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Wave Height Spectrum From Sun Glint Patterns' 
An Inverse Problem 

JOSUl• ALVAREZ BORREGO 

Departamento de Optica, Divisi6n de Fœsica Aplicada, Centro de Investigaci6n Cientœfica y de Educaci6n Superior de Ensenada, 
Ensenada, Mexico 

The problem of retrieving spatial information of sea surface heights from aerial images is considered. 
In this paper, some analytical and numerical results that relate the autocorrelation of the surface 
heights and those of the sun glint patterns are derived. Examples of these results are presented 
showing the nonlinear technique which can be applied to obtain the power spectrum of a real sea 
surface using aerial photographs. As a first step, two kinds of roughness spectra are presented: two 
roughness spectra which describe single-scale surfaces, and the Pierson-Moskowitz power spectrum 
which describe multiscale surfaces for a fully developed sea. Both simulations are presented in one 
dimension. However, a single-scale bidimensional surface is analyzed considering a Gaussian 
roughness spectrum. Wave height spectra are obtained from the surface height autocorrelation via a 
Fourier transform. The results of the model compared with the theory and the data are in quite good 
agreement. Under favorable conditions, it is possible to invert the relation numerically and estimate 
the wave height spectrum from the sun glint data. 

1. INTRODUCTION 

The west coast of the Baja California peninsula is exposed 
to wave motion which inflicts multiple damage. In Todos 
Santos Bay the waves frequently surpass the breakwater 
during the winter months, afflicting human settlements along 
the coast. The complexity of wave motion in deep waters, 
which can damage marine platforms and vessels, and in 
shallow waters, same that can afflict human settlements and 
recreational areas, has given origin to a long-term develop- 
ment in laboratory and field studies, the conclusions of 
which are used to design methodology and set bases to 
understand wave motion behavior. 

To date, two types of instruments have been used for 
studying the sea surface: pressure sensors, which are in- 
stalled below the sea surface, and buoys which are placed 
over the sea surface. 

To measure the wave motion, the use of radar images and 
optical processing of aerial photographs has been used. The 
interest in wave data is manifold; one element is the inherent 
interest in the directional spectra of waves and how they 
influence the marine environment and the coastline. These 

wave data can be readily and accurately collected by aerial 
photographs of the wave sun glint patterns which show 
reflections of the Sun and sky light from the water and thus 
offer high-contrast wave images. 

Four decades ago, Barber [1954] showed that the period- 
icity and directionality of waves can be estimated from the 
optical diffraction pattern of an image of the sea surface. 
After this pioneering work, photographic techniques have 
been used by several authors in their attempts to estimate 
various statistical parameters of sea surface heights. 

In a series of articles, Cox and Munk [1954a, b, 1955] 
studied the distribution of intensity or glitter patterns in 
aerial photographs of the sea. One of their conclusions was 
that for constant and moderate wind speed, the probability 
density function of the slopes is approximately Gaussian. 
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This could be taken as an indication that in certain circum- 

stances, the ocean surface could be modeled as a Gaussian 
random process. Similar observations by Longuet-Higgins 
et al. [ 1963] (cited by Longuet-Higgins [ 1962]) with a floating 
buoy, which filters out the high-frequency components, 
come considerably closer to the Gaussian distribution. 

Other authors [Stilwell, 1969; $tilwell and Pilon, 1974] 
have studied the same problem considering a sea surface 
illuminated by continuous sky light with no azimuthal vari- 
ations in sky radiance. Different models of sky light have 
been used emphasizing the existence of a nonlinear relation- 
ship between the slope spectrum and the corresponding 
wave image spectrum [Peppers and Ostrem, 1978; Chapman 
and Irani, 1982]. Simulated sea surfaces have been analyzed 
by optical systems to understand the optical technique in 
order to obtain a best qualitative information of the spectrum 
[Alvarez Borrego, 1987; Alvarez Borrego and Machado, 
1985]. 

