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ABSTRACT

Context. In recent years, coronal loops have been the focus of studies related to the damping of different magnetohydrodynamic
(MHD) surface waves and their connection with coronal seismology and wave heating. For a better understanding of wave heating,
we need to take into account the effects of different dissipation coefficients such as resistivity and viscosity, the importance of the loop
physical characteristics, and the ways gravity can factor into the evolution of these phenomena.
Aims. We aim to map the sites of energy dissipation from transverse waves in coronal loops in the presence and absence of gravitational
stratification and to compare ideal, resistive, and viscous MHD.
Methods. Using the PLUTO code, we performed 3D MHD simulations of kink waves in single, straight, density-enhanced coronal
flux tubes of multiple temperatures.
Results. We see the creation of spatially expanded Kelvin–Helmholtz eddies along the loop, which deform the initial monolithic loop
profile. For the case of driven oscillations, the Kelvin–Helmholtz instability develops despite physical dissipation, unless very high
values of shear viscosity are used. Energy dissipation gets its highest values near the apex, but is present all along the loop. We observe
an increased efficiency of wave heating once the kinetic energy saturates at the later stages of the simulation and a turbulent density
profile has developed.
Conclusions. The inclusion of gravity greatly alters the dynamic evolution of our systems and should not be ignored in future studies.
Stronger physical dissipation leads to stronger wave heating in our set-ups. Finally, once the kinetic energy of the oscillating loop
starts saturating, all the excess input energy turns into internal energy, resulting in more efficient wave heating.
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1. Introduction

One of the open questions regarding the nature of the solar atmo-
sphere is explaining its radial temperature profile. The extreme
ultraviolet (EUV) and thermal X-ray emission from the solar
corona reveal plasma temperatures above 1 MK, while obser-
vations of active regions reveal temperatures of log T > 6.5 for
plasma confined into compact loops (Testa & Reale 2012). These
findings guide the study of solar atmospheric heating towards
areas of stronger, structured magnetic fields in the context of
both the active and the quiet Sun.

Coronal heating models are usually classified into direct cur-
rent (DC) and alternating current (AC) models. In direct current
models like Ohmic dissipation of current sheets and nanoflares,
heating is induced by magnetic field braiding in timescales much
larger than the Alfvén crossing time along a coronal loop (Cargill
& Klimchuk 2004; Klimchuk 2006; Chitta et al. 2018). On the
other hand, alternating current models focus on mechanisms
with dynamic timescales that are shorter than the Alfvén cross-
ing time along a coronal loop and mainly consist of wave energy
dissipation models (Hollweg 1981; Ofman et al. 1994a; Pagano
& De Moortel 2017; Pagano et al. 2018) and Alfvén wave

⋆ Movies associated to Figs 2, 5, and 6 are available at
https://www.aanda.org

induced turbulence (van Ballegooijen et al. 2014, 2017; Magyar
et al. 2017).

The increased interest in loop oscillations is also justified
by the discovery of transverse magnetohydrodynamic (MHD)
oscillations of loops (Aschwanden et al. 1999; Nakariakov et al.
1999). The physical characteristics of the loops allow them to
dynamically connect different layers of the solar atmosphere,
by acting as waveguides and transferring energy across those
layers. The most well-studied loop model is the simple struc-
ture of a cylindrical flux tube; the theory of surface waves in
Zajtsev & Stepanov (1975), Ryutov & Ryutova (1976), and Edwin
& Roberts (1983) described the different modes expected in such
a structure. Observations by the Coronal Multi-channel Polarime-
ter (CoMP), the Solar Dynamics Observatory (SDO), and Hinode
spacecraft have further sustained research interest in the environ-
ments where oscillating loops are found in abundance. A large
number of studies have already proved the ubiquity of transverse
perturbationsalongcoronal loops,prominence threadsandgreater
areas of the corona (Tomczyk et al. 2007; Okamoto et al. 2007;
Tomczyk & McIntosh 2009; McIntosh et al. 2011), and the magni-
tude of the estimated energy carried by such waves is under strong
debate (De Pontieu et al. 2007; McIntosh et al. 2011; Goossens
et al. 2013; Van Doorsselaere et al. 2014; Thurgood et al. 2014;
Morton et al. 2016).

The first step towards energy dissipation from waves in loop
structures is the energy transfer to smaller scales, where it can

Article published by EDP Sciences A53, page 1 of 15

https://doi.org/10.1051/0004-6361/201834309
https://www.aanda.org
https://www.aanda.org/10.1051/0004-6361/201834309/olm
http://www.edpsciences.org


A&A 623, A53 (2019)

be turned into internal energy of the plasma. The main mech-
anisms considered responsible for wave damping are reson-
ant absorption for the case of standing modes (Ionson 1978;
Sakurai et al. 1991; Goossens et al. 1992, 2002, 2011;
Ruderman & Roberts 2002; Arregui et al. 2005; Yu et al. 2017)
and its analogous mechanism of mode coupling (Pascoe et al.
2010; De Moortel et al. 2016) for propagating waves. Both
mechanisms use a resonance to transfer the energy of the global
mode to local azimuthal Alfvén modes at the resonant layer,
reducing the amplitude of the transverse oscillations. In the pres-
ence of a varying Alfvén speed profile transverse to the propa-
gation direction, smaller scales are further created through phase
mixing (Heyvaerts & Priest 1983; Soler & Terradas 2015). Once
the smaller scales have developed, dissipation mechanisms such
as resistivity or viscosity can lead to heating (Ofman et al. 1998;
Pagano & De Moortel 2017). A disadvantage of this approach,
however, is the spatial confinement of the resonant layer. Cargill
et al. (2016) showed that, unless broadband drivers (Ofman et al.
1998) or additional heating mechanisms are taken into account,
this localized heating would not be capable of sustaining a fixed
density gradient between the loop and the environment once
radiative cooling was considered.

Another way to spread the resonant layer across a flux tube
cross section, in the case of standing waves, is the development of
the Kelvin–Helmholtz instability (KHI) from strong shear veloci-
ties generated by the azimuthal Alfvén waves (Heyvaerts & Priest
1983; Zaqarashvili et al. 2015). The KHI creates a turbulent layer
at the loop edges, where resonant absorption and phase mixing can
effectively transfer energy to smaller scales. Three-dimensional
simulations of straight flux tubes confirmed the non-linear con-
nection between resonant absorption, phase mixing, and KHI for
driver generated azimuthal Alfvén waves (Uchimoto et al. 1991;
Ofman et al. 1994b; Poedts & Goedbloed 1997; Poedts et al.
1997). More recent numerical studies (Terradas et al. 2008, 2018;
Magyar & Van Doorsselaere 2016a; Antolin et al. 2017, 2018;
Howson et al. 2017a) have confirmed the development of trans-
verse wave induced Kelvin–Helmholtz (TWIKH) rolls for stand-
ing kink waves in flux tubes in different environments, which lead
to mixing between the loop cross section and the surrounding
plasma.

Studies of continuous footpoint driven standing waves
in flux tubes (Karampelas et al. 2017; Karampelas & Van
Doorsselaere 2018), inspired by the recently observed, decay-
less low-amplitude kink oscillations in coronal loops (Nisticò
et al. 2013; Anfinogentov et al. 2015; Nakariakov et al. 2016),
have focussed on the effects of KHI on coronal loop heating.
The constant input of energy in these simulations causes the
developed TWIKH rolls to expand across the loop cross section,
leading its initial monolithic density profile into a turbulent state
and fully deforming this profile in the process. This deformation
spreads the resonant layer, where energy dissipation takes place
across the loop in the presence of resistivity and viscosity. Its
imprint on the magnetic field near the footpoint also causes the
resitive heating rate there to spread gradually inside the loop,
leading to energy dissipation and temperature increase. How-
ever, this heating is easily masked by the mixing between plasma
of different temperatures.

