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ABSTRACT

A theoretical model is developed for wave heights and set-up in a
surf zone. 1In the time averaged equations of energy and momentum the energ§
flux, radiation stress and energy dissipation are determined by simple
approximations which include the surface roller in the breaker. Comparison
with measurements shows good agreement. Also the transitions immediately
after breaking are analysgd and shown to be in accordance with the above

mentioned ideas and results.




1. INTRODUCTION

The proper modeling of wave motion in the surf zone on a littoral
coast has-been the goal of many investigations in particular in the last
two decades. Ygt in spite of progress both in terms of a growing stock of
ieliable experimentallresults and in theoretical understanding of the processés
the general impression of the siﬁuation today is still that much remains to

be done.

The present investigation is mainly theoretical but relies heavily
on experimental evidence at a number of points. It also indirectly leans
on the many contributions in the literature which have helped to show that

conventional wave theories cannot be used to describe surf zone waves.

As in most of those contributions we only consider integral properties
of the waves and work with equations time averaged over a wave period. The
goal is only to describe the wave height and mean water level (set-up) varia-

tions. This means that the integral wave properties we need to determine

first of all are energy flux, radiation stress and energy dissipation.

In spite of the fact that integral properties
should be less sensitive to minor inaccuracies in the details of the wave
description it is generally accepted that linear wa&e theory is too different
to yield a proper description of energy flux and radiation stress in the surf
zone. Some authors have tried to use solitary wave theory (see e.g., Divoky
et al., 1968), cnoidal theory or hyperbolic wave theory (James, 1974, is an

example) which are other easily accessible wave theories. For reasons that




may become clear from the present contribution these particular suggestions
do not work, but this conclusion is often concealed by the fact that results
obtained for the wave heights and set-up also depend on how the energy

dissipation is modelled.

Also the idea of a similarity solution for the waves has been pursued.
Such an approach is,more'likely to be able to lead to acceptable results,
although in the form presented by Wang & Yang (1980) it implicitly assumes
that the wave height to water depth is a constant which we know is not the
case (see e.g., the expgrimental results by Horikawa & Kuo (1966), and also

this paper).

In ackngwledgement of the limited success of the theoretical
investigations and the access to moaern measuring techniques such as LDA,
contributions have been published giving both.very detailed measﬁrements of
velocity and pressure fields and computations of particularly radiation.stress
and momentum balance from the basic definitions (see Stive, 1980, and Stive

& Wind, 1982).

The possibilities for evaluating the énergy dissipation are far more
restricted. In principle turbulence is created by two sources: the bottom
boundary layer and the surface breaker. In practice, however, the bottom
dissipation is totally outweighted by the dissipation due to breaking, and

is consequently neglected here.

The idea which turns out to be most fruitful in determining the
energy dissipation (if a detailed description of the turbulent flow is not

attempted) is based on the resemblance of surf zone waves with bores. This




was discussed by LeMehauté (1962) and latexr by Divoky et al. (1968). To

fit measurements, however, they used the motion of a non-saturated breakexr
suggested by LeMehauté (1962), which implies an energy dissipation smaller than
the dissipation in a hydraulic jump of the same height as the wave. This is
the opposite result of that found by Svendsen et al. (1978) who concluded that
the dissipation 'in actual measureménts were larger than in a jump of the same
height. The explanation for this cohtroversy probably lies in the different
values used for the energy flux. In section 7 we will see that in a cnoidal
‘or solitary wave (used for assessing the energy flux by Divoky et al.) the
energy flux for a given wave ﬁeight is much smalier than in a surf zone wave.
Hence the smaller dissipation reguired by Divoky et al. for a given (measured)

wave height decrease.

In the present paper we simply use the hydraulic jump expression for

the energy dissipation. This is in realization of two facts.

Firstly Svendsen & Madsen (1981) éssgntially confirmed the conclusion
in Svendsen et al. (1978) (in the following denoted I), but their results
indicate that many factors are involvéd, and further studies show that the

deviation from the hydraulic jump dissipation in most cases is less than 20%.

Secondly the other effects studied in the following are found to be

more important.