In fact, this problem has not been solved at all. 
In this paper I derive some analytical and numerical 

results that relate the autocorrelation of the surface heights 
and those of the sun glint patterns. Examples of these results 
are presented showing the nonlinear technique which can be 
applied to obtain the power spectrum of a real sea surface 
using aerial photographs. As a first step, two kind of rough- 
ness spectra are presented: two roughness spectra that 
describe single scale surfaces, and the Pierson-Moskowitz 
frequency spectrum [Pierson and Moskowitz, 1964], which 
describes multiscale surfaces for a fully developed sea. For 
this last model the spectrum is determined completely by the 
wind speed. The Pierson-Moskowitz model has the advan- 
tage of simplicity yet yields surfaces that approximately model 
the ocean surface. Since the goal here is to test the nonlinear 
technique used for relating the autocorrelation of the sea 
surface heights and those of the sun glint patterns, the Pierson- 
Moskowitz model is suitable for the present study. 

In this first step I consider surfaces that are rough in only 
one direction. Such surfaces are referred to as one- 

dimensional (I-D) surfaces. I assume the fluctuation of the 
surface height to be statistically Gaussian. This same con- 
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Fig. 1. Physical situation. 

sideration has been made by other authors; for example, 
Yang and McDaniel [1991] and Thorsos [1990]. Cox and 
Munk [1956] also used the fact that the slope distribution is 
close to Gaussian. 

I also assume that the surfaces are illuminated by a source, 
the Sun, of a fixed angular extent,/3, and imaged through a lens 
that subtends a very small solid angle. With these consider- 
ations, I calculate their images, as they would be formed by a 
signal clipping detector. In order to do this, I define a "glitter 
function," which operates on the slope of the surfaces. 

To test my predictions I have conducted a Monte Carlo 
type simulation. 

Random single-scale surfaces with two different power 
spectra have been generated in a computer. Their "sun glint 
patterns" were analyzed for an incidence angle 00 - 30 ø, 
while the detector angle 0d was zero for the two cases. 

Sun glint patterns generated by multiscale surfaces were 
analyzed for 00 - 20 ø and 0d = 0 ø, for a wind speed U of 10 
m/s (19 knots). Spatial increments of 2 cm were used in the 
generation of the surfaces. The first two cases consisted of 
16,384 points and for the last one the spatial series consisted 
of 131,072 points in order to see in the simulation large- and 
small-scale components. The apparent diameter of the Sun, 
/3, was estimated to be 0.68 ø . In order to reduce statistical 
noise in the numerical estimation of the autocorrelation 

function, C(T), of image, L(x), I averaged over 400 esti- 
mated C(T), each obtained from a different, but statistically 
equivalent image L(x). The results are in quite good agree- 
ment with the theory and the data. 

As a second step, a bidimensional surface, Z(x, y) = 
(100, 100) matrix, was generated for its respective analysis. 
Spatial increments of 2 cm were used as well as 10 cm of 
correlation length. Considering the most simplest case, the 
value used for 00, and 0a was zero. Nevertheless, any value 
can be used for both angles. In the generation of this single- 
scale surface, a bidimensional Gaussian roughness spectrum 
was used. However, for simplicity, an isotropic surface is 
considered. As a first approximation I describe the glitter 
function (which describes the sun glint patterns) as a Gaussian 
function which is in function of Mx and My (slope in x and y 
directions, respectively). The results presented in the x direc- 
tion are in quite good agreement with the theory and the data. 
The same behavior was observed in the y direction. 

2. DESCRIPTION AND ANALYSIS OF THE METHOD 

A one-dimensional surface is illuminated by a source S of 
limited angular extent, and its image is formed in D (Figure 1). 
The incidence angle is defined as 00, and the apparent 
diameter of the source is called/3. Light from the source is 
reflected on the surface just one time and, depending on the• 

slope, the light reflected will or will not be part of the image. 
In broad terms, the image consists of bright and dark regions 
that I call a "glitter pattern" and I clipped into a two-level 
signal. The glitter patterns obtained in the image contain 
spatial information of the surface. 