In the current study, we expand upon our previous work,
aiming to model low-amplitude, decayless kink waves in active
region coronal loops that are driven by footpoint motions. We
incorporate gravity into our models to study its effects on the
loop dynamics alongside the potential effects on wave heating.
Physical resistivity and shear viscosity have been introduced
alongside gravity, allowing us to study their effects on the devel-

opment of the TWIKH rolls for driven oscillations (Howson
et al. 2017b, for impulsively oscillating loops without gravity)
and on the wave heating process. Finally the energy evolution of
different models is considered, giving us insight into the under-
lying mechanics of wave heating.

2. Numerical model

2.1. Equilibrium

For our 3D simulations, we use straight, density-enhanced mag-
netic flux tubes in a low-β coronal environment, similar to that
in Karampelas et al. (2017). We mainly focus on gravitation-
ally stratified, active region coronal loops in ideal, resistive, and
viscous MHD, while also including two models of non-stratified
loops in ideal MHD used as reference. Each loop has a full length
(L) of 200 Mm and an initial radius (R) of 1 Mm, which is con-
stant with height. In the following analysis, we denote the basic
values of our physical parameters with the index i (e) for internal
(external) values, with respect to our tube.

The radial density profile, for all models is given by the rela-
tion

ρ(x, y) = ρe + (ρi − ρe)ζ(x, y), (1)

ζ(x, y) =
1
2

(1 − tanh((
√

x2 + y2/R − 1) b)), (2)

where ρe is the external density and ρi the internal or loop
density. For the gravitationally stratified loops, we define the
internal and external density at the footpoint as ρi and ρe, with
ρe = 109 µmp cm−3 = 0.836 × 10−12 kg m−3 (µ = 0.5 and mp is
the proton mass). For the non-stratified models, the density radial
profile is constant with height. By x and y we denote the coordi-
nates in the plane perpendicular to the loop axis, z along its axis
and b sets the width of the boundary layer. We consider b = 20,
which gives us an inhomogeneous layer of width ℓ ≈ 0.3 R. We
choose a density ratio of ρi/ρe = 3 for all models at the foot-
point, within the range of estimated ratios (Aschwanden et al.
2003), which is suitable for fast transfer of energy from trans-
verse to azimuthal motions, through resonant absorption. For
all models studied, we set the temperature to be constant with
height. Radial dependence of temperature depends on the dif-
ferent cases considered. Finally, we consider an initial uniform
magnetic field and parallel to the flux tube axis, along the z-axis
(Bz = 22.8 G).

In the cases where gravity is included, it varies sinusoidally
along the flux tube, taking a zero value at the loop apex (z = 0)
and maximum absolute value at the footpoints (z = ±100 Mm).
We use this variation per height to model the effects of the cur-
vature along the loop axis, while retaining a straight flux tube.
Thus, we have stratification of pressure and temperature along
the loop according to the hydrostatic equilibrium,

∂pi,e

∂z
= −g ρi,e sin

(

πz

L

)

· (3)

As a consequence of gravitational stratification, there is a pres-
sure imbalance at the loop boundary, leading to a jump in total
pressure. This imbalance is countered by the restructuring of a
stratified magnetic field inside the loop, which causes a weak
standing oscillation, with velocities of only a small fraction of
the amplitude of our driver. By letting our system relax for a
period, it reaches a quasi-equilibrium state (Fig. 1) and the afore-
mentioned perturbation does not affect the global dynamics of
our system. After the relaxation, the magnetic field shows a
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Fig. 1. Radial profile of density (left panel), internal energy (middle panel), and Bz magnetic field (right panel) for the gravitationally stratified
models at different heights after the relaxation period. The profiles are considered before initiating the driver. The apex is located at z = 0 and the
footpoint at z = 100 Mm. x = 0 is the centre of the loop at t = 0.

slight increase towards the apex inside the loop due to the cho-
sen density and temperature configuration. During the relaxation
of the systems, temperature, pressure, and density do not deviate
significantly from their initial state.

The different cases considered in the current work are as
follows:

1. A model of a loop in hydrostatic equilibrium between
itself and the background plasma. No gravity is included. We
consider a uniform temperature Ti = Te = 106 K, and use ideal
MHD with an estimated magnetic Reynolds number Rm = 106

and estimated Reynolds number Re = 106. This model is called
“UniT”. Total pressure is kept constant along and across the flux
tube by changing the magnetic field along the radial direction
from Bzi = 22.8 G for the internal to Bze = 22.95 G for the exter-
nal magnetic field.

2. A loop model without gravity (“ColdIngr”) in hydrostatic
equilibrium between itself and the background plasma. We con-
sider a temperature ratio of Ti/Te = 1/3 with Ti = 9×105 K, and
use ideal MHD (Rm = 106 and Re = 106).

3. A gravitationally stratified loop (“ColdI”) in hydrostatic
equilibrium between itself and the background plasma. We con-
sider temperature ratio of Ti/Te = 1/3 with Ti = 9 × 105 K, and
use ideal MHD (Rm = 106 and Re = 106).

4. Model “ColdR”. Same as model ColdI but for resistive
MHD (Rm = 104 and Re = 106).

5. Model “ColdV”. Same as model ColdI but for viscous
MHD (Rm = 106 and Re = 104), where shear viscosity is consid-
ered.

6. Model “ColdV2”. Same as model ColdV but for a lower
Reynolds number (Rm = 106 and Re = 102).
All of the gravitationally stratified models start from the same
initial state (after the relaxation) shown in Fig. 1 before applying
the driver and physical dissipation.

A detailed overview of the physical parameters for each
model a presented in Table 1. The different temperature pro-
files are useful in identifying and studying the underlying heat-
ing mechanisms in the solar corona. Model UniT is a very sim-
ilar model to the Driven-equalT model from Karampelas et al.
(2017), but for a stronger driver. We simulated this system to see
the effects of numerical diffusion on energy dissipation for our
current code and resolution in the same way as in our previous
study. Models ColdI, ColdR, ColdV, and ColdV2 are the exten-
sions of the Driven-diffT model from Karampelas et al. (2017),
when gravity and physical dissipation are introduced. ColdIngr
is based on the same model, but for different values of density,
which is useful for directly comparing with the gravitationally
stratified models, as is demonstrated later. Through these models

we want to study the effects of gravity, resistivity, and viscosity
on cold flux tubes, for example like the loops in thermal non-
equilibrium (Froment et al. 2015, 2017) considered later during
their cooling phase.

2.2. Grid

The 3D ideal MHD problem is solved using the PLUTO code
(Mignone et al. 2012, 2018), where the extended GLM method
from Dedner et al. (2002) is employed to keep the solenoidal
constraint on the magnetic field. We use the finite volume
piecewise parabolic method (PPM) with a second order spa-
tial global accuracy, and the second order characteristic tracing
method for calculating the timestep. For the resistivity and shear
viscosity, an explicit method for recalculating the timestep is
used.

The domain dimensions for models ColdIngr, ColdI, ColdR,
ColdV, and ColdV2 are (x, y, z) = (10, 6, 100) Mm. We use a
uniform grid with a resolution of 640 × 384 × 64, which trans-
lates into cell dimensions of 15.625 × 15.625 × 1562.5 km for
all models. For the UniT model we use a domain of (x, y, z) =
(10, 3, 100) Mm, which have the same cell dimensions as in
the rest of our models. The resolution is higher in the x−y
plane, to better resolve the small-scale structures that appear
in the loop cross section, as we can see in Fig. 3. The resolu-
tion on the z-axis can sufficiently model the density stratifica-
tion, since the lack of radiation or thermal conduction reduces
the need for a finer grid along the tube axis. The footpoint of
the loop is located at z = 100 Mm and the apex at z = 0.
In all of our models, we have the inevitable numerical dissi-
pation effects, which lead to an effective resistivity and viscos-
ity many orders of magnitude larger than those expected in the
solar corona. Through a parameter study of changing the values
of physical resistivity and viscosity, we estimated the effective
Reynolds and magnetic Reynolds number to be Re = 106 and
Rm = 106. These are the values for the ideal MHD cases in our
simulations.

