----"-' ---::-:-::--:---:-:-:-::-:--:--::-: 

p"' (n + m/2) 1 + (wr,)3(3m+5)/2(m+3) · 
(66) 

The total flux of energy going into p-modes follows from substituting equation (66) into equation ( 63): 

FP-p,v~Mt 512 =Mt 512 Fc. (67) 

From equation (66), we note that for wr, ~ 1 the energy input rate is proportional to (wr,)<4 m- 3l12, which increases with increasing w 

for m > i. Since the maximum frequency for trapped p-modes is wa<> most of the energy flux goes into modes whose frequencies lie 

just below the acoustic cutoff, w ;;; wac, and is emitted by inertial range eddies with h - M~ 12 H, located in the top scale height of the 

convection zone. 

b) F-Modes 

The calculations for thef-modes are similar to those for the p-modes. We substitute equation (18) into equation (62) and find 

(wr )(2m2+ 7m- 3)/(m+ 3) 
£ H3 3 M2(m + 2) k --'----"-' ---::-:-::--:---::-:-:-::-:--:--::-: 

f "'Pt tv, t h 1 + (wr,)3(3m+ 5)/2(m+ 3) ' (68) 
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where we have set exp (-khz*)- 1 since khz*- M;(wr,)<2m+ 3)/(m+ 3l[1 + (wr,)3/(m+ 3l] ;S 1 for w ~wac· The rate of energy input per 

mode along thef-mode ridge reads 

(wr )(2m2+9m+3)/(m+3) 
E H2 3M2(m+3) t 

f - Pt tv, t -1'-+-"-(w-r-,-=)3::-:(3:-m"""+-::577)!2""'(m---:-+::-:-3) · (69) 

The total flux of energy going into !-modes is 

(70) 

c) Acoustic Waves 

From equations (24) and (62), we obtain 

(71) 

after averaging over the phase <Pa· Substituting equation (71) into equation (64), we derive the total flux of energy carried by the 
acoustic waves: 

Fa- p,v~MJ512 = MJ512pc. (72) 

Most of this energy is emitted by inertial eddies of size h ;S M~l 2 H, located in the top scale height of the convection zone. It is carried 

by waves with w <:wac and kh ;S 1/H,. 

d) Gravity Waves 

Equations (30) and (62) yield 

• 
4 2 (wr,)3(m-3)/(m+3) 

Eg- Pt H, v, M, kh [1 + (wr,)3(7m+9)/2(m+3)] ' (73) 

so the power input into gravity waves peaks for wr,- 1. Equation (73) holds for kh in the range wjwb < 2khHt < (wr,)31<m+ 3lj 
[1 + (wr,)31<m + 3l]. Substituting equation (73) into equation (64), we find the total flux of energy carried by the gravity waves: 

(74) 

Most of this energy is emitted by energy bearing eddies located in the top scale height of the convection zone. It is carried by waves 

with wr,- 1 and kh ;S 1/H,. The vertical wave vector ofthese waves in the isothermal layer is k,- 1/(M, H,). 

V. DISCUSSION 

a) Previous Results 

Our principal results are dimensional efficiencies, Yf, for the conversion of the convective energy flux into the energy flux in 

different types of wave modes; Y/p- Yft- Yfa- M 1
1512, and Yf9 - M,. It is illuminating to compare these efficiencies to those obtained 

in previous investigations. 

The classic result for the efficiency of emission of acoustic waves by homogeneous, isotropic turbulence is that of Lighthill (1952). 
Translated into our notation it is Yfa - Mi. Here we are thinking of the acoustic emission from a layer of turbulent fluid of thickness, 
H,, embedded in an otherwise uniform atmosphere. The energy bearing eddies are characterized by size, H,, and velocity, v,. In this 

system, the acoustic emission is dominated by the energy bearing eddies, and is concentrated at w- vtfH,, k- M,H,. We find 

Yfp- Yfa - MJ 512 , with the emission dominated by inertial range eddies of size h - M~ 12 H, and concentrated at w - cJH,, kh - 1/H,. 
There are two relevant comparisons between our results and those of Lighthill. 

First, we can redo the estimate for Yfa from Lighthill's treatment restricting attention to emission from inertial range eddies having 
h ;S M~ 12 H,. These eddies, whose lifetimes rh ;S wa--;, 1 , dominate the emission of energy into p-modes and acoustic waves in the 
stratified atmosphere. A simple calculation yields Yfa- M: 512 . This result agrees with ours showing that the acoustic emission from 

eddies with h ;S M~ 12 H, is not affected by stratification. 
Second, we can modify our calculation of Yf P so that only the emission by energy bearing eddies is included. This is accomplished 

by repeating the procedure described in § IVa) but now limiting the integration over frequency along the p-mode ridges to 

w ;S vtfH,. This exercise yields Y/p- MJ 0 • The factor Mi by which this result differs from Lighthill's may be accounted for as follows. 
Both in a homogeneous atmosphere and in our stratified atmosphere, the acoustic emissivity is proportional to I VVQ 12• However, 

for w- v,/H,, I VVQ 12 - (M,/H,)4 1 Q 12 in the homogeneous atmosphere, whereas I VVQ 12 - (M;/H,)4 1 Q 12 in the stratified atmo
sphere. This difference, which accounts for four factors of M,, arises because p-modes with w - vtfH, - M, wac are evanescent near 
the top of the convection zone in the stratified atmosphere.6 The fifth factor of M, arises from differences in phase space mode 

densities. In a uniform atmosphere, the number density of modes having w - v,/H, is approximately (M,/H,)3. This becomes M~ /H; 
per unit area for a layer H, thick. The corresponding area density of p-modes in the stratified atmosphere is M~/H;, just one power 
of M, smaller. 