At this point it is pertinent to note that the problem of 
estimated spectral information from clipped or nonlinearly 
detected signals has been considered by several authors in 
the past. In particular, we can mention the pioneering work 
of Van Vleck and Middleton [1966], and some recent appli- 
cations in the context of speckle theory by Pedersen [1984], 
Marron and Morris [1986], and Ohtsubo [1985]. 

The situation here is somewhat different, in the sense that 
the clipped data depend on the geometry of the problem. 

The one-dimensional surface is represented by z = Z(x), 
assumed to be a stationary Gaussian random process with 

2 The correlation R(•) = (Z(x + •)Z(x)) and variance tr z . 
ensemble average is represented by angle brackets. The 
slope is represented by M(x), with correlation Q(•) = (M(x 
+ •)M(x)) and variance try. The relationship between R(T) 
and Q(•) is given by Papoulis [1981]: 

d2R(•) 
Q(•) = d• 2 . (1) 

From the theory of random processes, we know that with 
the stated assumptions, the random process M(x) is Gaus- 
sian. Then the joint probability density function of slopes at 
two different positions X l and x2 is given by 

1.0 

P(M1, M2)= 
2•r•r•[1.0- Q2(T)] 1/2 

M12 + M2 2 - :Q(,r)M1M 2 ß exp - (2) 
2er2•[1.0- Q:(•)] ' 

where, for simplicity, I write M(Xl) as M1, and M(x2) as 
M:. 

The output image formed in D is a two-level random process 
that I denoted by L(x). In general, the correlation function of 
this output is a function of position, but assuming that the field 
of view is sufficiently small that we can consider that the 
process is stationary over the region of interest. Then the 
correlation function of the process L(x) can be written as C(•) 
= (L(x + T)L(x)), and its variance can be written as (r•. 

Figure 2 shows the geometry of the experiment when a 
one-dimensional tilted fiat surface is analyzed. In this figure, 
a represents the angle between the x axis and the surface, 0d 

Fig. 2. Geometry of the experiment. 
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Fig. 3. All the processes involved showing the region selected by B(M). 

is the angle between the normal and the detector, and 00 is 
the angle between the normal and the source. The angular 
subtenses of the source and detector are represented by/5 
and/Sd, respectively. 

From this figure one can determine the range of angles that 
reflect specularly toward the detector. This is what I have 
called the brightness function B(M) that operates on the 
local slope. In practical situations, /Sd is much smaller than 
/5, and, taking into account the stated nonlinearity, the 
brightness function can be approximated by 

I M-Mo , 

B(M) = rect (1 + M02)(/3/2) ' (3) 
where M = tan (a) and M0 = tan [(00 - Oa)/2]. See 
Appendix A. 

According to the glitter function B(M), we can see a region 
selected by it in the slope data, which generate the clipped 
data, L(x). The complete process is shown in Figure 3. 

With the aforementioned considerations, the correlation 
of the output L(x) can be written as 

f+f;B(M,)B(M2) = 
_ 2•rtr2•[1.O- Q2(,r)] 1/2 

M• 2 + M2 2 - 2Q(,r)MiM2] ß exp - 2o'•[1:• --- b•-•] 'J dM1 dM2, (4) 

which can be integrated numerically in order to obtain the 
relationship between C(•') and Q(•-). 

In essence, the technique presented here consist of first, 
finding a relation between tr• 2 and trz 2 and C(•') and R(•-). 
Then, explore the possibilities of inverting this data. The 
spectrum is obtained via a Fourier transform of R. In the 
next section, (2) and (4) are extended to two dimensions. A 
relationship between the autocorrelation function of the 
image, C(•, •/), and the autocorrelation function of the 
surface, R(•, ,/) is obtained. 

3. RESULTS AND DISCUSSION 

The C(r)-Q(r) relation (equation 4) can be seen in Figure 
4. This figure contains two plots of C versus Q for two 
different values of o- M and some incidence angles. 