2.3. Driver

Our tubes are driven from the footpoint (z = 100 Mm), using
a continuous, monoperiodic “dipole-like” driver (Karampelas
et al. 2017), inspired by that used by Pascoe et al. (2010). The
period of the driver is P ≃ 2L/ck, coinciding with the corre-
sponding fundamental eigenfrequency for each model (Edwin &
Roberts 1983; Andries et al. 2005). The values of the periods for
each each model are listed in Table 1.
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Table 1. Overview of the physical parameters for the different models in our simulations.

Model Name Gravity Period (s) υ0 (km s−1) Ti/Te Ti (K) ρi f /ρu Bz (G) b β f Re Rm

1 UniT No 256 4 1 106 2.509 22.8 20 0.02 106 106

2 ColdIngr No 171 4 1/3 9 × 105 1.129 22.8 20 0.08 106 106

3 ColdI Yes 171 4 1/3 9 × 105 2.509 22.8 20 0.018 106 106

4 ColdR Yes 171 4 1/3 9 × 105 2.509 22.8 20 0.018 106 104

5 ColdV Yes 171 4 1/3 9 × 105 2.509 22.8 20 0.018 104 106

6 ColdV2 Yes 171 4 1/3 9 × 105 2.509 22.8 20 0.018 102 106

Notes. The index i (e) denote internal (external) values, while the index f represent the footpoint values. Density is normalized by ρu =

10−12 kg m−3.

Fig. 2. Three-dimensional temperature contour plot, measured in 106 K,
for a gravitationally stratified cold loop in a warm corona (model ColdI).
Moving clockwise from the top left panel: t = 0, 2.5 P, 4.75 P, and
10 P, where P = 171 s is the period of the driver. An animation of these
figures, showing the oscillation for the model in ideal MHD, is available
online (Movie 1).

The driver velocity is uniform inside the loop and time
varying,

{υx, υy} = {υ(t), 0} =
{

υ0 cos(
2πt
P

), 0
}

, (4)

where υ0 = 4 km s−1 is the peak velocity amplitude, close to the
observed photospheric motions. Outside the loop, the velocity
follows the relation

{υx, υy} = υ(t)R2

{

(x − α(t))2 − y2

((x − α(t))2 + y2)2
,

2(x − α(t))y
((x − α(t))2 + y2)2

}

, (5)

where α(t) = υ0 (0.5 P/π) sin(2πt/P) is a function that recentres
the driver, following the movement of the footpoint. To avoid any
numerical instabilities due to jumps in the velocity, a transition
region following the density profile exists between the two areas.
By moving the driver with the footpoint along the x direction,

Fig. 3. Top image: part of the total density cross section for model ColdI,
at the apex. We focus on the area with −0.3 ≤ y (Mm) ≤1.6 and 0.1 ≤ x
(Mm) ≤ 2.0 to highlight the resolution of smaller scale structures on the
x−y plane. Bottom image: density structure at y = 0.6 Mm, along the
white line of the top image. The dots represent the grid points along the
white line. The red line highlights the part visible in the image above.
The plot shows time t = 10 P; P = 171 s indicates the period of the
driver.

we keep the base of the loop inside the central region of uniform
velocity.

2.4. Boundary conditions

We keep the velocity component parallel to the z-axis (vz) anti-
symmetric at the bottom boundary (z = 100 Mm) to prevent
flows of mass through it. We also extrapolate the values for

A53, page 4 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834309&pdf_id=2
https://www.aanda.org
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834309&pdf_id=3


K. Karampelas et al.: Wave heating in gravitationally stratified coronal loops

density and pressure, using the equations for hydrostatic equi-
librium, while we use a zero normal gradient condition for the
magnetic field,

Bi(z) =
1

11
(2Bi(z − 3) − 9Bi(z − 2) + 18Bi(z − 1)) , (6)

to extrapolate the values of each magnetic field component
through the bottom boundary. Finally, the vx and vy velocities are
defined by the driver. For the UniT and ColdIngr models, where
no gravity is considered, we simply use Neumann-type, zero-
gradient conditions for the density, pressure, and magnetic field.
Studying the fundamental standing kink mode for an oscillating
flux tube allows us to take advantage of the inherent symmetries
of this mode, as well as the symmetric nature of our driver. In
the top boundary (z = 0), we kept vz, Bx, and By antisymmetric,
in the x−y plane at the apex, while all the other quantities are
symmetric. Thus, only half the loop is simulated along the loop
axis.

For the UniT model we also took into account the symmet-
ric nature of the kink mode and our driver along the y-axis.
The vy and By are antisymmetric in the x−z plane, while the
other quantities are symmetric. Therefore, our computational
time is reduced fourfold in total for this model, following our
previous work (Karampelas et al. 2017; Karampelas & Van
Doorsselaere 2018). At the three lateral boundaries, we apply
outflow (Neumann-type, zero-gradient condition) conditions,
which allow waves to leave the domain.

For models ColdIngr, ColdI, ColdR, ColdV, and ColdV2, we
do not employ the symmetry at the x−y plane. This way, through
the inevitable development of numerically induced asymmetries,
we allow the loop to evolve in a non-symmetric environment,
as we would generally expect in the solar corona. All the side
boundaries in these models are set to outflow (Neumann-type,
zero-gradient) conditions for all variables, which allow waves to
leave the domain.

To minimize their effect on the dynamics of our loops, we
placed the x side boundaries (along the direction of the oscilla-
tion) at a safe distance from the loop (5 R in x). On the y direc-
tion (perpendicular to the oscillation), we placed the boundaries
at 3 R from the centre of the loop in order for them to not affect
the development of our oscillations.

2.5. Forward modelling

We use the FoMo code (Van Doorsselaere et al. 2016) to ren-
der spectroscopic images of our simulation data on the differ-
ent models. We present snapshots of the emission intensities for
different lines. In all images, we consider a line-of-sight plane
perpendicular to the loop axis and we set the LOS angle per-
pendicular to the oscillation direction equal to 0◦. By choos-
ing to study the emission intensity for the Fe XII 195.12 Å line,
we focus on the temperatures found predominately in the turbu-
lent layer developing because of the KHI (Antolin et al. 2016,
2017).

3. Results

In the following analysis, we define the flux tube through a den-
sity threshold (normalized by ρu = 10−12 kg m−3) as follows:

ρtube ≥ 0.359 ×
ρi

ρu

f (x, y, z) = 0.9 exp
(

−g0 L

Rspecific π

cos (πz/L)
T (x, y)

)

,

(7)

where g0 = 274 m s−2 is the solar gravitation in the surface of
the sun, Rspecific is the specific gas constant, and T (x, y) is the
initial temperature profile for each model, which is independent
of height in our set-ups. For models 1 and 2 we have ρtube(x, y) ≥
0.359ρi/ρu.

Regarding the models of cold loops embedded in a hot envi-
ronment, our choices of the density profiles and magnetic field
ensure that these five models have the same frequency of the fun-
damental standing kink mode, as we see in Table 1. These mod-
els all have the same optimal driver frequency, almost the same
initial magnetic field, and the exact same driver. As a result, the
only differences in the input energy from the driver are due to
the different dynamical evolution of the systems. This difference
of the input energy eventually affects the evolution of wave dis-
sipation and the development of heating. Therefore, most of the
differences are attributed to the presence or absence of gravity
for the ideal MHD, and in the different values of Rm and Re for
the gravitationally stratified cases.

