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WAVE HEIGHT AND PERIOD DISTRIBUTIONS 
FROM LONG-TERM WAVE MEASUREMENT 

Chung-Chu Teng1 and Ian M. Palao2 

Abstract 

Both the univariate and joint distributions of the significant wave height (Hs) and the 
zero-crossing wave period (Tz) are studied using 16 years of hourly wave data measured 
from five National Data Buoy Center (NDBC) buoy stations. For the univariate distribution, 
the log-normal distribution fits both the Hs and the Tz well. The modified log-normal 
distribution proposed by Fang and Hogben (1982) does improve the fit at the high Hs end 
and at the peak for some stations. For Hs, the Weibull distribution, with parameters 
computed from the maximum likelihood (ML) method, fits the upper tail of the cumulative 
distribution; however, it underpredicts both the probability peak and the probability density 
at the high end. For the joint distribution, the marginal Weibull/conditional log-normal 
distribution best describes the measured data of the steeper sea states and has the best 
overall fit. 

Introduction 

The theoretical distribution and characteristics of individual wave heights and 
periods have been extensively studied and verified using measured data (see Tucker 1991). 
Unlike individual waves, distributions of Hs and Tz, which are important for ocean and 
coastal engineering, need to be determined empirically from real measurements. Thus, both 
the univariate and joint distributions of the two wave parameters have not been extensively 
studied in the past due to a lack of reliable, long-term wave measurements. However, the 
early studies conducted by Ochi (1978) and Fang and Hogben (1982) provide a very useful 
basis for studying distributions of Hs and Tz. Some recent studies (e.g., Ochi (1992); Mathisen 
and Bitner-Gregersen (1990); and Athanassoulis, et al. (1994)) present many ideas and useful 
results on this topic. 

In this study, 16 years of hourly wave data measured at five NDBC buoy stations are 
used to study both the univariate and the joint distributions of Hs and Tz. 
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Measured Wave Data 

Data used in the present study were obtained from five NDBC buoy stations, 
designated as stations 46001, 46002, 46003, 46005, and 46006. All five buoy stations, as shown 
in Figure 1, are located in the northeastern Pacific Ocean. Water depths (in meters) at these 
buoy stations are listed in parentheses below the station numbers in the figure. These buoy 
stations were chosen for this study mainly because they are located in very deep water, so 
that wave height and period are not affected by shallow water effects, and they have longer 
periods of available wave data. These buoy stations measure both meteorological and wave 
data and report hourly data in nearly real time through the Geostationary Operational 
Environmental Satellite (GOES). 

Wave data are processed onboard the buoys by transforming the time-series data into 
wave frequency spectra. The processed wave data, together with meteorological data, are 
transmitted to shore via GOES. Then, the wave information received are further processed 
and analyzed (e.g., conducting transform function, noise correction, and data quality control). 
Hs and Tz are derived from the wave spectrum: Hs = 4(m0)1/2 and Tz = 2n(m0/m2)1/2, where 
m0 and m2 are the zero-th and the second spectral moments, respectively. 

Sixteen years (from 1980 through 1995) of hourly wave data measured at these buoy 
stations are used in this study. During these 16 years, periods of missing data were present 
in the wave records for all of the stations. These data gaps were caused by a number of 
different factors: sensor failure, payload failure, periodic loss of data during transmission, or 
the buoy not being on station due to refurbishment or mooring failure. Table 1 shows the 
monthly distribution of the available data points during the 16 years for all five stations. Data 
for these five stations cover 76% (46006) to 90% (46001) of the all possible hourly data. From 
the distribution, it is clear that the data gaps or missing data did not concentrate on any 
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Figure 1. Locations of the five NDBC buoy stations used in this study 
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Table 1. Monthly distributions and total numbers of available data 

46001 46002 46003       |       46005 46006 
January 10,917 9,368 9,322 10,141 9,023 
February 9,483 8,703 7,053 9,343 7,931 

March 9,886 9,448 8,348 10,179 8,271 
April 8,897 8,602 8,765 9,546 7,526 

May 10,351 8,104 8,134 9,347 7,880 
June 10,567 9,459 8,616 9,031 7,975 
July 10,836 9,878 9,289 10,145 8,752 

August 11,326 9,975 9,029 10,915 9,649 

September 11,069 9,930 10,447 9,133 9,838 
October 10,994 10,473 9,570 9,347 10,242 

