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ABSTRACT 

A theoretical model i s developed for wave heights and set-up in a 

surf zone. In the time averaged equations of energy and momentvmi the energy 

flux, radiation s t r e s s and energy dissipation are determined by simple 

approximations which include the surface r o l l e r i n the breaker. Comparison 

with measurements shows good agreement. Also the transitions immediately 

a f t e r breaking are analysed and shown to be i n accordance with the above 

mentioned xdeas and r e s u l t s . 
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1. INTRODUCTION 

The proper modeling of wave motion in the surf zone on a l i t t o r a l 

coast has been the goal of many investigations i n pa r t i c u l a r i n the l a s t 

two decades. Yet i n spite of progress both i n terms of a growing stock of 

r e l i a b l e ejcperimental r e s u l t s and i n theoretical understanding of the processes 

the general impression of the situation today i s s t i l l that much remains to 

be done. 

The- present investigation i s mainly theoretical but r e l i e s heavily 

on experimental evidence a t a number of points. I t also i n d i r e c t l y leans 

on the many contributions i n the l i t e r a t u r e which have helped to show that 

conventional wave theories cannot be used to describe surf zone waves. 

As i n most of those contributions we only consider i n t e g r a l properties 

of the waves and work with equations time averaged over a wave period. The 

goal i s only to describe the wave height and mean water l e v e l (set-up) v a r i a -

tions. This means that the integral wave properties we need to determine 

f i r s t of a l l are energy flux, radiation s t r e s s and energy d i s s i p a t i o n . 

In spite of the fact that integral properties 

should be l e s s s e n s i t i v e to minor inaccuracies i n the d e t a i l s of the wave 

description i t i s generally accepted that l i n e a r wave theory i s too d i f f e r e n t 

to y i e l d a proper description of energy flux and radiation s t r e s s i n the surf 

zone. Some authors have t r i e d to use s o l i t a r y wave theory (see e.g., Divoky 

et a l . , 1968), cnoidal theory or hyperbolic wave theory (James, 1974, i s an 

example) which are other e a s i l y accessible wave theories. For reasons that 
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may become clear from the present contribution these p a r t i c u l a r suggestions 

do not work, but t h i s conclusion i s often concealed by the fact that r e s u l t s 

obtained for the wave heights and set-up also depend on how the energy 

dissipation i s modelled. 

Also the idea of a s i m i l a r i t y solution for the waves has been pursued. 

Such an approach i s more l i k e l y to be able to lead to acceptable r e s u l t s , 

although i n the form presented by Wang s Yang (1980) i t i m p l i c i t l y assumes 

that the wave height to water depth i s a constant which we know i s not the 

case (see e.g., the experimental r e s u l t s by Horikawa s Kuo (1966), and also 

t h i s paper). 

In acknowledgement of the limited success of the theoretical 

investigations and the access to modern measuring techniques such as LDA, 

contributions have been published giving both very detailed measurements of 

velocit y and pressure f i e l d s and computations of p a r t i c u l a r l y radiation s t r e s s 

and momentum balance from the basic definitions (see Stive, 1980, and Stive 

& Wind, 1982). 

The p o s s i b i l i t i e s for evaluating the energy dissipation are far more 

r e s t r i c t e d . In princip l e turbulence i s created by two sources: the bottom 

boundary layer and the surface breaker. In practice, however, the bottom 

dissipation i s t o t a l l y outweighted by the dissipation due to breaking, and 

i s consequently neglected here. 

The idea which turns out to be most f r u i t f u l i n determining the 

energy dissipation ( i f a detailed description of the turbulent flow i s not 

attempted) i s based on the resemblance of surf zone waves with bores. This 
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was discussed by LeMehauté (1962) and l a t e r by Divoky et a l . (1968). To 

f i t measiirements, however, they used the motion of a non-saturated breaker 

suggested by LeMehauté (1962), which implies an energy dissipation smaller than 

the dissipation i n a hydraulic jtimp of the same height as the wave. This i s 

the opposite r e s u l t of that found by Svendsen et a l . (1978) who concluded that 

the dissipation i n actual measurements were larger than i n a jump of the same 

heights The. explanation for t h i s controversy probably l i e s i n the dif f e r e n t 

values used for the energy flux. I n section 7 we w i l l see that i n a cnoidal 

•or s o l i t a r y wave (used for assessing the energy flvix by Divoky et a l . ) the 

energy f l u x for a given wave height i s much smaller than i n a surf zone wave. 

Hence the smaller dissipation required by Divoky et a l . for a given (measured) 

wave height decrease. 

In the present paper we simply use the hydraulic jump expression for 

the energy dissipation. This i s i n r e a l i z a t i o n of two f a c t s . 

F i r s t l y Svendsen S Madsen (1981) e s s e n t i a l l y confirmed the conclusion 

±n Svendsen et a l . (1978) tin the following denoted I ) , but th e i r r e s u l t s 

indicate that many factors are involved, and further studies show that the 

deviation from the hydraulic jump dissipation i n most cases i s l e s s than 20%. 

Secondly the other effects studied i n the following are found to be 

more important. 

The paper may be considered a continuation of the work reported i n I . 

To determine the wave height and set-up variation we consider the equations 

of energy and momentum balance, both averaged over the wave period (section 2 ) , 

and i n section 3 derive a closed form solution to the energy equation. In 
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section 4 we investigate an a n a l y t i c a l solution for a special case. This 

reveals that neglecting set-up there i s only one parameter K (given by the 

wave properties at the starting point) which determines the wave heights. 

K i s a combination of the bottom slope parameter S = h L/h ide n t i f i e d for 

shoaling by Svendsen S Hansen (1976) (h i s bottom slope, L wave length and 

h watei: depth), the wave height to water depth r a t i o H/h and the dimensionless 

energy flux B. 

The three wave properties mentioned e a r l i e r (the energy flux, 

radiation s t r e s s and energy dissipation) are determined i n section 5. Here 

i t becomes necessary to concentrate on the inner region (defined i n I ) of 

the surf zone where the waves have become bore-like (Fig. 1 ) . I t i s shown 

that the most important feature i s the existence of a surface r o l l e r which 

to the f i r s t approximation can be considered as a voltime of water c a r r i e d 

with the wave. The r o l l e r almost doubles both energy flxxx. and radiation 

s t r e s s r e l a t i v e to a shallow water wave otherwise of the same shape. 