3.1. Loop dynamics and evolution

We drive our loops for a total of ten periods. As in Karampelas
et al. (2017), the first waves to reach the apex (z = 0) are the
azimuthal Alfvén waves at the boundary layer of our tube, thanks
to their higher propagation speed, followed by the propagating
kink waves. The propagating waves superpose with the counter
propagating waves from the other footpoint (due to the symmetry
at the apex), forming a standing wave. By choosing driving fre-
quencies equal to the analytically predicted frequencies for the
fundamental kink mode (Edwin & Roberts 1983; Andries et al.
2005), we forced our loops to perform an oscillation resembling
the fundamental standing mode for the kink wave. An anima-
tion of the ColdI model is available online, for Fig. 2, showing
the evolution of that oscillation. We note that due to the finite
speed of the waves originated at the footpoint, the apex starts
oscillating later than the footpoint, where the driver is located.
This is shown in Fig. 4, where the oscillation at the apex starts
later than the start of the driver (at t = 0). This leads to a phase
difference between oscillation at the footpoint and the apex, sim-
ilar to that observed for the driven models of our previous studies
(Karampelas et al. 2017; Karampelas & Van Doorsselaere 2018).

As we see in Fig. 4, the centre of mass at the apex shows a
maximum displacement of ≈1 Mm from the equilibrium position
at t = 0. This is larger than the ≈0.1−0.3 Mm oscillation ampli-
tudes observed for decayless transverse oscillations in coronal
loops (Nisticò et al. 2013; Anfinogentov et al. 2015; Nakariakov
et al. 2016), and is caused by the strength of the driver used in the
current set-up. We note that the υx velocity at the location of the
centre of mass are ≈3.3% of the initial internal Alfvén velocity.

As is expected from theory (Heyvaerts & Priest 1983;
Zaqarashvili et al. 2015) and simulations (Terradas et al. 2008;
Antolin et al. 2017), the location of the antinode of the x-velocity
(here the apex) is Kelvin–Helmholtz unstable. We already know
from Karampelas & Van Doorsselaere (2018) that the KHI for
driven oscillations leads to the development of spatially extended
eddies, the TWIKH rolls. Because of the frozen-in condition,
the out of phase movement of the TWIKH rolls create elongated
strand-like features along the flux tube, which we see in Fig. 2.
The same structures are visible in Fig. 5, where we present
snapshots of the emission intensity for the Fe XII 195.12 Å line
at the end of our simulation, for models ColdI, ColdR, and
ColdV. This spectral line was chosen because it is better suited
to detect the hotter plasma at the loop edges in our set-up
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Fig. 4. Centre of mass displacement (top panel) and centre of mass υx

velocity (bottom panel) at the apex for our different models.

(Antolin et al. 2017). The resulting images are very similar to
the non-stratified case (Karampelas & Van Doorsselaere 2018),
showing that the introduction of gravity does not affect previ-
ous results on forward modelling of oscillating loops (Antolin
et al. 2016, 2017). Furthermore, the similarity of the results
between the ideal, resistive, and viscous MHD models can
potentially hinder the observational distinction between the dis-
sipative effects in coronal loops should one focus only on study-
ing the dynamical evolution of these systems.

In Fig. 6 we show cross sections at the apex, at multiple
oscillation times for models ColdIngr, ColdI, ColdR, ColdV, and
ColdV2. For Re > 104 and Rm > 104 the presence of higher dis-
sipation such as resistivity and viscosity delays the emergence
of the KHI compared to the ColdI model, in agreement with
Howson et al. (2017b). However, the instability is fully devel-
oped for models ColdI, ColdR and ColdV within the first three
driving periods. After almost five periods, the TWIKH rolls have
already expanded across the loop cross section, deforming the
initial density profile. By the end of the simulation, the loop
surface area basically doubles for all three models at the apex,
and the TWIKH rolls turn the initial monolithic density pro-
file into a turbulent density profile. This evolution of the cross
section is also observed in most of the other models consid-
ered for this study, and is responsible for some of the results
regarding the temperature evolution in our models. By simulat-
ing the entire loop cross section, we observe numerically induced
asymmetries in the development of KHI. These become more
prominent in the second half of the simulations, creating an non-
symmetric turbulent density profile, closer to what would be gen-
erally expected in the solar corona. Movies 3, 4, and 5 of Fig. 6
show the evolution of the loop cross section for the entirety of the
simulation.

The only exception to the aforementioned cases is model
ColdV2 (Re = 102), where no TWIKH rolls are observed. The

Fig. 5. Forward modelling images of the integrated emission intensity
(in erg cm−2 s−1 sr−1) of the cold tubes (the models ColdI, ColdR, and
ColdV) for the 195.12 Å line. The observer is at a 0◦ LOS angle, per-
pendicular to the oscillatory motion. Half the loop length is modelled
(z = 0−100 Mm). From top to bottom the ideal case at t = 10 P, resisi-
tive case at t = 10 P , and viscous case at t = 10 P are shown. The driver
period is P ≃ 171 s. A movie with the forward modelling for model
ColdI is available online (Movie 2).

high value of the shear viscosity in that model leads to the com-
plete suppression of the KHI for the duration of our simulation.
A similar effect was observed before in Howson et al. (2017b) in
impulsively oscillating coronal loops for combined high values
of resistivity and viscosity (Re = 104 and Rm = 104). The higher
values of dissipation required to suppress the KHI in our work
are due to the continuous driving of our loops.

3.2. Temperature evolution in cold loops

In Karampelas et al. (2017), we proved that (numerical) resis-
tivity increases the temperature of a non-stratified loop, with
uniform initial temperature (Driven-equalT model), near the
footpoint. In order to validate our previous results and study the
effects of numerical dissipation in the current code to our results,
we simulated a similar set-up for an increased resolution (UniT
model). In Fig. 7, we examine the temperature profiles along the
z-axis over time for this model and we plot the average tempera-
ture for the flux tube cross section (for ρ ≥ 0.9 × 10−12 kg m−3).
We observe a gradual increase of the average temperature over
time the closer we get to the footpoint and apex. The temperature
increase is comparable in both regions and the highest values are
observed near the footpoint, while the area at mid-length of the
loop experiences a negligible temperature increase.

At the apex, the higher velocity and the developed KHI leads
to stronger viscous heating. Resistive heating is not expected
to be as pronounced there because of the lack of strong cur-
rents caused by the nature of the fundamental standing kink
mode. Ohmic dissipation, however, is stronger near the foot-
point, where the average square current densities (dominated by
the J2

z ) are at their strongest (Van Doorsselaere et al. 2007).
In Karampelas et al. (2017) we observed similar temperature
profiles, but the temperature increase at the apex was not as
pronounced. The observed differences between the present and
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Fig. 6. Contour plots of the density in the cross section at the apex for five different set-ups of cold loops at three different times. From top to
bottom rows: models ColdIngr, ColdI, ColdR, ColdV and ColdV2. Panels are recentred to keep a clear view of the entire cross section. A different
colourscale is chosen for the ColdIngr case, better adjusted to the density profile. All panels have the same dimensions of 6.3 Mm in the x direction
and 4.2 Mm in the y direction. The period of the driver is P = 171 s. Animations of these plots for the ColdI, ColdR and ColdV are available online
(Movies 3, 4 and 5).

past results are caused partly by the stronger driver employed
and partly by the different numerical dissipation in each code.
However, the temperature increases at the apex is expected from
our previous analysis, despite the apparent contradiction with
the older results. The temperature increase at the footpoint is
explained through the higher values of the resistive heating rate
there (Karampelas & Van Doorsselaere 2018).

