
CHAPTER 39 

WAVE HEIGHT DISTRIBUTION AROUND PERMEABLE BREAKWATERS 

by 

Shintaro Hotta* 

ABSTRACT 

By superimposing solutions due to Sommerfeld, a calculation was 
made to obtain the wave height distribution around permeable breakwaters 
in a constant water depth.  The cases dealt with were a semi-infinite 
breakwater, a single relatively large gap in a long breakwater and a 
single detached breakwater all with incident waves normal to the break- 
water.  Some cases were verified through experiments in a shallow water 
basin. 

INTRODUCTION 

There are many kinds of permeable breakwater systems.  In particular, 
as a countermeasure against beach erosion, the construction of permeable 
detached breakwater systems has become widely popular.  However, the 
functioning of such breakwater systems has not yet been fully understood. 

Even the wave height distribution around a permeable breakwater, 
which should be first considered in its construction, has received little 
effort not in comparison with that made for impermeable breakwater sys- 
tems, because of the complicated phanomena associated with the former. 

Up to data, interest in connection with permeable breakwaters has 
mainly concentrated on wave reflection and transmission phenomena.  Only 
for some psecial cases in three dimensions has the study of the wave 
height distribution and related problems already been carried out.  For 
instance, Ijima, Chou and Yumula(1974) studied the scattering of waves 
around arbitary shape permeable bodies and gave figures for the wave 
height distributions around circular, ellipsoid and rectangular cells. 
Their methods are applicable to arbitary shape breakwaters, but it seems 
that the method requires complicated numerical calculations.  The studies 
above may not give satisfaction to engineers who are faced with problems 
in practice. 
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The purpose of this study is to attempt to clarify the wave height 
distribution around permeable breakwater systems. However the phenomena 
are so complicated that applying Sommerfeld's solution for widely de- 
ployed breakwater systems was considered as a first stage in the study. 

An advantage of the method used in this study, superposition of 
Sommerfeld's solution, is that wave heights can be calculated very 
easily by addition and subtraction, if we have the Fresnel Integrals. 
At present, even on small computers, Fresnel Integrals are prepared as 
a subroutine or as a function.  A few second calculation gives the wave 
height distribution.  Another advantage is that the time lag of waves 
transmitted through the breakwater can be easily considered in equations, 
although this was not done here. 

Disadvantages of this method are that the boundary conditions are 
not satisfied and the wave height becomes discontinous on the x and y 
axis and on the lines which divide the regions considered.  Calculated 
results, however, show that the discontinuity in wave height on the x 
and y axis and the otehr lines was small.  So, we may close our eyes to 
this discontinuity.  Experimental or field verification of the calculated 
results are not yet sufficient, but this method may be acceptable for 
engineering use to predict the wave height roughly, although further 
laboratory and field verification under various conditions must still 
be made. 

Brief Summary of Sommerfeld's Solution: 

For the case of an infinitely thin, vertical, rigid, impermeable, 
semi-infinite breakwater as drawn in Fig. 1, Penny and Price have shown 
that Sommerfeld's solution of the optical diffraction problem is also 
a solution of water wave diffraction. 

(Diffraction and Incident 
Wave Region) 

B        F4«" 
(176") 

y~9\      ! !__y_) U = 0 Vil-Y. 

«*.*, t*.*> 

( + ,-) (+. + ) 

Fig.  2.    Signs of u:  and u2 

(Incident and Reflection Wave Region) 

Direction of Wave Propagation 

Fig. 1. Nomenclature for wave diffraction 
analysis at semi-infinite break- 
water end. 
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The  following  is  a brief summary of the solution by Penny and Price(1952). 

(2) 

+=Ae*'coshk(h»z)F(x,y) 
,=£itee«coshkh.F(Xjy)    

H-E-X^0 <3) 

(1 )       f (u) =^-e",/<£V/,,^clw (6) 

gft*) ^e'^fV^dw (7) 

where 

i =V-T      k = 2rc/L 
L rwave length       C =phase velocity 

h =water depth      g= gravity acceleration 

F(".y) =4-e*tA-*J,;jV'•J/2dw 

f(u) =g(u) =&"**'*£j*""'<*» 

=4(<1*C(u)*S(u)}. i{C(u) -S(u)})   (8) 

f(-u) =g(-u)=^-e"t/<5]V'l"V2dw 

=4(<1-C(u)-S(u)). i{S(u)-C(u)y] 

=S«iW  (9) 

=e-*f(u,).e*»'g(ui (4)  C(u) =^cosf w'dw , S(u) ^sinfw'dw 

(10) 