November 10,610 9,583 9,016 8,471 9,792 

December 10,876 9,433 10,242 9,216 9,650 

Total 125,692 112,956 107,831 114,814 106,529 

particular month or season. In addition, the whole data set was carefully examined, and no 
data gap that could significantly affect long-term wave statistics was found. Thus, it can be 
assumed that the missing data or data gaps in this data set will not affect the long-term 
distributions of Hs and Ty 

Data Analysis 

Univariate Distributions 

For univariate (or marginal) distributions of Hg and Tz, two commonly used 
probability distribution functions are studied: the log-normal and the three-parameter 
Weibull distributions. Parameters in these two distributions are computed by three different 
methods: the least square (LS) method, the ML method, and the method of moments. More 
details of these methods are presented in Teng, et al. (1994) and Palao, et al. (1994). 

(1) Log-Normal Distribution 

p(x) 
\J2KOX 

.l/lnW-KJ3 

where u and o are parameters of the distribution. 

The modified log-normal distribution, which includes a skew factor to make 
a better fit at high values (Fang and Hogben, 1982), is also examined in this study. 
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(2) Three-Parameter Weibull Distribution 

pipe) = J-i—'—— e 

x-y 

where a, (J, and y are the shape, scale, and location parameters, respectively. 

Joint Distributions 

For joint distributions of Hs and Tz, three frequently used distribution functions are 
examined: bivariate log-normal distribution, bivariate two-parameter Weibull distribution, 
and marginal three-parameter Weibull/conditional log-normal distribution. More details of 
these distributions can be found in Mathisen and Bitner-Gregersen (1990). In the following 
equations, x represents Tz, and y represents Hs. 

(1) Bivariate Log-Normal Distribution 

P(x,y)-- 
0.5 

sjl-alyizo^xy 

0.5 

i-0; 

fcW-Mr)2 _ 2«.jMx)-yLt)t^(y)-\iy)     |ln(y)-^): 

where ux, uv, ax, a , and axy are parameters of the distribution. 

Computationally, u^ and uv are the expected values of ln(x) and ln(y); ox 

and ay are the standard deviations of ln(x) and ln(y); and axy is the correlation 
coefficient between ln(x) and ln(y). The modified bivariate log-normal distribution, 
proposed by Fang and Hogben (1982), is also examined in this study for reference 
purposes. The modified distribution is identical to the bivariate log-normal 
distribution except for the addition of a multiplicative term describing the skewness 
of ln(y). 

(2) Bivariate Weibull Distribution 

P(x J) = 
if 

1 P* p-1 3' 

where a, p, n, and (, are parameters of the distribution. 

This distribution uses two two-parameter Weibull distributions (i.e., one for 
Hg and one for Tz) as a joint model. The parameters are calculated using the LS 
method. The marginal distribution is used for Tz while the estimation of the 
distribution of Hs is conditional on Tz through the use of the n parameter. 
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(3)        Marginal WeibulllConditional Log-Normal Distribution 

.    c4fr)* PO^-1 C-¥?Y 
SpLTZOX u«P 

Pixy) = 

where a, p, y, a, and u are parameters. 

This distribution is calculated by using a three-parameter Weibull for Hs 

along with a log-normal for T2. The parameters of this distribution are identical to 
the corresponding univariate distributions. The LS method is used to calculate the 
three Weibull parameters and the two log-normal parameters. Note the log-normal 
parameters are calculated for every 0.5-m wave height interval. 

Results and Discussion 

Figure 2 shows the comparisons between histograms of the measured Hs, and the 
univariate distributions for the five buoy stations. From visual judgment, the log-normal 
distribution, in general, fits the data better than the Weibull distribution. For the log-normal 
distribution, results obtained from the three different methods of parameter estimation are 
almost identical. The log-normal distribution slightly overpredicts the peak for the two 
northern stations (46001 and 46003) and slightly misses the peak location for two of the three 
southern stations (46005 and 46006). For the Weibull distribution, different parameter 
estimate methods produce different parameters and have different effects on the distribution 
shapes. The LS method always underpredicts the high wave range and overpredicts the 
location of the peak. The ML method provides much better prediction of the peak location 
and at high Hs, but significantly underpredicts the height of the peak and overpredicts at the 
lower range. The Weibull fits, based on the method of moments, are much poorer than the 
other two methods and are not presented in the figures. 