Fi g . 1 ' . 

Section 6 shows comparison with experimental r e s u l t s i n the inner 

region. Both wave heights and set-up are well predicted. 

When i t comes to the outer region (Fig. 1 ) , however, some paradoxical 

features are i d e n t i f i e d i n the measurements (section 7 ) . The paradox i s r e -

solved by considering jump conditions analogous to those applied for bores 

and hydraulic jiimps. This implies using the momentum and energy equations 

for the entire outer region. The res u l t s show that the expressions derived 
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in Section 5 for waves in the inner region are consistent with r e s u l t s for 

waves before breaking. 

Throughout the derivations the simplest and lowest order approximations 

have been used. Thus many d e t a i l s such as non-uniform velocity p r o f i l e s , the 

e f f e c t of the strong txirbulence, etc. are simply neglected. The reason i s 

t h a t these aspects, however important, turn out to be minor corrections 

r e l a t i v e to the e f f e c t s included. Hence the following i s meant as an attempt 

to show that i t i s possible for the wave motion i n a surf zone to formulate 

a crude model which reproduces a l l the major features observed i n the 

measurements. 



Fig. 2 

2. THE BASIC EQUATIONS 

We consider the two dimensional problem sketched i n F i g . 2 which also 

shows the definition of variables. 

The three basic equations to be s a t i s f i e d represent the conservation of 

mass, momentum and energy, integrated over depth and averaged over a wave 

period T. 

The conseirvation of mass w i l l not be invoked e x p l i c i t l y but used i n the 

way the p a r t i c l e v e l o c i t i e s i n the wave are evaluated. 

We consider regular progressive waves only and hence the momentum 

equation simply reads 

as 
X X 

9x 
= - pg(h + n) 

an 
ax 

(2.1) 

where S i s the radiation s t r e s s defined (exactly) by ( denoting average 
X X 

over a wave period) 

S = P + F„ 
X X m p 

P = 
m 

2^ 
pu dz 

P -h 

(2.2) 

with the dynamic pressure p̂ ^ given by 

= pgz + p (2.3) 

2-1 
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Using for mean energy flux and V for energy dissipation, the energy 

equation (also averaged over a wave period) becomes 

9E 

= V (2.4) 3x 

The general definition of E^ i s 

'1 

= [(p^ + I p(u^ + v^ + w^)]u dz (2.5) 

I n both (2.3) and (2.5) v e l o c i t i e s and pressures are the instantaneous 

values, so that these definitions also cover the turbulent flow situations i n 

a surf zone. Since, however, any ordered mechanical energy that i s turned 

into turbulence w i l l be reduced to heat within roughly-the following wave 

period we s h a l l choose i n (2.4) to consider only the flux of (ordered) wave 

energy, that i s , consider energy l o s t as soon as i t has been changed to 

turbulence. To i l l u s t r a t e t h i s we write 

^ f = ^f,w-^^f .. 

Where E^ i s the t o t a l flux of turbulent energy (by a l l means, including 

diffusion) and (with v = 0) 

"^f ,w - J 

1 2 2 

(Pj3 + J p(u + w )u dz (2.7) 
-h 

(~ denoting ensemble averaged values) i s the flux of "wave energy." 

Hence (2.4) becomes 

9E, 9E; 

- f ' - ^ = p _ f = (2.8) 
3x 9x t 

where then equals minus the production of turbulent energy 
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But in the steady wave motion considered also equals minus the 

energy dissipation V . 

Hence i n (2.4) we simply use (2.7) for and t h i s means considering 

only ordered wave energy, which i s a choice, not an approximation. 

I t i s convenient for the following analysis to introduce non-dimensional 

measures of both the wave energy flux E , the radiation s t r e s s and the 
I ,w 

energy dissipation. The following definitions are used. 

B = E^ Y(pgcH^) (2=9) 

P = S 2 (2.10) ^ p g H 

D = P^.(4hT/pgH^) (2.11) 

where T i s the wave period and c the speed of propagation for the wave. 



3. A CLOSED FORM SOLUTION TO THE ENERGY EQUATION 

I t tums out that the energy equation can be solved i n closed form 

for a f a i r l y general type of problem. With (2.11) and (2.7) substituted 

C2.4) reads 

f>w ̂  H D (3.1) • 
3x 4HT 

The variation of the wave height i s a combination of three e f f e c t s : 

the change i n water depth (which on a beach causes a wave height increase) , 

the dissipation of energy (tending to reduce the wave height) and the change 

i n shape of the wave (taken i n a rather general sense) which i s re f l e c t e d i n 

the v a r i a t i o n of R, P and D. 

Whereas the f i r s t two of these effects are represented i n the time 

averaged equations, the same time averaging has excluded the p o s s i b i l i t y of 

assessing the change i n wave shape (n, u, p, etc.) d i r e c t l y from the equations 

and the values of B, P and D must be evaluated separately (see sect. 5) . , 

Hence i n the following we assume these parameters are known. 

To obtain a solution to (3.1) we introduce a shoaling c o e f f i c i e n t 

K defined so that a t any depth 
s 

2 2 
c B ( K H ) = c B H = const (3.2) 

^ s r r r r 

where index ^ ref e r s to some chosen reference point. This equation would 

give the H variation i n the absence of dissipation. The actual wave height 

i s then expressed as 

H = K K^H (3.3) 
s d r 

3-1 
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which defines the dissipation coefficient K^. Thus we get using (3.2) which 

implies a/8x(cBK ^) = 0: 
s 

= 2pg K^K^CBK/H^ =2E^^^ 

(' denoting 3/9x) which substituted into (3.1) y i e l d s 

or 

4cBhT 
d 

K' K H D 
d _ s r 
2 ~ ScBhT 

or 

K H D 
s r (3.4) 

8cBhT 

So far no assiomptions have been introduced neither about the type of 

wave considered (except that i t i s regular and progressive) nor about the 

nature of the energy dissipation. Thus (3.4) applies to waves i n the surf 

zone as well as to the attenuation of waves due to bottom f r i c t i o n . (3.4) 

even applies to the growth of waves due to wind energy being added i f we l e t 

n > 0. In the following, however, we concentrate on the surf zone where 

D < 0. 