.  _ S = i{l-C(u)-S(u)\ 

1_1 (5)  w=i{s<u)-c<.)} 
r s-vVTy7 z (It) 

The diffraction coefficient, K, is defined as the ratio of wave height 
in the area affected by diffraction to the wave height in the area un- 
affected by diffraction, and given by the modulus of F(x, y) for the 
diffracted wave:  taht is 

K = |F(x, y) I = /ir+T2 (12) 

R:  Real component of F(x, y) 

I:  Imaginary component of F(x, y) 
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The final forms of F(x, y) for numerical calculation for a break- 
water located on the + x axis as shown in Fig. 1 are: 

Region A, x > 0, y > 0 

= (£, tS2) COS kg f (W,-Wz ) sin ky 

tiC(W,+W2)^sk^ +(-g,+$z) slnkp] (13) 

Region B, x < 0, 

= (l-$,+S!j,) cosfy-t- (-Wl-Wz)sif}k^ 

•ti[(-W,+W3)coskij+ (-H-St+Sijsinky'] (i4) 

V 

Region C, x > 0, y < 0 

= (2-<,,-$2)cosk^(-W,tWx)sihh^ 

H[(-W,-W2)tosky +($, -&)si»kj] (IS) 

As a matter of convenience later, we shall give the final forms of 
F(x,y)  for numerical calculation for a breakwater located on the - x 
axis as shown in Fig. 3. 

H[iH   11 

HtfiM   |2 

Rl|iM   • 

IlliM   B 

Fig. 3. Nomenclature for wave diffraction analysis at breakwater when 
located on -x axis. 
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Region A and C 

•f1 L(- w, +wa) cosfy + (-/ +5, +5^) s/«/?*J 
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C/6J 

Region Bl 

+ it(W,i-W2) Cos kg + (-S,+&)s'»fyJ- (ii) 

Region  B2 

= (z-$l-$3.)co$kgt (-W,-+WJt)s/»k>j 

t l[(-W, - W* ) cos kg t (SrSi) sift kg] US) 

NUMERICAL  CALCULATIONS   OF  WAVE   HEIGHT  DISTRIBUTION 

FOR  PERMEABLE   BREAKWATER 

(1).     A single small gap in a long permeable breakwater as  shown  in 
Fig.   4. 

The heights of waves which 
have passed through a single gap 
small compared with the wave  length 
of a long impermeable breakwater 
have been already given by Lamb 
(1945). 

Fig.   4.     Diffraction at small gap 
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The solution is: 

R-^.y) =:—ifi—ir7****w 

„ „    . _ _ „ , (19) r: Constant of  Euler 

R.=«er*'     (20) 

This equation shows a wave which concentrically spreads from a gap. 
When the breakwater is permeable we assume that the wave heights inside 
the breakwater can be express of by superimposing Equations (19) and (20) 

That is: 

F = R.*R> 

OogJf^.fi) 

The  superimposed result is: 

F =«cosky^V^CTcos(-^.kr-e) 

-i {asinky^-V^TcTsin(f *kr-9)} 
(21) 

where 

c,= 

6 =tan-'-£j; 

The wave heights are given by: 

R =acosky^rVS7^" cos(f.kr-e) 

I =-{«sinky1§£Vg7er sin(^-»kr-e)} 

K =VRTF 

Diagrams for a gap width b, b/L ratios of 0.1 and 0.2 and transmis- 
sion coefficients, a, from 011 to 0.5 are given in Appendix 1. 
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(2)     A semi-infinite permeable breakwater 
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For the waves on the shore side of the breakwater, regions A and Bl 
(y > 0) as shown Fig 5-(3), superposition of waves as shown in Fig 5-(l) 
and the waves as shown in Fig 5-(2) is assumed. 

On the other hand, for the waves on the offshore side of the perme- 
able breakwater, regions BZand C (y < 0), it is assumed that the waves 
can be expressed by where the reflection coefficient, g, multiplies a 
free wave propagating in the - y direction, eiky. 

e_ikyf(Ul) + ge-kYg(u2). •(22) 

Eqations based on those assumptions in their final forms are: 

Region A    x>0 , y>0 

F0(x,y) = e-*'f(-i*).e'°'g(-u?) 