Two goodness-of-fit statistics, the Kolmogorov-Smirnov statistic (K-S) and Chi-square 
statistic (x2), are used to evaluate the degree of fit between the data and the fitted 
distributions. Table 2 summarizes the values of these two statistics for the two distributions 
for each of the five buoy stations. Note the values of x2 are computed based on a wave height 
interval of 0.1 m. For the Weibull distribution, the goodness-of-fit values for the ML method, 
which are listed in the table, are always smaller (i.e., the fits are better) than those from the 
other two methods. Based on the two goodness-of-fit statistics, the log-normal distribution 
fits the data better than the Weibull distribution, regardless of the parameter estimate method 
used. 

To further examine the fit of the univariate distributions of Hj, comparisons between 
the empirical cumulative distribution from the measured data and the theoretical cumulative 
distributions are made. Figure 3(a) shows an example of this comparison for station 46001. 
The log-normal distribution fits the data well, except for the upper tail (i.e., cumulative 
probability greater than 0.9) where it slightly underpredicts the empirical cumulative 
distribution. This trend was also reported by many previous studies (e.g., Ochi (1978); Fang 
and Hogben (1982)). However, among the five stations, stations 46001 and 46003 clearly show 
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Figure 2. Comparisons of Hs between histograms and the univariate 
distributions for all five buoy stations 

Table 2. Values of x2 and K-S for distributions of the zero-crossing wave period 

Log-Normal Weibull 
K-S X2 (x 10-*) K-S X2 (x lO"6) 

46001 0.01560 1.01749 0.03438 1.01889 
46002 0.03862 0.91254 0.03086 0.91537 
46003 0.01440 0.87029 0.03172 0.87135 
46005 0.03021 0.92694 0.03337 0.92846 
46006 0.02717 0.86185 0.02981 0.86325 
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(a) P-P plot of H» for 46001 (b) P-P plot of He for 46002 

0.8 - 

i 0.6 

! 0.4 

0.2 

I       I 

- 
+ Welbull-LS 

X Welbull-ML 

O Lognormal 

/% 

t 
0.8 - 

| 0.6 

! 0.4 

0.2 

I       I 

- 
+ Welbull-LS 

X Welbull-ML 

O Lognormal 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 
empirical cumulative prob. empirical cumulative prob. 

Figure 3. Comparisons of cumulative distribution for Hs between measured 
data and univariate distributions for (a) station 46001 and (b) station 46002 

the underprediction. For other stations, there is very little or no underprediction from the 
log-normal distribution at the upper tail, as shown in Figure 3(b) for station 46002. For the 
Weibull distribution, the LS method overpredicts both the upper and lower tails for all five 
stations, while the ML method predicts well at the upper tail but underpredicts at the lower 
tail. 

Figure 4 shows, for Hs at 46001, the histograms and univariate distributions including 
the Weibull, the log-normal, and the modified log-normal (Fang and Hogben (1982)) 
distributions. It is clear that the modified log-normal distribution significantly improves the 
fitting at high values and at the peak. The improvement is significant for stations 46001 and 
46003. For other stations, there is very little or no improvement. Note the Weibull 
distribution, with parameters computed from the ML method, underpredicts the distribution 
at high values despite the better fit of the cumulative distribution at the high end. This trend 
is valid for all five stations. 
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For T , comparisons between the histograms and the univariate distributions are 
presented in Figure 5. Similar to Hs, the parameters of the log-normal distribution for Tz 

computed from the three methods of parameter estimation are almost identical. In addition, 
variations of these parameters from station to station are very small. The parameter \i varies 
from 1.88 to 1.96, and the parameter o varies from 0.187 to 0.202. The log-normal distribution 
fits very well for the two northern stations (i.e., 46001 and 46003). For the three southern 
stations (i.e., 46002, 46005, and 46006), the histograms show broader peaks, and neither of the 
two distributions predicts the peak very well. Similar to their effects on Hs, the Weibull 
distribution based on the ML method predicts the upper range best and underpredicts the 
peak, while the LS method underpredicts the high range and does not predict the peak well. 
Again, the method of moments is much worse than the other two methods, and its results 
are not presented. 
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Figure 5. Comparisons of Tz between histograms and the 
univariate distributions for all five buoy stations 
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Table 3 presents values of K-S and x2 for Tz. Based on the two statistics, the log- 
normal distribution fits better than the Weibull distribution (using the ML method). Figure 6 
presents comparisons between the empirical and fitted cumulative distributions of Tz for 
stations 46001 and 46002. For the log-normal distribution, unlike that for H$, there is no 
underprediction at the upper tail of the cumulative distribution of T2 for all five stations. 
Performances of the Weibull distribution in modeling T2 using the LS and ML methods are 
similar to those for H, S' 