We now make the assumption (which w i l l l a t e r be j u s t i f i e d ) that the 

c o e f f i c i e n t s on the r i g h t hand side only depend on the water depth h. (For 

a numerical evaluation of the following solution t h i s assumption may be relaxed 

to include a weak dependence on H as well.) Hence (3.4) may be integrated 

d i r e c t l y giving 



K. K 'dr 

•X K H D 
s r 

X 
ScBhT 

dx 

where the integration constant i s K^^ = 1 for x^ x^. That i s 

^d = 1 -
•X K DH 

s r 
ScBhT 

- r - l 

dx 

(3.5) 

(3.6) 

Recalling that (3.2) implies 

— '*;r— 
s c B 

(3.7) 

we therefore get for H by substitution into (3.3) 

r 

H 
1 - 8c B T 

r r 

X DK 
3 ^-1 

dx (3.8) 

We see that t h i s closed form solution depends on one combination of the wave 

properties at the reference point, namely 

H , H h 
1 r r 

8c B T 8B h L 
r r r r r 

(3.9) 

C3-8), however, corresponds to a certain change i n x. And since K mainly 
s 

depends on h t h i s means that the bottom slope h i s actually a parameter as 

we l l . For monotonously changing depth we can express t h i s e x p l i c i t l y by 

changing to h as integration variable. This y i e l d 

r 
1 - K 

f X DK h 
s xr 

h h' 
X X 
r 

dh 

with (3.10) 
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and h i s h at the reference point. Hence the wave height v a r i a t i o n i n 
xr X 

a surf zone w i l l be the same for a l l wave conditions having the same value 

of K at the st a r t i n g point of the computation (which, i n p r i n c i p l e , may be 

any point from the breaking point where D becomes non-zero and shorewards) . 

I t also shows that the bottom slope i t s e l f i s not a proper measure 

of the steepness of the beach. The relevant parameter i s h L/h, which i s 

the same, slope peirameter. as was found for the shoaling of waves by Svendsen 

& Hansen (1976). 

Notice that h includes the set-up, that i s 

h ^ h g ^ + ïï (3.11 

where h ^ ^ i s the depth i n the absence of waves. 
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4. ANALYTICAL SOLUTION FOR A SPECIAL CASE 

One special case i s of p a r t i c u l a r i n t e r e s t as i t renders an a n a l y t i c a l 

solution possible. I t corresponds to a plane beach with D and B constant and 

c = c i/qh. The l a t t e r assxmption with c s l i g h t l y larger than /gh - and hence 

c s l i g h t l y more than Vgh but varying l i k e h. ' - was found i n I to be a good 

approximation. 

In t h i s case the integral i n (3.10) may readily be solved and we get 

with h- = 5 ^ (4.1) 
I =s • t ̂  •••• "• W X U H IJ. i _ 

j , . V 4 ^ , ^ 4 ^ ( ^ . - 3 / 4 _ ^ j 3 h 

In t h i s solution i s included the set-up n determined from the solution 

of the momentum equation. This, however, i s nonlinear i n n and not solvable 

except i f H/(h+n') i s assumed constant (Bowen et a l . (1968)). Although 

t h i s -is not r e a l i s t i c ^ for the major part of the surf zone , n « h and 

hence i n evaluation (4.1) we may either completely neglect n (viz means 

h' - (h/h ) ).or use the above mentioned approximation H/h = a = const. 

The l a t t e r gives the approximation 

^ - '1 ~ "i^^swL - \,sm) 

a, = 
l+2a2p 

or ( i f we neglect i n comparison to h^) 

(4.2) 

^ r ^ SWL 

(1 + a^) - (4.3) 

4-1 
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which d i f f e r from Bowen et a l . ' s r e s u l t i n that a i s not ass\amed equal to 

0.8. 

Figs. 3 
& 4 Figs. 3 and 4 show the variation of H/Ĥ  and H/h*(H^/h^) versus 

h' = Ch/h for different values of KD and n = 0. 
SWL r'SWL 

In these figures we could, for example, consider the reference point 

taken at the breaking point. 

Of p a r t i c u l a r i n t e r e s t i s the variation of the wave height to water 

depth r a t i o H/h. As anticipated H/h i s far from constant for any value of KD. 

For a wide range of KD, however, (which also turns out to be p r a c t i c a l l y 

r e a l i s t i c ) the H/h variation shows a minimum which may be recognized also 

i n many experimental r e s u l t s (see e.g., Horikawa s Kuo (1966)). 

Clearly t h i s phenomenon r e f l e c t s the basic feature mentioned above 

that the wave height variation i s a balance between shoaling and d i s s i p a t i o n . 

This can more readily be seen by writing (3.1) i n the form (for derivation see I ) 

h 

h c B 

h 2c 2B 
H + _D_ 
h 8cTB 

2 

(4.4) 

The f i r s t bracket on the right side represents the shoaling, the l a s t 

term the dissipation. Since at the reference (breaker) point H/h w i l l usually 

be quite large, the second term w i l l dominate provided [D| i s s u f f i c i e n t l y 

large as in a breaker. Hence at a s t a r t (H/h)^ i s negative. As (H/h)^ 

however decreases f a s t e r with H/h than does (H/h)""" the difference between 

the two terms decreases t i l l (H/h) ~ 0. Hence were i t not for other e f f e c t s 

H/h would asyifiptotically approach the value obtained by equating the right 

side to zero. 
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Fig. 5 

At the same time, however, as h decreases for constant h^ both b^/h 

and c^/c increases and near the shore l i n e t h i s effect becomes completely 

dominating resulting i n the shown increase i n H/h. 