The inversion of this relationship is possible under favor- 
able conditions. For instance, when o' M = 0.2121, the 
incidence angles from 0 ø to 10 ø are not adequate for the 
inversion because they give a multivalued relation. But, if I 
use different angle for Oa, I can use these values. Thus 
depending on the incidence and the viewing angles, I obtain 
a good relationship for C and Q. However, when rra4 
increases, the C-Q relationship changes. 

The two roughness spectra which generate the single-scale 
one-dimensional surface, the Pierson-Moskowitz power 
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Fig. 4. C-Q relationship. 

spectrum for a fully developed sea, and the two-dimensional 
surface case are described. 

3.1. Single-Scale One-Dimensional Surface Generation 

In order to generate surface height functions Z(x) consis- 
tent with a given roughness spectrum and obeying Gaussian 
statistics, I used the spectral method described by Thorsos 
[1988]. For the present work, two different spectra were 
used, Gaussian and rectangle: 

S l(Kx) l,r 1/2 2 exp , (5) --- O- z 

2 rect [lKx] (6) S2(Kx) = ltr z , 

where the parameter I may be identified with the correlation 
length, Kx is the wave number and S is the spectrum 
function. 

I defined rect (x) as 

x-xø =0 >- rect b b 2 ' 

x-xø =l <-. rect b b 2 

The corresponding correlation functions are 

2 exp [-r2/l 2] (7) Rl(r ) = rr z , 

2 sinc [r/l] (8) R2(•- ) = tr z , 

where sinc x = sin rex/rex and r is the lag variable. 
The spectra defined by (5) and (6) are used because their 

autocorrelation functions are easier to obtain via a Fourier 

transform, and the comparison among the inversion pro- 
cesses, the numerical simulation, and the analytical formula 
can be done (Figures 5a and 6a). 

From (1) I have that 

O' M = 2 1/20'z I ' (9) 
for the correlation function given by (7), but for (8) I find that 

•- o- Z 

try4 = 3 1/• T' (10) 
Now, the variance of the process L(x) is given by the 

expression 

trr [B(M) -/xr]2p(M) dM, (11) 

where /•r, represents the mean of L(x), p(M) is the 
probability density function in one dimension, and B(M) is 
the glitter function, which I approximate by a rect function. 
So I can wdte 

ffL = •M(j½)I/2 rect (1 + M•)(B/2)] - • 

ß exp - dM. (12) 

Defining a = Mo - (1 + M•)(B/4) and b = Mo + (1 + 
M•)(B/4), and ffter a suitable change of variable I find 

•t = (1 - 2•t) eft - eft + •t, (13) 
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Fig. 5a. Single-scale surface Z(x) and its correlation function. 
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Fig. 6a. Surface Z(x) and its correlation function. 
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which provides the required relationship between •œ and 
O' M . 

Examples of surface realizations are shown in Figures 5 
and 6, corresponding to different roughness spectra given by 
eqs. (5) and (6), respectively. However, Figures 5 and 6 
show us sample functions of Z(x), M(x), and L(x) with 
their respective correlation functions, which are evaluated 
theoretically (solid line), from the numerically generated 
data (dashed line) and from the inverted data (dotted line). 
As can be observed, the results are in quite good agreement. 

Each surface realization Z(x) consisted of 16,384 points 
with steps of 2 cm. The parameter/3, corresponding to the 
Sun's apparent diameter, was estimated to be 0.68 ø . The 
angle 00 was considered to be 30 ø, while the angle 0d was 
zero for the two cases. Values of the angle a are shown in 
Figures 5 b and 6b, represented by M(x); in fact M(x) = tan 
O•. 

In order to reduce statistical noise in the numerical esti- 

mation of C, I averaged over 400 estimated correlation 
functions, each obtained from a different, but statistically 
equivalent L(x). We can observe that the C correlations 
must be very well fitted, because when r increases the 
relation between C and Q is very sensitive to small errors in 
the estimation of C. 