R(x,y) =e-*'f(u,)*e/*'g(-ui) 

F =Fo»«R 

F^={oc(1-«)S,*(U«)S4cosky.t(1-o>)W-(Uoi)W4sinl<y 

• i (l(1-«)W,.(1 .«)W*\cosky - {«.(! -«)&-(UoO&lsinky) (23) 

(1) 

(2) 

-ff*vf(uiVeik^kj2) e-^fl-ud+e^gC-ite) 

H(e**f-ui)*e>°'c(.-u2)i aie^ftmhe^tfruz)) 

erikvf(ui)*eikyg(-U2) 

• <xfe^«-uike*vg(-U2)) 

(3) 

e-*vf(ui)+^e'M-U2) 

eHkvf(-ui)+eikvg(-u2) 

•wlerMfuiKefcvgO-iB)) 

e-ik*f(ui)+peikvg(u2) 

Fig. 5.  Superposition of waves for semiinfinite permeable breakwater. 
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Region Bi x <0 ,   y >0 

Fb(x ,y) =e"*'f (u) • e'*'g(-uj) 
F;(x,y) =r*J,f(-U()*e*»'g(-Ui) 

F =F»*«R 

F*={1 -d -<x)S* (n«)S? Wky *{-0- <» W -0*« )W2)smky 
• i({-(1_oi)V«»(Uoi)W2)cosKy-l1-(1-«)Sr-(not)S4sinky] , (24) 

Region  B2        x<0 ,   y<0 

F =e*'f(i*)*fe-*J'g(-uj) 

F^ (1-Sc,&)cosky (-W-fWi)sinky 
• i((-W(^Wi)oisky(-1*Sr*f&)sinky5 (25) 

Region C x>0 ,  y<0 
F =e-*'f(uO*fe*g(ik) 

F2=(np-&-^SB)cosky- (W-fVfc)smky 

_i((1-f-&.fS2)sinky-t-M.fW*)ccsky)  , (26) 

oup =1 

S,=1-C(u,)-S(u,) , W=C(u,)-S(u) 

S^ = 1 - C(u*) - S(ib) , W> = C(ib) - S(ib) 

where 

COO^cos^dw  .    S(u) = ^sin^Wdw 

If we ignore the energy loss when waves pass the breakwater, a the 
transmission coefficient plus S>,  the reflection coefficient equal unity. 
Taking a equal to zero, the final equations agree with the solution of 
a impermeable breakwater. However, if a is not zero, the waves becomes 
discontinuous on the x-axis. Calculated results with a = 0.0 through 
a = 0.5 are given in Appendix 2. 
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(3)  A single relatively large gap in a long permeable breakwater. 

For the case of an impermeable breakwater, Penny and Price(1952) 
have laready given the solution by superimposing Eqs. (13), (14) and 
(15) and Eqs. (16), (17) and (18).  Johnson(1952; 1953), Morihira and 
Okuyama(1966) and others have given detailed diagrams for engineering 
practice. 

We shall write again here the final forms of the solution for 
numerical calculation because they will be needed the in succeeding 
sections.  Suffxs r and SL,  indicating the cases when the breakwater is 
located at the + x and — x regions(Fig. 1 and Fig. 2), will be added. 

The final forms are: 

Region Al, 0 < x < b/2, y > 0 

= (!-£„ -$i,i-$n.+$t>) C0S^ + (~ W" 'Wit - Wrz- Wu)*»% 

+ iC(-Wn 'Hi + Hi* Wn)
ce!ify 

Region A2, b/2 < x, y > 0 

= (Srr$si+&x+Si2.) cos ky + ( W„ -Wjf -Wrz -Wj2.)sinkg 

+(-Sr, + &,+2n-t$,i)si'*ky2 (28) 
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Region C2,  x > b/2,  y <  0 

= (2-$>.l-Stl-£rz + $J>2.)C0S ty + (-Wn-Wtl + WnrWtO sixty 

+iU-WrrWA,-WrifWj^)costy 

In the case of a permeable breakwater, the same idea described in 
the preceding section (2) is assumed. To express the waves on the shore 
side as show in Fig. 6-(4), the waves in Figs. 6-(2) and 6-(3) are super- 
imposed on the waves as shown Fig. 6-(l).  On the offshore side of the 
breakwater, a reflection coefficient, 6, multiplies all terms, eiky. 

e-M.C-uO+e'^-u*) ,  e^l( H,)+ei^,(.U2) 

(1) 

(2) 

eik»fi( ui)+e"wgi(-tte) 

-ta 

a Ce ik»fi(-ui) +elk»gi(-i»Vl 

aCe'^frC uO+elk>&(-u»)] 

(3) »^-4- 

(4) 

e-ik>fr( uO+elk"gr(-u?) 

eMi( uO+e,r»Bi(-iij) 

-e-*»_. 