6 For acoustic waves with w ;(; w.,, I VVQ 12 is ofthe same order in the stratified atmosphere as in a homogeneous atmosphere. 
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Stein (1967) investigated the emission of acoustic and gravity waves by turbulent convection in a stratified atmosphere. He paid 
proper attention to the roles of wac and wb and to the shapes of the mode eigenfunctions. However, Stein considered an isothermal 
atmosphere whereas we treat a two level atmosphere with the turbulent convection confined to the lower, adiabatic layer. Finally, 
we relate the properties of the turbulence to the convective energy flux using the mixing length hypothesis and the Kolmogorov 
scaling. The differences between out model assumptions and those of Stein preclude a meaningful comparison between his results 
and ours. 

Milkey (1970) commented on the relation between Stein's calculation of acoustic spectral emissivity, Ea(w), and that for free 
turbulence. 7 He showed that the Kolmogorov spectrum implies Ea oc w - 112 in the dual limit w ~ wac and w ~ 1/7:1• Equation (13) in 
Goldreich and Kumar (1988) confirms this simple result and, written in our notation, reads 

2 M~ 
Ea(w) - Pt Vt -( )7/2 · 

W'l:t 

Our equation (71) giving Ea also leads to equation (75) since Ea(w)- (w/c1)
2 Ea/H1 - (w7:1) 2 M; EJHt. 

b) Solar p-Modes 

(75) 

Libbrec~t (1988) has determined EP(w) from his solar p-mode observations. He finds EP oc w8 for w ~ 2 x 10- 2 s- 1. Equation 
(65) gives EP oc w<2 m2 + ?m-J)/(m+J) for W7:1 ~ 1, in agreement with the observational result form ~ 4, ~he polytropic inde~ that fits the 
average density profile in the. hydrogen ionization zone. Our formula fails for w1:1 ~ 1; it gives EP oc w<4 m-?>14, or EP oc w4 ·5 for 
m = 4, while Libbrecht finds EP oc w- 5 for w ~ 2 x 10- 2 s- 1 . The resolution of this discrepancy is in hand. It involves modification 
of the eigenfunctions in the polytropic layer for w close to Wac by the boundary conditions imposed at the interface with the 
isothermal layer. These modifications, which are ignored here, will be described in a subsequent paper devoted to a detailed 
examination of the excitation of the solar p-modes. 

Even the limited success of our theoretical calculations in matching the frequency dependence of EP lends support to the 
hypothesis that the solar p-modes are stochastically excited by turbulent convection (Goldreich and Keeley 1977b). 

c) General Applications 

Wave emission by turbulent convection is a common process in stellar and planetary atmospheres. It is clearly implicated in the 
heating of stellar chromospheres and coronas. Our results provide a foundation for the theory of wave emission in stratified 
atmospheres. However, several additional factors need to be examined before serious applications to real systems are contemplated. 
Several of these are mentioned below. 

Real atmospheres differ from our model atmosphere in ways that may have important practical implications. The upper part of 
the convective zone, where much of the wave generation occurs, may not be well approximated by an isentropic layer of constant 
adiabatic index. Instead, as in the Sun, it may be significantly superadiabatic and possess ionization zones through which r 
undergoes substantial variations. The model atmosphere makes an abrupt transition from an adiabatic layer to an isothermal layer. 
The emission of gravity waves is likely reduced by the gradual rise of wb with height in a real atmosphere. Moreover, radiative 
smoothing of temperature perturbations may damp waves and also modify their propagation by lowering the effective adiabatic 
index. Both effects are most likely to be relevant for the dominant gravity waves because of their low frequencies and short vertical 
wavelengths. 

The scope of our investigation is restricted to linear waves in unmagnetized media. Wave heating depends upon the behavior of 
nonlinear waves. It may also involve the coupling of acoustic and gravity waves to magnetosonic and Alfven waves. These issues 
remain to be addressed by future studies. 

The authors are indebted to T. Bogdan, A. Ingersoll, N. Murray, and R. Stein for much helpful advice. This research was 
supported by NSF grants AST 89-13664 and PHY 86-04396 and NASA grants NAGW 1303, 1568, and 5951. Part of it was 
performed while P. G. and P. K. held visiting appointments at the Harvard-Smithsonian Center for Astrophysics. P. G. thanks the 
Smithsonian Institution for a Regents Fellowship and P. K. thanks W. Press, W. Kalkofen, and R. Noyes for financial support. 

7 Spectral emissivity is the energy emission rate, per unit volume, per unit frequency. 
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