The contour plots of the joint probability between Hs and Tz for station 46001 are 
presented in Figure 7. It is clear that both the bivariate log-normal and the bivariate Weibull 
distributions overpredict the joint probability for the steeper sea states, as indicated by the 
straight line. The marginal Weibull/conditional log-normal distribution fits this steeper sea 
range well. This trend was also shown by Mathisen and Bitner-Gregersen (1990) using wave 
data collected from the Norwegian Sea. The bivariate Weibull distribution also performs 
poorly at high wave periods. Except for steep seas, the bivariate log-normal distribution 
generally fits the data well. The modified bivariate log-normal distribution, proposed by Fang 
and Hogben (1982), was also studied. Its results are very similar to those from the original 
distribution and, thus, are not presented in this paper. Although the marginal 
Weibull/conditional log-normal distribution generally fits the data, it seems that it does not 
predict the very high probability location very well. The trends observed for station 46001 
are also applicable to all other stations, but these results are not shown in this paper due to 
space limitations. 

Table 3. Values of x2 and K-S for distributions of the significant wave height 

Log-Normal Weibull 

K-S X2 (x W6) K-S X2 (x 10-*) 

46001 0.02270 1.01465 0.04155 1.01859 

46002 0.02113 0.91402 0.04693 0.91566 

46003 0.02720 0.86907 0.03510 0.88058 

46005 0.02652 0.92650 0.04303 0.92890 

46006 0.03183 0.86031 0.04202 0.86336 

(a)   P-P plot of Tz for 46001 (b) P-P plot of Tz for 46002 
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Figure 6. Comparisons of cumulative distribution for Tz between measured data 
and univariate distributions for (a) station 46001 and (b) station 46002 
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Figure 7. Contour plots of joint probability between Hs and Tz for (a) measured 
data, (b) bivariate log-normal distribution, (c) bivariate Weibull distribution, 

and (d) marginal Weibull and conditional log-normal distribution 

The theoretical joint probability distributions are compared to the distribution of the 
observed data based on the correlation coefficients. For Hs, a correlation coefficient is 
computed for each 0.5-m wave height bin. For each wave height bin, the corresponding 
values of observed frequencies and frequencies calculated from the joint distributions across 
the 0.5-s Tz bins form a paired data set. A correlation analysis is then performed on the two 
paired data (i.e., observed frequencies versus calculated frequencies). The correlation 
coefficients for every 0.5-s Tz bin are computed similarly. Note the correlation coefficient at 
both the upper and lower ends may not be reliable due to limited data observations. 
Negative coefficient values show a polarity between the deviations of observed frequencies 
and the deviations of calculated frequencies. This shows a very poor fit between the 
measured data and the joint distribution. Figure 8 shows the correlation coefficients for all 
the Hs and Tz bins for all five stations. For Hs, it is clear that the marginal 
Weibull/conditional log-normal distribution fits better than other distributions. The bivariate 
Weibull distribution's performance is very poor and, therefore, unacceptable. All joint 
distributions have high correlation coefficients for the Tz fit. Note the bivariate Weibull 
distribution does not have correlation values for periods higher than 10 seconds because 
there are no calculated frequencies from which to compute the coefficients. 
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Conclusions 

The results show that the log-normal distribution best fits both Hs and Tzfor the five 
buoy stations. The modified log-normal distribution, proposed by Fang and Hogben (1982), 
significantly improves the fitting at the high Hs end and at the peak for some stations. For 
the three-parameter Weibull distribution, different methods of parameter estimation produce 
different parameters and distribution shapes. In general, the ML method is better than both 
the LS method and the method of moments. Although the Weibull distribution with 
parameters computed from the ML method fits the upper tail of the cumulative distribution 
for the Hs, it underpredicts both the probability peak and the probability density values at 
the high values. 

Although the fit between various joint distributions and the measured data depends 
on the wave height and period range, the marginal Weibull/conditional log-normal 
distribution has the best overall fit based on the visual inspection and the correlation 
coefficients. Also, this joint distribution better estimates the data of the steeper sea states. 
Both the bivariate log-normal and the bivariate Weibull distributions overpredict the steeper 
sea states. The bivariate Weibull distribution also poorly fits the high wave period data. 
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