Considering again our models of gravitationally stratified
cold loops embedded in a hot corona, we try to see where the
energy dissipation takes place and how this affects the temper-
ature distribution. In Fig. 8 the cross sections at the apex of

models ColdI, ColdR, and ColdV are shown for density, inter-
nal energy density, and temperature. As we see in the contours
for internal energy density, the highest values lay on the inter-
face between the expanded TWIKH rolls and the environment,
while the internal part of the loop also shows increased values
from those derived from the initial conditions (see Fig. 1). The
highest values are found in the ColdV model, followed by the
ColdR model, and finally by ColdI. The same can also be seen
in the contours for the temperature and the ColdV case shows the
highest values of temperature at the locations of the highest
internal energy increase. Because of delayed mixing the viscous
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Fig. 7. Top panel: average temperature of the flux tube for ρ ≥ 0.9 ×
10−12 kg m−3 along the z-axis, for a non-stratified loop with uniform
temperature (model 1). Bottom panel: average square current densities
(J2) of the flux tube for ρ ≥ 0.9 f (x, y, z) for the same model. The apex
is located at z = 0.

set-up also has some of the lowest temperatures in internal areas
of the loop when compared to the other two cases. These pro-
files guide us into treating the observed temperature increase
of ∼4.7 × 104 K mainly as the result of dissipation, rather than
the adiabatic temperature fluctuation that was observed in loops
of uniform temperature (Antolin et al. 2017; Karampelas et al.
2017).

In order to find the location of energy dissipation for models
ColdI, ColdR, and ColdV, we plot in Fig. 9 the temperature pro-
files along the z-axis, over time, for the aforementioned models.
In the initial stages of the simulation, we observe a small temper-
ature increase propagating from the footpoint towards the apex.
These paths are attributed to slow waves initiated by the driver,
which travel along the loop axis. Once the KHI manifests, the
mixing between the colder loop and the hot corona drops the
average temperature of our domain. This drop is more promi-
nent at the quarter length of the flux tube, where both resistive
and viscous heating are expected to have a lesser effect than at
the footpoint and apex, respectively. Energy dissipation in that
area is not strong enough to counter the apparent temperature
drop due to the mixing, which becomes stronger at later stages
of the simulation. However, a temperature increase is observed
near the footpoint and apex, as the simulations reach their final
stages. This temperature increase becomes even stronger for the
ColdR model, reaching its maximum values in the ColdV set-up.
As we can observe, all three models show their strongest heating
near the footpoint and minimum differences take place for the
values of resistivity and viscosity.

Focussing on the ideal MHD case, we see that the internal
energy density is increasing all along the flux tube, the highest
values are found near the apex, and gradually lower values are
found as we travel towards the loop footpoints. Considering the
initial gradient of internal energy, we would intuitively expect an
apparent drop in the average internal energy from the mixing of

the different regions. This, however, is not observed. Instead, a
constant increase of the internal energy density along the loop
is observed over time. This increase is a combination of resis-
tive and viscous dissipation due to numerical dissipation, as we
have already seen in the UniT model. The highest values near
the apex seem to contradict the results of Van Doorsselaere et al.
(2007), where it was proved that resistive heating should be the
strongest for the fundamental standing mode of transverse oscil-
lations. However, the higher observed values of temperature near
the footpoint are still in agreement with that work. Looking at the
flux tube surface area variation over time for model ColdI, we see
that the loop is expanding. The highest values of the expansion
are found near the apex where the cross-sectional surface area
doubles in size as a consequence of the TWIKH rolls. There-
fore, we can conclude that the observed temperature increase is
not an apparent phenomenon but the result of wave heating.

In our past study of a cold loop inside a hotter corona with-
out gravity (Karampelas et al. 2017), the mixing effects were
effectively masking the results of energy dissipation in that set-
up and the average temperature of our domain drops as a result
of the cold loops expansion. In the present study, we reproduce
the same results for the ColdIngr model, which are shown in
Fig. 10. The square current density again shows higher values
near the footpoint, and an increase of the internal energy is again
observed along the loop axis. The heating due to the driver gener-
ated propagating slow waves that were observed in the stratified
case are not prominent in this set-up, which produces only very
slight changes in the initial state of the simulations. The tem-
perature shows a slight increase near the footpoint from ohmic
dissipation due to numerical dissipation. However, the average
temperature shows an apparent drop as we move higher up the
loop as a consequence of TWIKH rolls developing in our domain.
From our current results, we see that the introduction of gravity
leads to a more complex evolution of the average temperature.

In the gravitationally stratified models of ColdI, ColdR, and
ColdV, we observe a fluctuation of internal energy near the foot-
point. The same fluctuation is clearer in the ColdIngr model,
where we also have signs of a low frequency periodic fluctua-
tion of the internal energy at the apex. This periodic fluctuation
at the apex was also observed in Magyar & Van Doorsselaere
(2016a) for impulsive standing oscillations in coronal loops, and
is associated with the ponderomotive force on loops performing
standing oscillations (Terradas & Ofman 2004). This perturba-
tion is comparable to the effects of phase mixing the ColdIngr
model. However, its effects are quickly negated by wave heating
in the gravitationally stratified cases, while the overall dynamics
seem to remain unaffected.

Looking again at models ColdR and ColdV (Fig. 9), we
see that the highest internal energy is achieved by the viscous
case, and both models show stronger heating than the ideal case.
The spatial and temporal profile of the internal energy is still
the same as in ideal MHD, and there are very small differences
between the three models for the values of resistivity and vis-
cosity that we used in this work. These differences are the result
of the dissipation parameters on the dynamical evolution of the
oscillating loops. The higher temperatures at the apex for the
viscous case are what we expected from our past work. Near
the footpoint, we would expect the resistive case to lead to the
highest temperature increase, since the square current densities
(dominated by J2

z ) have their highest values there for all three
models. The viscous case also shows higher average tempera-
tures there because of the shrinking of the tube cross section,
as observed in the zt profile for the tube surface area of the
ColdV model. This shrinking of the cross section of the cold
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Fig. 8. Contour plots of density (left panels), internal energy (middle panels), and temperature (right panels) at the apex for −2.1 ≤ y (Mm) ≤ 2.1,
and −3.8 ≤ x (Mm) ≤ 2.5. From top to bottom, the cases for ideal MHD, resistive MHD, and viscous MHD (models ColdI, ColdR and ColdV) are
shown. The driver period is P ≃ 171 s.

loop increases the contribution of the hot corona in the calcula-
tion of the average temperature. This is combined with the resis-
tive heating due to numerical dissipation, resulting in the appar-
ent effect of higher average temperature than in the ideal MHD
model.

Another interesting result that we obtain for models ColdR
and ColdV are the evolution of the currents. As mentioned
before, the J2 has the highest values near the footpoint (z =
100 Mm) for all three models because of the strong Jz currents
there. Both the resistive and viscous case show on average a
reduced amount of currents, and there are some temporary high
values higher up the loop. The spikes in current densities and
the reduced amount of ambient low current densities, unlike the
ideal case, is similar in the dynamical evolution of these systems.
This similarity leads to the conclusion that when we have com-
parable values for the Reynolds and magnetic Reynolds number
in a system, increased resistivity can act as a form of tur-
bulent viscosity and viscosity can disrupt the development of
smaller scales and currents comparable to a form of anomalous
resistivity.

3.3. Heating in very viscous cold loops (Re = 10
2)

The temperature evolution of the ColdV2 model is a special case
that needs to be examined separately. We have already seen in
Fig. 6 that the very high value for shear viscosity (Re = 102)
resulted in a complete suppression of the KHI in that loop. This
suppression eventually leads to a different behaviour for tem-
perature. In Fig. 11 we plot the average temperature and aver-
age internal energy per height and over time, over the entire
x−y plane. We observe an increase of the average temperature
towards the apex, with a maximum value of 2.4 × 104 K. These
values are higher than the corresponding values for the ColdV

model in Fig. 9, and are the result of the very high values of the
shear viscosity. We also observe a heating of around 103−104 K
near the footpoint. These values are lower than those for the
ColdI model, and are caused by the resistive effects of numerical
dissipation. The smaller values of currents inside the flux tube
(ρ ≥ 0.9 f (x, y, z)), as shown in Fig. 11, can explain the lower
values for temperatures.