-ft'Cfe-** (-ui)+e-*>gi (-u»)] 

I 
ri Ceik' frC-uO+e^r (-u;)^ 

eMtC-uO+e^grC-m) 

e-|k>f,( in)+e"»gi(-U2) 
_ g-iky 

«Ce"lkjfi( ui)+e*»gi(-Hs);i 

«Ce-ik'ft(-ui)+elkTgr(-iiti')T 

Fig. 6. Superposition of waves for a relatively large gap in permeable 
breakwater. 
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According to this assumption.  The F(x,y) which should be added to 
F (x, y) because the breakwater is permeable are: 

Region Al, 0 < x < b/2, y > 0 

= *tFB'(x,2) + F*(xJs)) (so) 

Region A2, b/2 < x, y > 0 

= otLF?(z.2>+F2(x,'})) (31) 

We shall rewrite the function F0, Fx, and Fx , adding the suffixes, 
r, I. 

F*(X,V - (Sri+$n)coskg +(Wr, -Wy2)$i»kg 

f l[(W„ -t Wlx)cosky + (-$ri +$n) sin kg] (14)' 
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Now,  we  shall consider the  coordinate  system. 
For Eg.   (28) ,   (29)   and   (47) 

r    = /(x  - b/2)z+ yz 

r^ = /(x + b/2)z+ yz 

On the other hand,   for Eq.   (!»*) ' ,   (16)'   and   (17)' 

r4   = /(x - b/2)z+ yz 

rr = /(x + b/2)z+ yz 

If we exchange the  suffixes r and J£ in Eqs.    (/ 4) ' ,   (16) '   and   (17) ' 
we can use the same coordinate system in Eqs.   (28),   (29),   {XI) ,   (|4)', 
(16)'   and   (17)'. 

Finally,  we have: 

Region Al,  0 < x < b/2,  y > 0 

= {l-(l-<X)S„-(l-*)S*,+(l+o(-)$n+(l+*)Sjt2.fcesk2 

t{-(t-<X)Wrr (1-oOWgi -O+dWn-U+cOWjuJsinkH 

+ i[{-(l-*)Wi-,-(l-o()Wj,+O+o()Wr1 + (W)tyi.}c0s/n 

tH + (/-*)Sr, +a-<x)Sj, +Ji+<X)S„ •* O+0()$j2}Si'»fy] 

 rJ2) 
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Region A2,  x > b/2,  y >  0 

= {o<+(l-<><)St;-(l-X)$li +(/+o05f-2+ (l+o()Sjtz]  COS kg 

•+{ ( I -cOWn-a-XJW^- (i-K*)Wr2- (l-KOWe2} sin kg 

-ti[((i-o(Mrr(l-o()Wii + (l+o()wr2+(i-KX)'Wlzl cosky 

+ {-*-(l-<<)Srl +{!-*)$„* (i+<*)$tzt(i + <*)Stl} si* ky] 

Region C2,  x > b/2,  y <  0 

= { \+p -Sh-$tl +?(-$„ +$tl)} "sky 

+ {-Wn -W£l 
+ P (Wn ~ Wn )} sin kn 

--tit{-W„-WXl+p(-Wn + wu)} toskg 

+ {-1 -+[3 + Sn -t$fl + p(-$r2 + $iz)} sinky] (M) 
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(4)  A single impermeable detached breakwater. 
For a single detached breakwater or an insular breakwater that allows 

waves to diffract around both ends as shown in Fig. 7, Morse and Rubenstein 
(1938) and Goda, Yoshimura, Ito(1971) developed an exact theory.  Numerical 
calculations for the theory can be done in terms of Mathieu functions. 
Detailed figures for this have been prepared by Goda et al.(1971).  However, 
if the length of the breakwater is relatively large compared with the wave 
length, it could be considered that the each end of the breakwater is the 
end of a semi-infinite breakwater. 

The following are the final forms arrived at from this assumption. 
Detailed diagrams are not given here because of limited space.  However, 
such diagrams may easily be reproduced from the equations. 

Region Al, 0 < x < b/2, y > 0 

fij'= ($H 
+

£JLI 
+$rz^ $n)coskg-l- (w„ +Wtt -Wn-Wju. ) sixty 

Region A2,  x > b/2,  y >  0 

E* = (i+S„- Stl + Sy2 + SM )cosfy + ( Wn - %, -W„ -~Wn) sin kg   . 