The paper may be considered a continuation of the work reported in I.
To determine the wave height and set-up variation we consider the equations
of energy and momentum balance, both averaged over the wave period (section 2),

and in section 3 derive a closed form solution to the energy equation. 1In



sectioﬁ 4 we investigate an analytical solution for a special case. This
reveals that neglecting set-up there is only one parameter K (given by the
wave properties at the starting point) which determines the wave heights.

K is a combination of the bottom slope parameter S = th/h identified for
shoaling by Svendsen & Hansen -(1976) (hx is bottom slope, L wave length and

h water depth), the wave height to water depth ratio H/h and the dimensionless

energy flux B.

The three wéve properties mentioned earlier (the energy flux,
radiation stress and energy dissipation) are determined in section 5. Here
it becomes necessary to concentrate on the inner region (defined in I) of
the surf zone where the waveé have become bore-~like (Fig. 1l). It is shown
that the most important feature is the existence of a surface roller which
to the first approximation can be considered as a volume of watexr carried
with the wave, The roller almost doubles both energy flux and radiationv

stress relative to a shallow water wave otherwise of the same shape.

Section 6 shows comparison with experimental results in the inner

region. Both wave heights and set-up are well predicted.

When it comes to the outer region (Fig. 1), however, some paradoxical
features are identified in the measurements (section 7). The paradox is ré—
solved by considering jump conditions analogous to those applied for bores
and hydraulic jumps. This implies using the momentum and energy equations

for the entire outer region. The results show that the expressions derived




in Section 5 for waves in the inner region are consistent with results for

waves before breaking.

Throughout the derivations the simplest and‘lowest order approximations
have been used. Thus many details such as non-uniform velocity profiles, the
effect of the strong turbulence, etc. are simply neglected. Thé reason is
that these aspeéts, however important, turn out to be minor corrections
relative to the effects included. Hence the following is meant as>an attempt
to show that it is possible for the wave motion in a surf zone to formulate
a crude model which reproduces all the major features observed in the

measurements.



2. THE BASIC EQUATIONS

We consider the two dimensional problem sketched in Fig. 2 which also

shows the definition of variables.

Fig. 2

The three basic equations to be satisfied represent the conservation of
mass, momentum and energy, integrated over depth and averaged over a wave

period T.

The conservation of mass will not be invoked explicitly but used in the

way the particle velocities in the wave are evaluated.

We consider regular progressive waves only and hence the momentum

equation simply reads :

ésxx . — on )
; ool pg(h + n) == | (2.1)

where Sxx is the radiation stress defined (exactly) by (—'denoting average

over a wave period)

= +
Sxx Fm Fp
(2.2)
n : n -5
2
Pm = J puzdz ; F = J dez - %-pg n
~h P -h
with the dynamic pressure Pp given by
(2.3)

Py T P9z +p



Using Ef for mean energy flux and D for energy dissipation, the energy
equation (also averaged over a wave period) becomes

OE
£ : '
=0 (2.4)

The general definition of Ef is

n
E; = J [(p. + % p® + v2 + w))lu dz (2.5)

In both (2.3) and (2.5) velocities and pressures are the instantaneous
values, so that these definitions also cover the tﬁrbuleﬁt flow situations in
a surf zone. Since, however, any ordered mechanical energy that is turned
into turbulence will be reduced to heat wiﬁhin roughly- the following wave
period we shall choose in (2.4) to consider only the flux of (ordered) wave
enefgy, that is, consider energy lost as soon as it has been changed to

turbulence. To illﬁstrate this we write

£ Zew t Eg - B (2.6)

where E% is the total flux of turbulent energy (by all means, including

diffusion) and. (with v = 0)

n
~ 1 ~2 ~2, -
w ' L
Ef' J_ (pD > p(a w )ui-dz (2.7)

(" denoting ensemble averaged values) is the flux of "wave energy."

Hence (2.4) becomes

oE oE!
£,w _ _ __§_= A
Ix v 3x Dt (2.8)

where Dt then equals minus the production of turbulent energy.



But in the steady wave motion considered Dt also equals minus the

energy dissipation D.

Hence in (2.4) we simply use (2.7) for Ef and this means considering

only ordered wave energy, which is a choice, not an approximation.

It is convenient for the following analysis to introduce non-dimensional

measures of both the wave energy flux E , the radiation stress and the

£f,w

energy dissipation. The following definitions are used.