Figure 7 shows the corresponding wave spectra obtained 
from the heights autocorrelation function. We can observe 
that for large wave numbers, the results of the inversion 
process (points) with the spectra obtained from the numeri- 
cal simulation (dashed line) have a better agreement than 
with the analytical theory (solid line), because the first one 
was obtained from the image autocorrelation which was 
made considering the numerical simulation. 

We can see some fluctuations in this result, as only 1024 
values from the autocorrelation function were used to obtain 

such spectra. So these fluctuations can be reduced in the 
same way that the statistical noise were reduced from the 
image autocorrelation. 

3.2. Multiscale One-Dimensional Surface Generation 
Using the Pierson-Moskowitz Model 

To obtain the 1-D spectral density S(Kx), I begin with the 
Pierson-Moskowitz frequency spectrum [Pierson and 
Moskowitz, 1964] given by 

/•(w) = --• exp -b0 •-• , (14) 
where w is the temporal frequency of the surface waves, 
a0 = 8.10 x 10 -3 , b0 = 0.74, g = 9.81 rn/s 2, and Uis the 
wind speed at a height of 19.5 m. The power spectrum (14) 
can be written as a function of the wave number component 
(Kx) for the 1-D case. The gravity wave dispersion relation 

w 2 - glgxl (15) 
is used to relate/•(w) to a spatial spectral density. Using 
(15), I obtain 

(Kx) = Kx) = :(gKx) (g/Kx) 2 ' (16) 

for Kx > 0 and •(Kx) = 0 for Kx < 0, and J(w, Kx) is the 
Jacobian given by dw/dK x. 

The simulation of the surfaces requires even spectra. For 
my purpose, the surface can be considered "frozen" and 
S3(Kx) is defined as an even function of Kx. With this 
consideration we can define according to Chapman [1980] 
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Fig. 7. Wave height spectra for the processes of (a) Figure 5 and 
(b) Figure 6. 
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• •(K x) K x -> O, 0.50 S3(Kx) =• 
(17) 

• ,.•(-K x) K x < 0, S3(Kx) =• 

obtaining the spatial roughness spectrum 

[a0] S3(Kx) = 41K13 exp - bøg2 1 2 4 , 
K•: U 

(18) 

where Kx is the surface wave spatial wave number defined 
for positive and negative values. By converting the Pierson- 
Moskowitz frequency spectrum into the one-dimensional 
wave number spectrum given by (18), the total wave energy 
in the Pierson-Moskowitz wave model was applied to waves 
propagating along the x axis as has been done in the past 
[Thorsos, 1990; Negrete Regagnon and Alvarez Borrego, 
1990; Pe6n Gonzdlez and Alvarez Borrego, 1990]. In a 
two-dimensional wave model, the wave energy must also be 
distributed in azimuth [Thorsos, 1990; Negrete Regagnon 
and Alvarez Borrego, 1990]. 

The corresponding correlation function for (18) is de- 
scribed by Fortuit and De Boer [1971] and Pe6n Gonzdlez 
[1988]. Using (13), a relationship between rrr and rr M can be 
found. However, (1) give us a relationship between rrM and 
O Z ß 

Figure 8 shows examples of surface (Z(x)), slope (M(x)), 
and image (L(x)), realizations with their respective correla- 
tion functions. Spatial increments of 2 cm were used in the 
generation of the surface (Figure 8a). The spatial series 
consisted of 131,072 points in order to see in the simulation 
large- and small-scale components. Figure 8a shows only a 
short part of the series owing to space limitation. Figure 8b 
(slope) shows a shorter part than Figure 8a because Z(x) is 
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Fig. 8b. Slope M(x) and its correlation function. 

a multiscale surface and more fluctuations in the slope series 
are found. With respect to the correlations I find a quite good 
agreement with the data and the model. As in the 3.1 case I 
averaged over 400 estimated correlations functions, C(r), in 
order to reduce statistical noise. The calculus computation 
was made on a Sun computer. 