The position of the minimum for H/h can be found from (4.4) to be 

(with c^/c = h^2h) 

h D 

(Notice that both h^ and D are < 0.) I f we introduce K t h i s becomes 

(H/h) . ^ T 

"̂ "̂  = I (KD>4r^)"^ ( 4 . 6 ) (H/h)^ 4 

which may be solved i n combination with (4.1). The r e s u l t i s that the minimum 

for H/h occurs at 

1 4 / 3 

h' . 
mxn 

8 KD 
20 KD - 15 

This value and the corresponding value of H/h are shown i n F i g . 5. 

We also see that for s u f f i c i e n t l y small KD(<' 1.25 i t turns out) the 

wave height w i l l be increasing already from the reference point. This i s 

not l i k e l y to happen for breakers but w i l l sometimes be the situation where 

the dissipation i s caused by bottom f r i c t i o n (that i s seawards of the breaking 

point). 

On the other hand, the situation may also occur that a wave approaching 

a shore w i l l not break at a l l because i t s energy i s being dissipated by bottom 

f r i c t i o n faster than the height can increase due to shoaling, so that i t never 
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reaches a height s u f f i c i e n t for breaking to occur. Obviously t h i s requires 

a very small bottom slope and we see from (3.10) that h^ small leads to K 

large so that even with the small D from bottom f r i c t i o n KD becomes larger 

than 1.2S. (Pig. 4 also incidates that i f breaking i s to be avoided e n t i r e l y 

then h must decrease shorewards. With constant h (however small) the wave 

height w i l l s t a r t to increase sooner or l a t e r and hence the wave w i l l reach 

breaking.) 

The question, however, remains whether B, D and P can be considered 

constants through the surf zone (as assumed i n t h i s section), and what t h e i r 

values w i l l be. 
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5. ENERGY FLUX, RADIATION STRESS AND ENERGY DISSIPATION IN THE SURF ZONE 

The solutions derived above can theoretically be used right from the 

breaking point and shorewards, but i t has often been pointed out (see e.g., 

I ) that the flow i n the so-called "outer region" immediately shoreward of the 

breaking point i s s i g n i f i c a n t l y different from the conditions i n the inner 

region. The tramsitions i n the outer region w i l l be discussed i n Section 7. 

F i r s t , however, values of the dimensionless parameters B, P and D 

are detejnnined i n the inner region. 

The important feature dominating the wave motion i n t h i s region i s 

the surface r o l l e r , which i n essence i s a volume of water carried shorewards 

with the breaker. F i g . 6 shows a t y p i c a l situation, and also indicates a 

t y p i c a l velocity d i s t r i b u t i o n along a v e r t i c a l at the front of the wave. 

F i g . 6 

The r o l l e r i s defined as the re c i r c u l a t i n g part of the flow above 

the dividing streamline (in a coordinate system following the wave). Since 

i t i s resting on the front of the wave the absolute mean veloci t y i n the r o l l e r 

equals the propagation speed c for the wave, and i n the following we use t h i s 

value for the velocity i n the r o l l e r , neglecting the z-variation. 

From t h i s • i t follows that the r o l l e r represents a s i g n i f i c a n t 

enhancement of the ordinary Stokes d r i f t Q . Thus a surf zone wave pote n t i a l l y 
5 

represents a much bigger mass transport than non-breaking waves. The actual 

net mass flux, however, i s in any situation determined by the boundary conditions 

i n the x-direction, and in the general three dimensional case i t w i l l also 

5-1 
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F i g . 7 

depend strongly on the longshore variations of bottom topography and wave 

heights. 

In the present two dimensional study we assume a zero net mass flux 

(Q = 0 ) , which of course implies that there i s a return flow compensating for 

the surface d r i f t . 

From observations we know that i n the inner region the change i n 

wave shape i s slow so the instantaneous volume flux 

rn 
u(x,z,t)dz (5.1) 

-h 

may ba determined as 

Q = c n + Q = U d + Q (5.2) 

where the surface p r o f i l e i s specified so that n" = 0. U i s the wave p a r t i c l e 

v e l o c i t y averaged over depth. As mentioned we s h a l l further assume that Q = 0. 

Although i t i s a crude s i m p l i f i c a t i o n the velocity distribution shown 

i n F ig. 7 w i l l contain a l l the primary information outlined above and we w i l l 

use that. The thickness e of the surface r o l l e r w i l l be zero except i n the 

front which i s i m p l i c i t l y understood i n the following derivations. Hence we 

get 

Q = cn = ce + u^(d-e) 

Outside the r o l l e r we have 

u = c(ri - e)/(d - e) 
o 

(5.3) 

(5.4a) 
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and i n the r o l l e r 

u = c (5.4b) 

The pressure i n the wave motion i s of course not s t a t i c . In combination 

with the rather crude assumptions made above, however, i t i s consistent to assxime 

a s t a t i c pressure variation corresponding to the l o c a l , instantaneous position 

of the free surface. That i s , using (2.3) 

Pj3 = pgn (5.5) 

The Energy Flux B 

With these assumptions we f i r s t calculate the non-dimensional energy 

flux B defined by (2.9). Substituted into (.2.7) t h i s y i e l d s (omitting the 

" which indicates the turbulent ensemble averaging) 

2 
pgcH 

,|pCu2 . „ 2 , (5.6) 

-h ° ^ 

Introducing the assumptions outlined above - which also implies 

neglecting the w^-contribution - we f i r s t get from (2.7) 

^ f , w = R + Ï p^'<3-=Ef,o ^ f ,1 (s-'^) 

-h 

where E i s the f i r s t term i n the integral and E- the second. (5.5) gives 
r,u r , i 

Pj^udz = 
-h 

rn 
pgnudz (5.8) 

-h 

which by virtue of (5.2b) becomes 

^f,0 " P̂ "̂̂ ^ " pgcH^(n/H)^ (5.9) 



Thus the r o l l e r does not contribute to t h i s term. For E we get 

x ,x 

^ f , i = h 

n-e 
u dz + 
o 

c'̂ dz 

1 2 H 
2PgcH ^ ' 

^ 1 3 1 
edt (5.10) 

where c - gh and TI .« h has been used i n the f i r s t term. Since n = 0 we w i l l 

3 2 

find that (ri/H) « (ri/H) , the l a t t e r being an integral of a non-negative 

quantity (see Hansen, l a s a i . 