B = Ef'w/(pchZ) | : (2.9)
2 . 4 -

P =5 /pgH (2.10)

D=0, (4hT/pgH>) - ' (2.11)

where T is the wave period and ¢ the speed of propagation for the wave.




%4

3. A CLOSED FORM SOLUTION TO THE ENERGY EQUATION

Tt turns out that the energy equation can be solved in closed form
for a fairly general type of problem. With (2.11) and (2.7) substituted .

(2.4) reads

3E, . 3 :
£, _ H

The variation of the wave height is a combination of three effects:.
the change in water depth (which on a beach causes a wave height increase),
the dissipation of energy (tending to reduce the wave height) and the change
in shape of the wave (taken in é rather generél sense) which is reflected in

the variation of B, P and D.

Whereas the first two of ;hese'éffects are represented in the time .
averaged equations, the same time averaging has excluded the possibility of
assessing the change in wave shape (n,'u, P, gtc.) directly from the equations
and the values of B, P and D must be evaiﬁgged separately (see.sect. 5).

" Hence in the following we assume these parameters are known.

To obtain a solution to (3.1l) we introduce a shoaling coefficient

Ks defined so that at any depth

CB(K H )2 = ¢ B H 2 = const (3.2)
. s r r r

where index r refers to some chosen reference point. This equation would
give the H variation in the absence of dissipation. The actual wave height
is then expressed as

H=KKH (3.3)
sdr

d

3-1




which defines the dissipation coefficient Kd. Thus we get using (3.2) which
implies a/ax(chsz) = 0:

aEf,w

ox

Nl sl

2_2
= ' = .
2pg KdecBKS Hr 2Ef' )

(' denoting 9/9x) which substituted into (3.1) vields

]
) Kd HD
2 X. = Zcenr
d
or
t
Kd _ KerD
Kﬁz 8¢cBhT -
or
' KHD : ' :
1 _ s'r )
(Kd} 8cBhT : (3.4)

So far no assumptions have been introduced neither about the type of
wave considered (except that it is regular and progressive) nor about.the
nature of the energy dissipation. Thus (3.4) applies to waves in the surf
zone as well as to the attenuation of wavéé'aue to bottom friction. (3.4)

/
even applies to the growth of waves due to wind energy being added if we let

D > 0. In the following, however, we concentrate on the surf zone where

D < 0.

We now make the assumption (which will later be justified) that the
coefficients on the right hand side only depend on the water depth h. (For
a numerical evaluation of the following sélutibn this assumption may be relaxed
to include a weak dependence on H as well.) Hence (3.4) may be integrated

directly giving
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x KHD
1 1 J s r
—_= dx (3.5)
Kd Kdr 8cBhT

o)

where the integration constant is Kdr = 1 for X, = X That is

% K_DH_ -1 '
Kd = |1 - Jx BeBRT dx (3.6)
r

Recalling that (3.2) implies

;'cr B, 1/2
Ks = [? *é-} (3.7)
we therefore get for H by substitution into (3.3)
H % DK > -1 .
g—: K l - 23 S dx (3 8)
H s 8¢c. B T h ’ *
r rr

[e)

We see that this closed form solution depends on one combination of the wave

properties at the reference point, namely

]

Hr 1

8c BT 8B (3.9)
rr

ﬁl =
2]

x
h
r'r'r
(3.8), however, corresponds to a certain éhange in x. And since Ks mainly
depends on h this means that the bottom slope hX is actually a parameter as

well. For monotonously changing depth we can express this explicitly by

changing to h as integration variable. This yield

0 X DKs3hXr -1
'}T‘=KS l_KJ hho dh.
r X X
x
with r (3.10)

1 Hr th :
- N i LEel
r r

H

/3
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and hxr is hx at the reference point. Hence the wave height variation in
a surf zone will be the same for all wave conditions having the same value
of X at the starting point of the computation (which, in principle, may be

any point from the breaking point where D becomes non-zerc and shorewards).

It also shows that the bottom slope itself is not a proper measure
of the steepneés of the beach. The relevant parameter is hXL/h, which is
the same. slope parameter as was found for the shoaling of waves by Svendsen

& Hansen (1976).

Notice that h includes the set-up, that is

h = hSWL + n (3.11)

where hSWL is the depth in the absence of waves.