Figure 9 shows the corresponding wave spectra obtained 
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Fig. 8a. Multiscale surface Z(x) and its correlation function. 
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Plate 1. Single-scale bidimensional surface Z(x, y). 

from the height autocorrelation function. We can see a small 
difference only to the end of the slope of the spectra. 
However, the results of the model are within the 95% 
confidence interval of the spectra. 

3.3. Single-scale Bidimensional Surface Generation 

In the same way as the I-D case, the bidimensional surface 
was generated using the spectral method described by Thor- 
sos [1988]. A bidimensional Gaussian roughness spectrum 
was also used. I can write 
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Fig. 9. Wave height spectrum for the process of Figure 8 with 95% 
confidence interval. 

22 2(/(212 -t- Ky/y) q'l' x•X. x 

S4(Kx, Ky) = O'2z('trlxly)1/2 exp - 2 ' 
(19) 

where K is the bidimensional wave number defined as K 2 = 
2 K• 2 + Ky, Ix and ly are the correlation length in the x and y 

directions respectively, and S4 is the bidimensional spectral 
density function. 

The corresponding correlation function of the surface is 
given by 

R4(•, 3•)= O'Z 2 exp - + , (20) 

where • and ,/are the lag variable in the x and y direction, 
respectively. However, for an isotropic surface lx = ly = 1, 
so we can write (20) as 

R4(• ,/)= O. z2 exp [ (•2 + •/2)] , - ]• . . (21) 
Appendix B shows the relationships between R 4 (½, •/) and 

QX(•, •q) (autocorrelation function of the slope in x direc- 
tion), QY(½, •/) (autocorrelation function of the slope in y 
direction) and QXy (•, •q) (cross-correlation function between 
the x and y slopes), respectively. These relationships can be 
written as 
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Plate 2. Slope Mx(x, y). 

(,Mx(x + s e, y + rl)Mx(x, y))= QX(se, 

= • /5' R4(•, r/), (22) 

(My(x + •, y + w)My(x, y))= QY(•, w) 

(4• 2 2) = '• •' R4(•, •), (23) 

(Mx(x + •, y + w)My(x, y))= QXy(•, •) 

4• 

= 14 R4(•, •). (24) 
As we can see in the (22) and (23), the relationship 

between • and •z when we have an isotropic surface is the 
same as (9). 

Considering Gaussian statistics as in one dimensional case 
we have that the probability density function of slopes at two 
different positions x l, x2, and y l, y 2, is given by [Davenport 
and Root, 1958] 

1 

p(Mx, My, Mx,, My,)= 4•21Ai 

ß exp 1 4 4 21AI IAInm(Mn- •n)(mm- •m) , n=l m=l 

(25) 

where, for simplicity, I write M(xi) as Mx, M(x2) as Mx,, 
M(yi) as My and M(y2) as My,; IXn or /a, m represents the 
mean of M(x, y); and IAl.m is the cofactor of the element 
•'nm in the determinant IAI of the covariance matrix 

All A12 ''' A1N ] O'2M 0 QX QXy] 

A21 A22 ''' / 0 cr2M QXy A= i ! i i = Q X Q Xy Cr2m QXy ß 
L AN1 AN2 ''' ANNJ QXy Qy QXy Cr2MI 

(26) 

The determinant is given as 

IAI = Cr4M(QX2 + Qy2)_ 3Cr4MQXY2 + 2Cr2mQXy2Qy 

+ cr•QXY2( •) Qy xy 2) 2 1 +Q +(QX _Q . (27) 

The cofactors are defined as 
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Plate 3. Slope My(x, y). 

= 2 X 2 IAI22 o'•- rrmQ + 2QXy•(Q x- •), 

IAI33 = 
= 2 X 2 2 •A•44 a•- amQ - a•Q • , 

2 lAl•3 = lA13• = •Y (•- • - - 

•A123 = •A132 = e•Y(•- •eY + ee,- 

2 •A•24 = •A•42 = •Y (•- • - - • 

•A•43 = •A•34 = •e•Y(•- e y- 
The bidimensional glitter function is defined as 

(M•- 00) 2 + (My- 00)2,] B(Mx, My) = exp - •2 , 
(28) 

where 00, for this case, was considered to be zero, and a 2 
gives us the width of the Gaussian function. The value a 2 
gives us a physical situation similar to/3. 