The area A of the surface r o l l e r i s defined as 

edt = -
c 

edx = (5.11) 

where X i s the length of the r o l l e r (see Pig. 6 ) . In (5.10) t h i s yields 

1 3 A 1 „2 A h 
^ f , l = 2 P° 1 = 2 

rl 

(5.12) 

which shows that the contribution to the energy flux from the surface r o l l e r 

i s proportional to i t s area i n the v e r t i c a l plane. 

Veiry l i t t l e information i s available about the size of the surface 

r o l l e r . Duncan (1981) has measured A i n a breaker behind a towed hydrofoil, 

and h i s r e s u l t s are shown i n Fig. 8. For the present application we w i l l 

approximate these r e s u l t s with 

A ~ 0.9 H (5.13) 

and hence we get for E_ 
^ f ,w 

^f,w ^ 

r \2 
1 + 0.45 -

IJ 

(5.14) 
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and from (5.6) for B 

- I 

n 
[ H J 

"dt + i . A. = 1 
2 gL T 

n 

[ H J 

dt + 0.45 - (5.15) 
L 

Here L i s a l o c a l quantity defined as cT, not the physical distance 

between two consecutive wave c r e s t s . 

Values of B defined as 
o 

O T 

•T 
IL 

•'0 
H 

2 

dt 

are shown-for waves i n the surf zone i n Fig. 9. The measurements are a l l 

F i g . 9 taken on a 1/34.3 slope at ISVA and the r e s u l t s only show the trend i n the 

varia t i o n . C l e a r l y there i s a s i g n i f i c a n t amount of scattering but also some 

systematic variation with wave parameters (such as the deep water steepness 

H / L ) which needs further documentation and analysis, 
o o 

The main tendency, however, i s quite obviously that from the point 

of breaking B^ increases rapidly from a r e l a t i v e l y small value (indicating a 

rather peaky wave p r o f i l e representing a small energy flux for a gxven wave 

height) towards values around 0.07 - 0.08. The variation may be further 

i l l u s t r a t e d by the examples given i n Table 1 for some simple surface p r o f i l e s . 

Of p a r t i c u l a r i n t e r e s t are the value 0.083 and 0.089 for triangular and 

parabolic wave shapes respectively, because surf zone wave p r o f i l e s often 

resemble such shapes as Pig. 10 shows. 

Fig. 10 
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Table 1 

The Radiation. Stress P 

The radiation s t r e s s defined by (2.2) represents the time averaged 

momentum f l u x . In (2.2) i s included the e f f e c t of the turbulent normal 

stresses as well as any net volume flux superimposed on the wave. 

The l a t t e r , however, we are excluding here. The contribution from 

the turbulent stresses was analysed by Stive s Wind (1982) on the basis of 

experimental data. They concluded that t h i s e f f e c t only increases the rad i a t i o n 

s t r e s s by some 5%. Part of the reason for t h i s modest e f f e c t of strong 

turbulence i s that the v e r t i c a l velocity fluctuations reduce the pressure 

whereas the horizontal fluctuations increase the momentum flux. Hence i n 

the present context we may neglect the turbulent contribution to S ^ . 

Using (5.5) we then get for i n (2.2) 

F 
P 

1 2 1 2 
pgndz - — pgn = -r pgn (5.17) 

J-h ^ ^ 

which by means of (5.16) may be written 
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(5.18) 

For F^ we get, using (5.4a,b) 

F = 
m 

pu dz = p 
-h 

2 2 
u (d-e) + c e 
o 

(5.19) 

Here 

2,^ X 2 
. u (d-e) = c 

o 

2 2 
n - 2rie + e 

d - e 
(5.20) 

which we approximate by using e « d. We also notice that since e 7̂  Q almost 

symmetrically around n = 0 the value of ne must be very small. Hence we get 

F - pc 
m 

2 2 
~ p - H 

2 c ̂ 2 -
e| . e h 
H (5.21) 

From Duncan's r e s u l t s can be found that e/H -0.3 and since e = 0 

2 2 
over most of the wave p r o f i l e i t follows that (e/h) « (ri/H) so that we 

for F get (again using c - v'gh) 
m 

2, A h , 
^m~ ( B ^ - ^ - - ) 

H 

In combination with (5.18) and (5.13) t h i s y i e l d s for S 
X X 

(5.22) 

(5.23) 

or 

P = I + 0.9 7" 
2 o L 

(5.24) 

With the r e s u l t s from Fig. 9 for B^ and a t y p i c a l value of 0.05 - 0.10 for 

h/L we see that the presence of the surface r o l l e r roughly doubles the 

radiation s t r e s s . 
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The Energy Dissipation D 

The t h i r d parameter i n the equations i s the dimensionless energy 

dissipation D. A detailed analysis of D i s quite complicated and i s considered 

unnecessary i n combination with the simplifying assiomptions introduced at a 

number of other points. Svendsen S Madsen (1981) showed that neglecting the 

form change the energy dissipation i n a surf zone wave can be determined by 

D = 1 + _i±i E — Ë ° • (5.25) 

°bore . V - " c 

where a, 8 are c o e f f i c i e n t s for depth averaged velocity and pressure contributions 

i n the momentum and energy equations, and ^ and ^ refer to trough and c r e s t 

respectively. With the assumptions outlined above, however, t h i s expression 

s i m p l i f i e s to 

D = D (5.26) 
bore 

where D i s the energy dissipation i n a bore of the same height as the Wave, 
bore 

The dimensional form of DJ^QJ,Q i s ( C = ^ ^ / ^ ^ ) 

AE = p g Q d ^ i ^ ^ (5.27) 

(see e.g., Henderson (1966)). In a wave Q = u^d^ = ch so t h i s may also be 

written 

AE = pgch (5.28) 
t c 

I f we assume that each breaker suffers a similar dissipation per 

second then the mean dissipation per m̂  bottom area i s A E / L . And substituting 
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t h i s for i n (2.11) then yields 

D = J i — (5.29) 

\% 

Introducing the crest elevation instead of d^ and d.̂. we get 

d = h + n ; d. = h + n ^ - H (5.30) 
C G t C 

and thus 

D = (5.31) 

whick shows that for fixed n /H D does depend s l i g h t l y on H/h. F i g . 11 shows 
c 

the variation and F i g . 12 gives values of from the experiments quoted 

above. As was the case for B the r e s u l t s for n^/H show s i g n i f i c a n t s c a t t e r i n g 

but in the inner region of the surf zone the value i s mostly 0.6 - 0.7 which 

from F i g . 11 i s seen to represent a D nearly independent of H/h. 