The maximum values for temperature at the apex (∆T =
0.298×106 K) are near the boundary of the loop and in the wake
behind the oscillating loop, and are caused by the viscous dissi-
pation of energy. This can be seen in the second row of panels in
Fig. 11 for the cross section at the apex. The heating inside the
loop is far less (∆T = 3.2 × 104 K) and is the effect of energy
dissipation, since we observe no mixing with the surrounding
plasma.

The average internal energy per height and over time of
Fig. 11 show a similar profile to the corresponding profiles for
models ColdI, ColdR, and ColdV. However, the values of the
average internal energy are lower than in those cases. This is
caused by the lack of any TWIKH rolls for the ColdV2 model,
which reduces the amount of smaller scales developing in our
loop. Thus the energy dissipation is hindered, and is now con-
fined near the loop boundary layer and the wake that is cre-
ated behind the oscillating flux tube. The agreement of position
between the temperature and internal energy prove that the wave
heating is predominately a result of dissipation.

3.4. Energy profiles and heating rate

In our attempt to study the energy evolution within our system
for models ColdI, ColdR, and ColdV, we need to first calculate
the energy fluxes from all the boundaries, including the energy
input provided by the driver, and the energy densities. We start
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Fig. 9. From top row to bottom row: average values of temperature or the whole domain, internal energy variation for the whole domain, flux tube
cross section surface area for ρ ≥ 0.9 f (z), and square current densities (for ρ ≥ 0.9 f (z)) along the z-axis and over time. From left to right column:
cases for ideal MHD, resistive MHD, and viscous MHD (models ColdI, ColdR and ColdV). The apex is located at z = 0.

from the MHD equation of energy

∂e

∂t
= ∇ ·

[

(e + ptot) υ −
BB

µ0
· υ

]

= −∇ · (ηJ × B) − ∇Φ · ρυ, (8)

where the total pressure and gas pressure are given by

ptot = p +
B2

2µ0
, (9)

p = (γ − 1)
(

e −
ρυ2

2
−

B2

2µ0

)

, γ =
5
3
, (10)

where η is the electrical resistivity, γ is the ratio of specific heats,
and µ0 is the permeability of vacuum. We rework Eq. (8) and
reach the following equation, in compact form:

K(t) + M(t) + I(t) +G(t) = S tot + Ftot, (11)

where the kinetic (K(t)), magnetic (M(t)), internal (I(t)), and
gravitational energy density variations (G(T )), the total (E(t))
energy density variation and energy density variation due to
Poynting flux (S tot) and plasma flow (Ftot) through the bound-
aries are calculated as in Beliën et al. (1999) as follows:

K(t) =
1
V

∫

V

1
2
ρ(t)υ(t)2 dV ′ −

1
V

∫

V

1
2
ρ(0)υ(0)2dV ′, (12)
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Fig. 10. Top row: average temperature (left panel) and internal energy (middle panel) of the entire x−y plane and average square current density
(right panel) of the flux tube (for ρ ≥ 0.9 f (z)) per height and over time. Bottom row: temperature (left panel), internal energy (middle panel), and
density (right panel) at the x−y plane at the apex (z = 0). Data depict the ColdIngr model. The period of the driver is P ≃ 171 s.

Fig. 11. Top row: average temperature (left panel) and internal energy (middle panel) of the entire x−y plane and average square current density
(right panel) of the flux tube (for ρ ≥ 0.9 f (z)) per height and over time. Bottom row: temperature (left panel), internal energy (middle panel) and
density (right panel) at the x−y plane at the apex (z = 0). Data depict the ColdV2 model. The period of the driver is P ≃ 171 s.

M(t) =
1
V

∫

V

B(t)2

2µ0
dV ′ −

1
V

∫

V

B(0)2

2µ0
dV ′, (13)

I(t) =
1
V

∫

V

1
γ − 1

p(t) dV ′ −
1
V

∫

V

1
γ − 1

p(0) dV ′, (14)

G(t) =
1
V

∫

V

ρ(t)Φ(t) dV ′ −
1
V

∫

V

ρ(0)Φ(0) dV ′, (15)

E(t) = K(t) + M(t) + I(t) +G(t), (16)

S tot = −
1
V

∫ t

0

∫

A

[

ηJ × B − (υ × B) × B
]

· dA
′ dt′, (17)

Ftot = −
1
V

∫ t

0

∫

A

(

ρυ2

2
+ ρΦ +

γ

γ − 1
p

)

υ · dA
′ dt′. (18)

The energy input from the driver is the component of Eq. (17)
from the bottom boundary. The top boundary, which is the loca-
tion of the apex, has practically zero average input because of the
considered symmetry there; the same amount of energy “enters”

and “leaves” the domain through that boundary. From Eq. (17)
we see that the dominant terms regarding the input energy are
the velocities, currents, and magnetic fields. This is a strong hint
that once this values are initially the same, the differences in the
input energy will be caused by the different dynamical evolution
of our systems.

In Karampelas et al. (2017), we plotted the energy density
diagrams per time for the total, kinetic, internal, and magnetic
energy density, alongside the energy input from the driver. There,
we saw the rise of the internal and kinetic energy for the case of
the driven oscillations. The observed drop in magnetic energy
density there was attributed to the Poynting fluxes through the
side boundaries, which had not been considered. In our cur-
rent analysis, we calculated the energy variation due to Poynting
flux (S tot) and plasma flow (Ftot) through the side boundaries.
After incorporating Ftot into the internal energy density varia-
tion and S tot into the magnetic energy density variation in our
domain, we plot the energy diagrams for the three models of
the cold loops (models ColdI, ColdR, and ColdV) in Fig. 12.
In the calculation of the energy density variations, we consider
the entire simulation domain. Since the region of interest has a
constant volume, the changes in the energy densities are directly
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Fig. 12. Top row: time profiles for the internal, magnetic, kinetic, and gravitational energy density variations relative to the initial state, total
(internal+magnetic+ kinetic+ gravitational) energy density difference, and energy density provided by the driver. All the quantities are volume
averaged for the whole computational domain. From left to right: ColdI, ColdR, and ColdV models. The contributions from the Poynting flux and
energy flux due to the plasma displacement through the side boundaries, have been incorporated to the magnetic and internal energy densities.
Bottom row: time averaged 1D power spectra of kinetic energy, magnetic energy, and pressure at the apex, averaged over the last oscillation period,
for the ColdI, ColdR, ColdV, and ColdV2 models.

translated into changes in the energies. From now on, we use the
terms energy density/energy interchangeably, while discussing
the results of Fig. 12. Finally, we need to stress an important
factor in our analysis. By redefining the internal and magnetic
energy variation so that they include the fluxes through the side
boundaries, we are essentially calculating the contribution of
the input energy to the magnetic and internal energy in each
model.

Starting from the magnetic energy (minus the Poynting
fluxes from the side boundaries), we observe a similar and rela-
tively steady linear growth in all three models. Part of the driving
energy is used for increasing the energy of the magnetic field.
The highest values of the input energy are observed for the vis-
cous set-up, and its lowest for the ideal MHD set-up. The reasons
for that are the slight differences in the magnetic field (and con-
sequently the current density) at the foot point, as a result of the
dynamical evolution of its system. Another reason that causes
this difference is the different value for the electrical resistivity
in model ColdR.