With the considerations given above, the correlation of the 
output L(x, y) can be written as 

ß p(M;•, My, Mx,, My,) dM;• dMy dM;•, dMy,, (29) 

which can be integrated analytically in order to obtain the 
relationship between C(s e, ,/) and R(s e, ,/). See Appendix C. 

Plates 1-4 show the bidimensional surface Z(x, y); the 
slope in the x direction, M;•(x, y); the slope in the y 
direction, My(x, y); and the image L(x, y) obtained with the 
glitter function (equation (28)) when 00 = Oa = 0, respec- 
tively. Figure 10b shows us the comparison of the theory 
with the data of the autocorrelation function of the image, 
C(s e, ,/), in s e (x direction), for one realization only. Figure 
10a shows us the comparison of the theory, data and model 
of the autocorrelation function of the surface, R(s e, ,/), in the 
s e direction, for 400 ensemble average realizations. Figure 11 
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il 

Plate 4. Image L(x, y). 

2.00- 

1,50- 

1,00- 
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0.00 
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-1.00 
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1.50 
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0.00 
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A ,• (CMS.) 
120 
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ß ..• ..... DATA 
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-50 -30 - 10 10 30 50 70 

B ,• (CMS.) 

Fig. 10. (a) Autocorrelation function of the surface R(•, 7) in • 
direction. (b) Autocorrelation function of the image C(•, •/) in • 
direction. 

gives us a graphic representation of the analytical relation- 
ship of the image autocorrelation C(•, •/) with the surface 
autocorrelation R(•, •/) (equation (29)). The results in •/(y 
direction) are not shown because as it is an isotropic surface, 
the results obtained had the same behavior as those for the • 
direction. 

4. CONCLUSION 

Wave height spectra from sun glint patterns were found. 
This was possible via a Fourier transform of the surface 
height autocorrelation. 

200 

150 

100 

50 

o 
0.00 

i i i 

0.25 0.50 0.75 1.00 

IMAGE AUTOCORRELATION 

Fig. 11. C(•, •/)-R(•, •/)relationship. 

I 

1.25 1.50 
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To obtain this result, a numerical relation between the 
surface height autocorrelation and the autocorrelation of the 
intensity variations in the photographic image was found. 

rect M_Mo + Mo2t/2 

APPENDIX B 

APPENDIX A 

Consider Figure 2, where a represents the angle between 
the x axis and the surface, and •b represents the angle 
between the normal to the plane and the source (S). The 
incidence angle is given by •b = 00 - a, and the specular 
angle is given by •b = Or + a. From this two equations we 
can write 

O r -- 00 - 2a. 

The angular dimension, Os, of the Sun is 

The relationship between R 4 (•, T]) and QX (•, r/) can be 
written as follows' 

(Mx(x + •, Y + rl)Mx(x, Y)) 

Ax 

{Z(x+Ax, y)-Z(x, Y)}/ ß , 
Ax 

0o - •---< 0s --< 0o + •-, (Ax) 2 {(Z(x + • + Ax, y + rl)Z(x + Ax, y)) 
where/3 is defined as in the text. 

With this range, I can write the unidimensional source as 

rect [ 0 s - . /3 0ø 1 
So, the projection of this source on the detector, after 

reflection, is given by 

0 o-- 2a < Os-2a < 0 o+---2a, 
2 2 

-{Z(x + • + Ax, y + rl)Z(x, y))- {Z(x + •, y 

+ rl)Z(x + Ax, y)) + {Z(x + •, y + rl)Z(x, y)))), 

1 

(ax)2 n)- + ax, n) 
ax, n) + 

Using a Taylor series for R(s c + Ax, r/) and R(s c - Ax, r/), 
we have 

---<0< 0 +-- Or 2 - r 2' 
where 0 = 0s - 2a. 