F i g . 11 also shows that D only varies s l i g h t l y with n^/H. In other 

words, the primary variation of the energy dissipation i s represented by the 

H"̂ /h dependency already accounted for i n the definition (2.11). 
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6. COMPARISON WITH MEASUREMENTS 

The outer and the inner region 

The o r i g i n a l concept of an outer (transition) region and an inner 

(bore) region was primarily based on the v i s u a l observations of wave behaviour 

a f t e r breaking (see I ) . The impression i s one of a gradual change towards the 

bore shape- found^ i n the inner region. Consequently no attempt was made to 

define a proper l i m i t between.the two regions and wave height measurements 

t r u l y do not suggest a natural d e f i n i t i o n . 

The s i t u a t i o n i s quite different when the variations i n mean water 

l e v e l are considered. F i g . 13 shows some examples from Hansen S Svendsen 

(1979) covering a wide range of deep water steepnesses. They a l l exhibit a 

marked change i n the slope of the mean water l e v e l at some distance shoreward 

from the breaking point. A s i m i l a r variation can also be; seen i n other 

investigations such as Bowen et a l . (1968) andT Stive & Wind (1982). The mean 

water l e v e l i s horizontal or weakly sloping over a distance of 5-8 times the 

breaker depth and then a rather sharp increase i n slope occurs. The distance 

of nearly horizontal mean water l e v e l i s comparable to the distance of the most 

obvious transformations of the wave shape following after the i n i t i a t i o n of 

breaking, and so i t w i l l be coherent with the o r i g i n a l concept to define the 

l i m i t between the outer and the inner region as the point where the slope of 

the mean water l e v e l changes. In the following t h i s i s termed the t r a n s i t i o n 

point. 
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Wave conditions i n the inner region 

Physical explanations for these changes are sought i n section 7. 

F i r s t , however, we notice that since the r e s u l t s derived above for the parameters 

B, P and D are based on the wave properties i n the inner zone comparisons with 

experimental data should s t a r t i n t h a t region. I t i s 'convenient to use the 

same reference point i n a l l computations. To s t a r t computations a t the above 

defined t r a n s i t i o n point (and emphasize the a r b i t r a r i n e s s of the reference 

point) we therefore write (3.6) as 

^d ' = r V 
dh + 

h 
•— r 

dh 

t 

DK 

hh 
(6.1) 

which upon d e f i n i t i o n of 

H 

^ t Sc^B^T 

fh^ DK dh 
t s 

h X 
r 

(6.2) 

can be written 

H rh DK 

^d ^ t ^ ° r V 
, hh 

dh (6.-3) 

(which can also ba obtained d i r e c t l y from C3,5)). For the wave height t h i s means 

fh' . - r - l 
Ddh' 

h^ ( c ' B ' ) ^ / \ ' _ 
(6.4) 

where we i n analogy to (4.1b) have defined 

= c/c^ ; B' = B/B^ (6.5) 

K i s given by (3.10b) and K^ by (6.2) which can also be written (see (3.3) and 

(3.7)) 
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r r 

In a l l these expressions index ^ indicates values at the t r a n s i t i o n point. 

Using t h i s ( s l i g h t l y more general) version of the solution derived i n 

section 3 we are s t i l l free to l e t the reference point also be, for example, 

the t r a n s i t i o n point. I n the following computations, however, and the corre-

sponding figures we have chosen the breaker point (B) as reference. 

The momentiam equation (2.1) i s solved simultaneously with the 

determination of the wave height. Hence (3.11) i s used for h i n (6.4). 

With (2.10) and (5.24) substituted (2.1) becomes 

d n ^ J ^ ^ j ( 3 + 0.9 ^)H^] (6.7) 
dx , - dx ' ̂ 2 o L ' 

h+ri 

In the computations we neglect the v a r i a t i o n of B^ and assume that h/L 

^'ïP'. I t i s emphasized again that t h i s means c i s proportional to /gh, not 

equal to (see I ) . For B and n i s used B = 0.075 (see Pig. 9) and n /H 
^ O C O V-

= 0.6 (Fig. 12). ' 

Discussion of r e s u l t s 

Figs. 14, 15 and 16 show a comparison with r e s u l t s for three rather 

d i f f e r e n t wave steepnesses, a l l on a plane slope 1/34.3. I n general the 

agreement i s quite good p a r t i c u l a r l y for the set-up. The l a t t e r i s of p a r t i c u l a r 

i n t e r e s t because the ca l c u l a t i o n s show that n i s much more sen s i t i v e to the 

assumptions made than i s the wave height v a r i a t i o n . As can be expected from 

what was said above the H va r i a t i o n i s v i r t u a l l y independent of the choice of 
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I t i s noticed that i n some of the cases the H-variation i s s l i g h t l y l e s s 

curved than corresponding to the best f i t of measurements, and the values of 

H grow a l i t t l e too large. This tendency w i l l be further amplified i f a larger 

value for n /H i s used (see Pigs. 11 and 12). Both these points can be adjusted 
c 

by using a value of D perhaps 20-30% larger than given by (5.31), which i s 

quite consistent with the r e s u l t s reported e a r l i e r (see I and Svendsen S Madsen, 

1981) that the actual energy di s s i p a t i o n i n a surf zone wave i s larger than i n 

a hydratü-ic jump of the same hèight. 