Studying the kinetic energy in these three models, we
observe an almost linear growth for a total of six periods, fol-
lowed by decelerating growth until around the eighth period.
After that, the kinetic energy seems to reach a saturation and only
small variations of the average values are observed until the end
of the simulations. This is an interesting result when combined
with the evolution of the (redefined) internal energy. The con-
tribution to the internal energy shows initially only a small and
non-steady increase. However, once the kinetic energy enters the
phase of decelerating growth and eventual saturation, the internal
energy exhibits a rapid growth. Given the slower growth of mag-
netic energy compared to the growth of input energy in the three
models, once the kinetic energy starts saturating, wave heating

gets stronger. The saturation of kinetic energy takes place when
the loop cross section becomes turbulent and smaller scales have
developed. These smaller scales reinforce energy cascade which
in turn leads to more efficient dissipation through (numerical and
physical) resistivity and viscosity. Finally, the higher final values
of the internal energy for the ColdR and ColdV models are con-
nected to the corresponding higher values of the input energy for
these set-ups.

In all three models, we observe a similar increase of the
gravitational energy. This slight increase is caused by the redis-
tribution of plasma along the loop, where plasma is moving
from the footpoint higher up the loop because of the evolu-
tion of the scale height. A small oscillation in the profile of the
gravitational energy exists owing to the ponderomotive force,
but its amplitude is significantly less than the overall increase,
which is thus attributed to wave heating. Finally, once we take
the energy fluxes through the side boundaries into account, the
total energy variation in our domain is equal to the energy input
from the driver. The small differences that are observed between
the two quantities can be attributed to the accuracy of the cal-
culations and the inevitable creation of small numerical errors
(∇ · B , 0).

In Fig. 12, we also plot the time averaged 1D power spec-
tra of kinetic energy, magnetic energy, and pressure at the apex,
averaged over the last period. This is justified by the fact that
small-scale generation is purely perpendicular to the mean mag-
netic field and is at its peak during the last period of the simula-
tion. We used a similar approach to Magyar et al. (2017), where
we used the python numpy version of the 2D fft routine to cal-
culate | fkxky

|2, where f = υ, b and p is the Fourier transform of
the velocities, magnetic field, and pressure. The power spectra
of velocity, magnetic field, and pressure are then calculated by
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integrating over a unit bandwidth as follows:

EK(k⊥) =
∑

kxky

|υkxky
|2, (19)

EB(k⊥) =
∑

kxky

|bkxky
|2, (20)

Π(k⊥) =
∑

kxky

|pkxky
|2, k⊥ =

√

k2
x + k2

y . (21)

During the integration, we assumed isotropy and axisymmetry of
the turbulence. The slope of the inertial range seen in the power
spectra for the velocities and the magnetic field are steeper (k−2.8

⊥ )
than the expected spectra of k

−5/3
⊥ for strong and k−2

⊥ for weak
incompressible turbulence. This deviation is most likely caused
by our assumption of isotropy and homogeneity, which is not the
case in our highly structured domain, as well as the inclusion of
compressibility. The isotropy is also violated by the imposition
of a directional flow from the continuous driving of the oscil-
lation. The compensated power spectrum for pressure shows a
closer proximity to the expected value of k

−7/3
⊥ in the inertial

range, and also reveals the effects of dissipation on the length of
the inertial range. Including resistivity and viscosity reduces the
length of the inertial range.

The differences between the ColdI, ColdR, and ColdV mod-
els are relatively small because of the high value of the numer-
ical dissipation. Once we use a very high value for viscosity in
the ColdV2 model, we cannot observe an inertial range anymore
owing to the limitations of the current resolution. Instead, the
spectrum passes rapidly to the dissipation range, even at very
small wavenumbers. The amount of energy available at smaller
scales is now less than in the other models, hindering dissipa-
tion. This can explain the lower values of average internal energy
along the loop that we saw in Fig. 11.

Finally, in order to explain the differences between the
gravitationally stratified and non-stratified models, we plot the
time profiles of the input energy for models ColdI and Cold-
Ingr (Fig. 13). As we see the total input energy at the end of
the simulation is almost three times higher in the ColdI mod-
els than it is in the ColdIngr model. From Eq. (17) we know
that the dominant terms in the Poynting flux are the velocities,
magnetic field and, once considering the existence of physical
or effective numerical resistivity, the currents. From our cho-
sen set of parameters for the initial set-ups, both models have
the same driver amplitude, driver frequency, an almost identi-
cal initial magnetic field and the same eigenfrequency for the
fundamental transverse kink mode. As a result, all the differ-
ences in the final value for the total input energy are non-
linearly caused by the different dynamical evolution of the
oscillating loop owing to the presence (absence) of gravity. This
energy input difference inevitably affects the energy evolution
of the two models. A similar, but less pronounced behaviour
is observed between the ColdI, ColdR, and ColdV models as
well, which is caused by the differences in the dissipation
parameters.

If we consider the last 8.7 min of these simulations in
Figs. 12 and 13, when the curves of both the input and internal
energy can be approximated by a linear function, we estimate the
following values for the input flux (Finput and heating rate (Hr)
in our domain:

– Finput = 7.5 J m−2 s−1 and Hr = 2.8 J m−2 s−1 ≈ 0.37 Finput for
the ColdIngr model.
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Fig. 13. Time profile of the input energy density from the driver and
internal energy density variation relative to the initial state for the ColdI
and ColdIngr models. The quantities are volume averaged for the whole
computational domain; the contributions from the energy flux due to
the plasma displacement through the side boundaries have been incor-
porated to internal energy densities.

– Finput = 42 J m−2 s−1 and Hr = 28 J m−2 s−1 ≈ 0.67 Finput for
the ColdI model.

– Finput = 46 J m−2 s−1 and Hr = 37 J m−2 s−1 ≈ 0.80 Finput for
the ColdR model.

– Finput = 55 J m−2 s−1 and Hr = 40 J m−2 s−1 ≈ 0.72 Finput for
the ColdV model.

These values are less than half from the Fradiative = 100 J m−2 s−1,
which is the value for the radiative losses in the quiet corona
(Withbroe & Noyes 1977). This shows that the driver in our
models does not provide enough energy to sustain the density
and temperature profile in the corona. One important observation
is the relation between the input energy flux and the heating rate.
As we see, the heating rate of the ColdIngr model is ≈37% of
the corresponding input flux, which is significantly less than the
corresponding percentages of the gravitationally stratified mod-
els. This shows that the inclusion of gravity generally leads to a
more effective wave energy dissipation, for our given models.

4. Discussion and conclusions

In the current study, we wanted to quantify the effects of grav-
itational stratification and finite resistivity and viscosity on the
magnitude and location of wave heating caused by standing
transverse waves in coronal loops. We performed 3D numeri-
cal simulations of single 3D, gravitationally stratified, density-
enhanced straight flux tubes in ideal, resistive, and viscous
MHD. Through a parameter study, we estimated the effec-
tive values of numerical resistivity and viscosity present in our
set-ups, which are many orders of magnitude larger than the
expected values in the solar corona. The effects of physical dis-
sipation, gravity, and driver strength were studied for a cold loop
embedded in a hot corona and hot loops inside a colder corona.
A non-stratified loop with uniform temperature was used in ideal
MHD to determine the effects of numerical dissipation on our
results. The standing transverse waves in our models were pro-
duced with the use of a continuous, monoperiodic, footpoint
driver; the frequency was equal to the analytically predicted
value for the standing fundamental kink oscillations of uniform
flux tubes (Edwin & Roberts 1983; Andries et al. 2005).