The reflection will arrive to the detector (D) when 

O r -- '•'• Od• O r -t- -- 2' 

00- 0a /3 00-0a 
2 4 2 4 

Because I am interested in the slopes of the surface, I can 
write 

0 0 d •] tan ß _< tan a -< tan 
2 

and if 7 = (00 - 0d)/2, I can say that 

tan 

tan 

tan y-(1 +tan 2 y) /3 
4' 

tan y+(1 +tan 2 y) /3 
4 

However, if M = tan a and M0 - tan % then 

Mo (1 +M0 •) /3 - ----<M_<M o+(1 +Mo 2) /3 
4 4' 

The last expression gives us the "glitter function" in one 
dimension, 

R(sC + Ax, r/) = R(s c, 

OR(•, rl) (Ax) 2 O2R(• :, 
+ Ax o• • + '" 2 O• :2 ' 

R(•- Ax, rl) = R(•, 

OR(, n) 
Ax + 

(Ax) 2 O2R(•, 
2 O• 2 

and making the substitution, the result will be - 0 2R(s c, 
r/)/0sc 2 . Therefore 

QX(•, rl)= (Mx(x + •, y + rl)Mx(x, y))= - 
O2R(• :, •q) 

2 

The same demonstration applies for (My(x + •, y + 
*l)my(x, y)). 

For the third relationship, we can write 

(Mx(x + •, y + rl)My(x, y)) 

([Z(x+•:+Ax, y+rl)-Z(x+•:,y+rl) Ax 

Z(x, y+Ay)-Z(x, y) , 

Ay 

AxAy 
{(Z(x + • + Ax, y + rl)Z(x, y + Ay)) 

- (Z(x + • + Ax, y + r/)Z(x, y)) 



ALVAREZ BORREGO: WAVE HEIGHT SPECTRUM FROM SUN GLINT PATTERNS 10,257 

- {Z(x + •, y + r/)Z(x, y + Ay)) 

+ {Z(x + •, y + r/)Z(x, y))}, 

AxAy 
[R(• + Ax, r/ - Ay)- R(• + Ax, r/) 

-R(s •, r/ - Ay) + R(s•, r/)], 

_ 1 [R(• + Ax, r/ - Ay)- R(• + Ax, r/) Ax Ay 

R(s •, r/)- R(s •, r/- Ay) 
q- ], 

1 R(• + Ax, r/) -R(•: + Ax, r/ - Ay) 

Ay 

R(s •, r/)- R(s•, r/- Ay) 
ß ], 

Ay 

1 [ OR(•+Ax, r/)0R(s•, r/)] •x Or/ Or/ 

OR(•: + Ax, r/) OR(•:, r/)]/ -- • AX 
Or/ Or/ 

O2R(•, r/) 

...QXy(•, r/) = (Mx( x + •, y + r/)My(X, y)) 

O2R(s e, r/) 

APPENDIX C 

In this appendix I obtain the analytical results of equation 
(29). I used the formula 

exp [-(ax 2 + bx + c)] dx = exp 4a ' 
So the integral 

my'm(gx', My,' 
ß p(M x, My, Mx,, My,) dM x dMy dM x, dMy, 

has the result 

c(•, n)- 
X0 

4A 1/2 2 2] 
IX2 -- X3][X4- X5 

4X1 

_ XO[X6X7_ •_ ,¾8,¾5]2] - X6 

1/2 

where 

X2 = 4X 1 X0 

AI23 IAI12[AI13] X3 = X o IAI Xi 

X4=4X1 X0 •'•+ 2A / 

I A 24 IA[ 12 A114,] x o IAI 2 Xi , 

X7 = X0 
IAI34 IA113 A114 
I--2 i^1 , 

IA 12 A113] Xo IAI23 x8- 2 Ihl 
and the cofactors are as defined in the text. 
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