The e f f e c t of including the surface r o l l e r i n B can be understood by 

considering the energy equation i n the form (4.4). In the f i r s t bracket repre-

sentiaq the shoaling mechanism B^B i s much smaller than the other two terms. 

So the value of B mainly enters the. l a s t term,. Hence, the,• incijease i n B due to 

the r o l l e r i s equivalent to a s i m i l a r decrease i n D , and the observation above 

that D i s too small could a l s o be due to an overestimation of B. 

i n F i g s . 14-16 are a l s o included r e s u l t s obtained by omitting the 

sxirface r o l l e r (.dqtted curve corresponding to B = B^ and P = 3/2 B^) . The 

e f f e c t i s quite appreciable. On the other hand, considering that the presence 

of the surface r o l l e r nearly doubles energy fl u x and radiation s t r e s s the 

difference between the f u l l and the dotted l i n e s i n these figures indicates 

t h a t the e f f e c t of also including turbulence, deviation from s t a t i c pressure, 

e t c . would hardly be d i s c e r n i b l e . 

The strongest j u s t i f i c a t i o n , however, for the importance of the surface 

r o l l e r i s obtained by considering the motion in the t r a n s i t i o n region. 



7. THE WAVE MOTION IMMEDIATELY AFTER BREAKING 

I t i s tempting and i l l u s t r a t i v e f i r s t to t r y i f the solution presented 

i n the previous chapters also applies to the region of rapid t r a n s i t i o n r i g h t 

a f t e r the i n i t i a t i o n of breaking. 

F i g . 17 shows a computation of the wave height v a r i a t i o n , s t a r t i n g at 

the breaking point. The agreement i s su r p r i s i n g l y good. (Again e i t h e r D i s . 

s l i g h t l y too small or B too large.) This, however, does not apply to F i g . 18, 

which gives a s i m i l a r comparison for the set-up n/h^^g. The two figures 

together- show the•paradoxical f a c t already hinted at e a r l i e r that the 

radiation s t r e s s i n the t r a n s i t i o n region stays nearly constant even with a 

30-40% decrease i n wave height. Recalling (2.10) t h i s can only be true i f P 

i s increasing, roughly--as; H. ,. 

By considering what happens when the breaking s t a r t s , i t becomes c l e a r 

that the collapse of the wave cannot immediately be matched by d i s s i p a t i o n of 

a''similar amount of energy. I n the f i r s t transformation a large amount of the 

l o s t p o t e n t i a l energy i s converted into forward momentum flux which eventually 

i s concentrated mainly i n the r o l l e r , and t h i s must be the reason for the 

simultaneous increase i n P. 

This i s also consistent with the fa c t that P for very high waves i s 

rather small. There are no r e s u l t s a v a i l a b l e for the skew waves a t the breaking 

point, but the high order r e s u l t s for Stokes waves presented by Cokelet (1977) 

can be used to determine P for very high, symmetrical waves. F i g . 19 shows 

the v a r i a t i o n of P with H/h for two values of h/L. Notice that for the highest 
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waves P i s l e s s than h a l f the value of 3/15 for l i n e a r long waves and 

considerably l e s s than P for cnoidal waves of the same height. 

The increase i n P, however, i s inevitably associated with a 

s i m i l a r increase i n B, the energy flux for a wave of unit height and 

propagation speed. The problem i s the same as for P: very steep waves 

with peaky c r e s t s represent a very small energy flux r e l a t i v e to t h e i r 

height (Fig. 20 shows r e s u l t s s i m i l a r to those for P) and the collapse of 

the c r e s t i n the i n i t i a l stage of breaking leads to a s i g n i f i c a n t increase 

i n B. 

As we w i l l see shortly thèse.shifts i n P and B are also consistent 

with the.r e s u l t found i n Chapter 5, that waves i n the inner region represent 

rather-high values of-radiation s t r e s s and energy flux r e l a t i v e t o - t h e i r 

height and speed. 

But even with no energy di s s i p a t i o n an increase in-B w i l l i n i t s e l f 

r e q uire decreasing wave height. - Hence -fche' question a r i s e s : hov; much of the 

wave height decrease i n the outer t r a n s i t i o n region i s a c t u a l l y due to r e -

di s t r i b u t i o n of energy (represented by the changes i n P and B) and how much 

i s r e a l energy dissipation? 

This problem and the change i n B and P can be analysed by considering 

the conservation of momentum and energy over the t r a n s i t i o n region as a whole 

i n analogy to the jump conditions that applies to bores and hydraulic jumps 

in open channel flow and to shocks i n compressible flows. 
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Between the breaking point (denoted with s u f f i x g) and the t r a n s i t i o n 

point we have from (2.8) 

^ f , t - ^f,B 
I?dx = (7.1) 

where I i s the width of the t r a n s i t i o n region. We are interested i n determining 

how large a f r a c t i o n i s of the energy d i s s i p a t i o n we would have had, had B 

stayed constant and equal to B^. This energy dissipation would obviously have 

been 

m̂ = P^Bg^o^H^' - C ^ H / ) = E ^ ^ ( ^ J [ ^ ] - 1) 

by v i r t u e of (2.9). Using (2.9) i n (7.1) as w e l l y i e l d s 

2 B. 
1) 

(7.2) 

(7.3) 

so t h a t the r a t i o we are looking for i s 

A = 
v. 

t 
m 

a - 1 
a = 

rH ^2 

^«B 

(7.4) 

In the momentum equation (2.1) we have 3n/3x = 0 and hence. 

using C2.10) 

\ = ^ B ( W ' 

(7.5) 

F i n a l l y since P. and B are given by (5.24) and (5.15), r e s p e c t i v e l y . 

we have by elimination of B between those two 
o 

= f ^ t - V ^ B 
(7.6) 
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Thus i f we know the properties of the wave at breaking we can determine 

B^, and A- In need of more correct information we use (from F i g s . 19 and 

20) for an example with h /L_ = 0.057 

= 0.05 , Pg = 0.07 

and assume the t r a n s i t i o n point i s at h^ = 0.85 with Ĥ /Hg =0.65. We then 

get from (7.4) 

A = 0.33 

which means t h a t only 33% of the energy that corresponds to the decrease i n 

wave height i s a c t u a l l y l o s t - The increase i n B accovints for the r e s t . We 

further get 

C7.5): P =0.166 against (.5.24): P = 0.152 
t 

(7.6): B^ - 0.103 against (5.15): B^ = 0.094 

Thus the value of P and B. required to accomt for the gross change 
l l t — 

i n the radiation stress/mean water l e v e l and the wave height over the t r a n s i t i o n 

region agrees well with the values we can determine for a wave at tha s t a r t of 

the bore region using the ideas from section 5. 