+1L (Wrl - %, + WntW£X) coskj +(-/- SniS„ + Sn +$jiz) *'*kj] 
 (H) 

Region Cl,   0 < x < b/2,   y < 0 

i i[(-Wn-Wx,-Wri-WM)ccskg t ($n + $„ ~ $,2 -Su ) sin ty] 

 <37) 

Region C2,  x > b/2,  y < 0 

/£2 = (l-$n -Sjn-Srz f Sn)cosk<f + (-Wn-Wti+Wn-Wix)sinkj 

+ l[(-Wn-WtrWn + WfJcosk2f(-1 + $„+$„- $n+$n)si»kfi 

 (38) 
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When the breakwater is permeable.  We assume that the wave in re- 
gions A and Bl(y > 0) are the superimposed waves arising from an imper- 
meable breakwater as discribed above, and the waves multiplied by a pass- 
ing through a gap as described in (3) [Fig. 8]. 

In region y < 0, the idea is the same in the proceeding sections. 

Fig. Diffraction around detached 
breakwater. 

e-*"fr( iiO+e^grC-us)   ; e-ik»fr(-ui)+eik»gr(-U2) j e lk>fr(-ia) -e'^grCm) 

e-fc'f^-uO+e'^gK-u?)  | e-MK-uO+e'^giC-iu)   i e ik?fi( in) -H^KK-U?) 

ri- 

ot F3 

e-*jfr(-uO+eik5'gr(-U2) _ e-^frC-uO+e^grC-u?) 

e^K-uO+e^gK-uz)  : e ikyfi( ui) + eik»gi (-U2) 

^ i   c'2 
an 

i eik?fr( ui) + p eik'gr< ifc):e-Mr( uO+pe^grC uz) 

eikyf.( uO + pe^gK u?)   e-ik'fi( ui)+ p e^gK-uz) 
— g-iky^giky  g iky      —(iiky 

Fig. 8.  Superposition of waves for permeable detached breakwater. 
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We again review the coodinate system. 

In Eqs. (36), (37), (38) and (35) 

r^ =  /<x - b/2)z+ yz r^ =  /(x + b/2)z+ yz 

In Eqs. (27), (28) and (29) 

x    =  /(x + b/2)'+ yz rr = /(x - b/2)
z+ y* 

To use the same coordinate system, we must exchange the suffixes r 
and SL  in Eqs. (27), (28) and (29).  Exchanging suffixes r and J£ in Eqs. 
(27) and (28) and adding Eq. (36) and Eq. (28) to Eq. (37). 

We have finally: 

+ Swkj{(l-*)Wr,+(h<<)Wjll-(l + 4)Wr2-(l+*)'WjI} 

•f i [cosky {(t-*) wrl + r/- <*; Pij/ + f/+«owrl+f /+<*; w/21 

•(3 9) 

f?=P?+«rf •4   -r" I 3 

+ sinkj{(l-o()Wn -(l-(X)Wtl-(l-K>()Wri -(/+ef)WJf2} 

+ i[coskij{(i-o()WN -(I-*) Wi, + (lto() Wn -f (i+d) wn ] 

-(4o) 
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+ iCcoskg{-Wrl-Wsi-ft(Wt^Wlz)}-t$iriky{-/+Sn-fSiti-rP(>-Sn-&i)}J 

-(41) 

Preliminary experiments 

Preliminary experiments were carried out in a small water basin 
0.5 m deep, 1.0 m wide and 11 m long.   Vertical homogeneous crib- 
style walls of 8 cm thickness filled with glass ball in diameter 
were used as the model breakwater. 

Because of the limited basin width, standing waves appeared on the 
shore side of the breakwater and the results were not considered adequate for 
examining the theoretical development.  The following are some general 
experimental results. 
(1) Eq. (21) is acceptable for situations where the ratio between the 
gap width and wave length is less than 0.2. 

(2) After the distance of one wave length, calculated diffraction patterns 
by Eqs. (23) and (24) were similar to the experimental patterns. 

(3) Wave heights at the gaps were not constant when the widths of gaps 
were less than one wave length. 

(4) Energy transmitted to the shore side region of the breakwater was 
proportional to the ratio of the gap width, to the wave length, within 
the range less than a ratio of 0.5. 
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A=0.0     B =0.1 

X 
\ 

"^S \ 

0^ 

03 J  : 

APPENDIX  1 

A=0.1     B=0.1 A=Q2    B=0.1 

A=0.3      B=0.1 A=(M       B=0.1 A=0.5    B=Q1 



714 COASTAL ENGINEERING—1978 

A=0.0 
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