The effects of numerical resistivity were addressed in a
model of a non-stratified loop with uniform initial temperature
(UniT). In that simulation we observe an increase of the aver-
age temperature near the footpoint and near the apex (Fig. 7).
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This heating is caused by the numerical dissipation found in our
code, which effectively acts as resistivity and viscosity in the
case where ideal MHD is used. As we expect from Karampelas
et al. (2017) for loops undergoing a standing kink oscillation,
resistivity is the main cause for heating near the footpoint, while
shear viscosity is responsible for heating in the area of the apex.
This simulation was used as a template to better understand the
temperature evolution in our other set-ups.

Expanding upon our previous work (Karampelas & Van
Doorsselaere 2018), we observe the creation of spatially
extended TWIKH rolls. As a consequence of continuous driving,
these TWIKH rolls expand across the loop cross section, fully
deforming the initial monolithic density profile. Just like in the
non-stratified case studied in that paper, the TWIKH rolls cre-
ated elongated strand-like structures along the flux tube. These
strands, which resemble those studied in Antolin et al. (2016)
for an impulsive standing kink wave, are also visible in the cases
of resistive and viscous MHD (see Fig. 5). In Howson et al.
(2017b), the development of KHI in impulsively oscillating flux
tubes is hindered in the presence of resistivity and especially
viscosity. For the driven oscillations considered in this work,
the KHI was still delayed for similar values a physical dissi-
pation. However, the TWIKH rolls eventually expand through-
out the loop cross section, similar to the set-up with ideal MHD
(Fig. 6).

By increasing the value of shear viscosity, we found that we
need very low Reynolds numbers (we used Re ∼ 102) to suppress
the development of the KHI when continuous drivers are used.
The use of such a high value for shear viscosity, however, leads
to an unusual temperature profile for an oscillating cold loop.
The suppression of KHI prevents the mixing of plasma between
the loop and the surrounding plasma. At the same time, we
found a strong heating taking place near the apex, rather than the
footpoint as is expected for loops transversely oscillating in the
fundamental kink mode (Van Doorsselaere et al. 2007). This
heating is observed both in the temperature and internal energy
profiles. This shows that very high values of viscosity in the
corona should not be expected, unless the corresponding heat-
ing signatures at the apex of oscillating loops are also observed.

Studying the temperature profiles along the loop axis and
over time for a non-stratified cold loop (model ColdIngr), we
observed a slight temperature increase near the footpoint owing
to ohmic dissipation due to numerical dissipation. However,
the average temperature shows an apparent drop higher up the
loop due to KHI induced mixing between plasma of differ-
ent temperatures. These results are in agreement with our past
studies (Karampelas et al. 2017), where a weaker driver was
employed. Energy dissipation takes place all along the loop axis;
the strongest values are acquired near the apex. A different tem-
perature profile was acquired when comparing with the models
of cold gravitationally stratified loops. An increase of the aver-
age temperature of our domain was observed near the footpoint
and apex, despite the mixing effects (Fig. 9). Gravity seems to
affect the evolution of our systems greatly, since the correspond-
ing set-up in Karampelas et al. (2017) and the model ColdIngr
predominately showed apparent cooling over our domain. The
temperature increase observed in the stratified loops was located
near the footpoints and apex in accordance with the results of
the loop with uniform temperature. This temperature increase
was also accompanied by an increase of the internal energy all
along the loop length, and took its highest values near the apex.
This proves that the observed temperature increase is not just an
apparent phenomenon, but the result of actual wave heating. The
temperature profiles are in agreement with the expected results

from Van Doorsselaere et al. (2007) for these types of stand-
ing modes. However, the heating for the gravitationally strati-
fied models is still between 28% and 40% of the radiative losses
(Fradiative = 100 J m−2 s−1) for the quiet corona (Withbroe &
Noyes 1977), so it is still not enough to sustain the observed
coronal temperatures.

By including physical dissipation (Re = 104 for the ColdV
and Rm = 104 for the ColdR model), the internal energy
increased more along the entire loop. Both resistivity and viscos-
ity seem to increase the internal energy near the apex (Fig. 8),
and viscosity causes higher temperatures there (∼5 × 104 K
increase). Near the footpoint, we would expect the resistive case
to lead to the highest temperature increase, since the square cur-
rent densities (dominated by J2

z ) have their highest values there
for all three models. The reason why the viscous case shows
higher average temperatures at the footpoint as well is the shrink-
ing of the viscous cross section there, as observed in the zt profile
for the tube surface area of the ColdV model, combined with the
resistive heating due to numerical dissipation. This leads to an
apparent effect of higher average temperature than in the ideal or
resistive MHD model.

The similar evolution of the square current densities in Fig. 9
for models ColdR and ColdV, the similar dynamical evolution,
and their differences from the ideal MHD case hints at a descrip-
tion of resistivity in terms of turbulent viscosity, or (shear)
viscosity as in terms of anomalous resistivity. Additional sim-
ulations with very low values of magnetic Reynolds numbers
(Re ≤ 102) need to be considered to determine whether such
high values of resistivity exist in the solar corona.

Studying the energy profiles for models ColdI, ColdR, and
ColdV, we see the average value of the magnetic energy density
(minus the Poynting fluxes from the side boundaries) showing
a steady, almost linear growth, similar in all models. A simi-
lar small growth was also observed for the gravitational energy
density because of the redistribution of plasma along the loop.
The input energy from the driver showed a faster growth, reach-
ing different values for each set-up due to the differences in the
models dynamical evolution over time. For the kinetic energy of
the three models, we identified a phase of a linear growth during
the first six periods, a phase of decelerating growth for two more
periods, and saturation phase at the later stages of the simulation.
Once the kinetic energy enters the phase of decelerating growth
and eventual saturation, the internal energy (minus the fluxes due
to plasma flow through the boundaries) exhibits a rapid growth.

During the kinetic energy saturation, the loop develops a
turbulent profile, leading the cascade of energy into smaller
scales and more efficient heating. The lack of smaller scales for
the highly viscous ColdV2 model leads to a lack of efficient
energy cascade, as proved by the practically non-existent iner-
tial range in its power spectra in Fig. 12. This results in less
energy at higher wavenumber, and less efficient dissipation, as
was proven in Fig. 11. This proves that a turbulent loop profile
is needed for more efficient wave heating. In combination with
past results (Magyar & Van Doorsselaere 2016b; Magyar et al.
2017; Karampelas & Van Doorsselaere 2018), we conclude that
the use of monolithic density profiles for flux tubes should be
done with care.

We saw that the inclusion of gravity in our models plays an
important role when it comes to the development and efficiency
of wave heating. More specifically, stratified loops of the same
eigenfrequency and initial magnetic field as a non-stratified loop
showed a greater increase of internal energy with respect to their
corresponding input energy, when compared to non-stratified
loops. The lack of gravity seems to underestimate the efficiency
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of wave heating in straight flux tube models of coronal loops.
Therefore, this should not be ignored in future studies.

To sum up our conclusions, we see that the inclusion of grav-
ity in our models seems to play an important role when it comes
to the development and efficiency of wave heating. The inclusion
of physical dissipation should also be considered in any attempts
to map the location of wave energy dissipation. Energy dissipa-
tion seems to be more efficient once the kinetic energy of our
loops reaches a saturation phase, for a turbulent loop profile.
Another important result is that resistivity and shear viscosity
lead to the development of the smaller scales in a similar fash-
ion. Driver induced TWIKH rolls develop in our set-ups unless
very high dissipation is used (for example a Reynolds number
of Re = 102). In case of very high viscosity, the development of
smaller scales is hindered, heating inside the loop is suppressed,
and temperatures are increased predominately near the apex.
Future steps should include more physical mechanisms (thermal
conduction and radiation) and a more realistic atmosphere than
that considered here. Finally, drivers of different amplitudes and
frequencies need to be considered in an attempt to determine
the amount of energy required for sustained wave heating, while
obtaining results that agree with the observed oscillation profiles
in loops.
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