This i s taken as another indication that the ideas presented i n that 

section for the properties of waves i n the inner region are at l e a s t q u a l i t a t i v e l y 

correct. 

As mentioned above the constant radiation s t r e s s i n the t r a n s i t i o n 

region must imply 
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P « H"^ ( V . 7 ) 

Most measurements further show that H varie s approximately l i n e a r l y , i . e . , 

H a - ax (7.8) 

a f t e r breaking. Since the v a r i a t i o n of H i s much fas t e r than the v a r i a t i o n 

2 
i n depth, and since E_ H we may neglect c i n (2.8) and write 

1 ^ f - °x 2a DH ^y^gj 

dx B " H 4hLB 

However i f we i n t h i s equation - i n analogy with the s i t u a t i o n i n the bore 

region represented by ( 7 . 6 ) - assume that B « P + const, then ( 7 . 9 ) y i e l d s 

D = 0 which c l e a r l y i s not correct. Hence ( 7 . 9 ) i s not suitable for assessing 

D on the basis of some reasonable conjecture for B. 

So i f one wants to be able to extend the method described i n t h i s paper 

to the t r a n s i t i o n region there i s room for both further experimental i n v e s t i -

gations and for some empirical interpolation formulas for the develop-

ment of D from zero at the breaking point to the value given by (5.31) 

a t the t r a n s i t i o n point. > 

In the absence of such r e s u l t s there i s always the p o s s i b i l i t y of using 

( 7 . 7 ) for P i n the t r a n s i t i o n region to get the correct n-variation and l e t B 

and D be given by the bore values (5.15) and (5.31) right from the breaking 

point (which we have seen w i l l give approximately the correct H-variation), 

I t i s j u s t that t h i s means B i s discontinuous at the breaking point (which, 

of course i s not true) and i t i s also an unsatisfactory procedure from a p h y s i c a l 

point of view because i t obviously does not model the r e a l processes. 
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8. SUMMARY AND CONCLUDING REMARKS 

The physical mechanisms behind the v a r i a t i o n of wave heights and 

set-up i n the surf zone have been analysed and a t h e o r e t i c a l model has been 

suggested. I t i s based on rather simple approximations for the i n t e g r a l 

properties of the wave motion. Comparison i n the inner region of the s u r f 

zone with ejqperiments shows acceptable agreement. 

An attempt has been made to explain the nature of the transformations 

of the waves i n the t r a n s i t i o n zone right a f t e r breaking (Section 7) . 

The methods for determining the non-dimensional energy flu x B, 

radiation s t r e s s P and energy d i s s i p a t i o n D can e a s i l y be refined, the c r e s t 

elevation rj /H may perhaps more co r r e c t l y be determined by a l i n e a r l y de¬
c 

creasing function, e t c . Such improvements, however, are not l i k e l y to change 

the basic conclusion that the major difference between surf zone waves and 

ordinary waves i s represented by the surface r o l l e r . And as a f i r s t approxi-

mation the r o l l e r can be considered as a volume of water c a r r i e d shoreward 

with the wave. This picture i s found to be i n accordance both with the motion. 

alleged for the inner region and with the changes occurring over the t r a n s i t i o n 

region, 

The author g r a t e f u l l y acknowledges access to the unpublished data 

sent by J . Biihr Hansen and used i n some of the figures. 
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LIST OF CAPTIONS 

1. Regions i n the surf zone Cf rora I ) , 

2. D e f i n i t i o n s . 

3 . H/H from a n a l y t i c solution (4.1) versus (h/h_)^,„. 

f 1 
H 
r 

h 
r 

from a n a l y t i c solution versus Ch/h^l^g. 

Minimum values of H/h^^/(H^/h^) and the value h^^^ of h' at which they 

occvir. 

6. The r o l l e r of a surf zone wave. 

7. The approximation for the horizontal v e l o c i t y p r o f i l e . 

8. Cross section area A for a r o l l e r . Measurements by Duncan (1981) . 

9. Measured values of B defined by (5.16). (Data from Hansen, 1982). 

o 

10. Wave p r o f i l e s i n the surf zone. Derived from measurements i n I . 

11. The v a r i a t i o n of D with H/h and n /H according to (5.31) . 
c 

12. Measurements of n /H i n the surf zone. , (Data from Hansen, 1982). 
c 

13. Measurements of the mean water l e v e l shoreward of tha breaking point. 

Also shown i s the value of l o c a l wave height to breaker height, H/Ĥ . 

(Measurements from Hansen & Svendsen, 1979). 



14. Wave heights and set-up for a wave with deep water steepness H^/L^ = 0.071. 

Theory using (5.4) and (5,7). 

Measurements by Hansen S Svendsen (1979), Case B. 

15. Wave heights and set-up for a wave with deep water steepness H^/L^ = 0.024. 

Theory using (6.4) and (5.7). 

Measurements by Hansen (1982), Case H. 

16. Wave heights and set-up for a wave with deep water steepness H^A^ = 0.0107. 

Theory using (6.4) and (6.7). 

Measurements by Hansen & Svendsen (1979), Case N. 

17. Wave height using (6.4) and (6.7) from the breaking point. 

Measurements by Hansen (1982), Case H. 

13. Set-=-up using (6.4) and (6.7) from the breaking point. 

Measurements by Hansen (1982). 

19. The non-dimensional radiation s t r e s s for symmetrical waves. 

Results from Cokelet (1977), lowest order cnoidal waves. 

20. The non-dimensional energy flux i n symmetrical waves. 

• Results from Cokelet (1977), lowest order cnoidal waves. 
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