4. ANALYTICAL SOLUTION FOR A SPECIAL CASE

One spedial case is of particular interest as it renders an analytical
solution possible. It corrésponds to a plane beach with D and B constant and
c = chgh. The latter assumption with c. slightly larger than Vghr - and hence

1/2

¢ slightly more than vYgh but varying like h - was found in I to be a good

approximation.

In this case the integral in (3.10) may readily be solved and we get

)

with h' = Eiﬂ
- 1)] r

1
4

- (4.1)
r %0+ Zoon

2.
H 3/4
3

In this solution is included the set-up N determined from the solution
of the momentum equation. This, however, is nonlinear in ﬁiand not solvable
except if H/(h+ﬁ3 is assumed constant (Bowen et al. (1968)). Although
this .is not realistic, for the major part of the surf zone ﬁ.<< h and
hence in evaluation (4.1) we may either completely neglect n (viz means

h' ~ (h/hr)SWL)‘or use the above mentioned approximation H/h = a = const.

The latter gives the approximation

n-no~ oy hgy - b )

(4.2)
o = 2a2P
1 1+2a2P
or (if we neglect ﬁ; in comparison to hr)
R o~ | c (1 +o0) -0 (4.3)
h 1 1 -
r’ SWL
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which differ from Bowen et al.'s result in that o is not assumed equal to

0.8.

Figs. 3 and 4 show the variation of H/Hr and H/h-(Hr/hr)-l versus
! = 1 i =
hSWL (_h/hr)SWL for different values of KD and n 0.
In these figures we could, for example, consider the reference point

taken at the breaking point.

Of particular interest is the variation of the w#ve height to water
depth ratio H/h. As anticipated H/h is far from constant for anf value of KD.
For a wide range of KD, however, (which also turns out to be practically
realistic) the H/h variation shows a minimum which may be recognized also

in many experimental results (see e.g., Horikawa & Kuo (1966)).

Clearly this phenomenon reflects the basic feature mentioned above
that the wave height variation is a balance between shoaling and dissipation.

This can more readily be seen by writing (3.1) in the form (for derivation seé 1)

o -Ferdrsy e
h < h 2c 2B|-h 8cTB (h

The first bracket on the right side represents the shoaling, the last
term the dissipation. Since at the reference (breaker) point H/h will usually
be quite large, the second term will dominate provided [Dl is sufficiently
large as in a breaker. Hence at a start (H/h)X is negative. As (H/h)2
however decreases faster with H/h than does (H/h)l the difference between
the two terms decreases till (H/h)xl~ 0. Hence were it noﬁ for other effects
H/h would asymMiptotically approach the value obtained by equating the right

side to zero.
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At the same time, however, as h decreases for constant hx both hx/h
and cx/c increases and near the shore line this effect becomes completely

dominating resulting in the shown increase in H/h.

The position of the minimum for H/h can be found from (4.4) to be

(with cx/c = hx/2h)

H th o
[-}’T} . = 10 - (4.5).
min ’

Ujw

-(Notice that both hx and D are < 0.) If we introduce K this becomes

(/) g
(57,

L&

xovh") ~t (4.6)

B

which may be solved in combination with (4.1). The result is that the minimum

for H/h occurs at
v o [sx ¥
min 20 XD -~ 15
This value and the corresponding value of H/h are shown in Fig. 5.
Fig. 5
We also see that for sufficiently small KD(< 1.25 it turns out) the
wave height will be increasing already from the reference point. This is
not likely to happen for breakers but will sometimes be the situation where
the dissipation is caused by bottom friction (that is seawards of the breaking

point).

On the other hand, the situation may also occur that a wave approaching
a shore will not break at all because its energy is being dissipated by bottom

friction faster than the height can increase due to shoaling, so that it never
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reaches a height sufficient for breaking to occur. Obviously this requires

a very small bottom slope and we see from (3.10) that hx small leads to K
large so that even with the small D from bottom friction KD becomes larger
than 1.25. (Fig. 4 also incidates that if breaking is to be avoided entirély
then hx must decrease shorewards. With constant hx (however small) the wave
height will stdrt to increase sooner or later and hence the wave will reach

breaking.)

The question, however, remains whether B, D and P can be considered
constants through the surf zone (as assumed in this section), and what their

values will be.




Fig. 6

5. ENERGY FLUX, RADIATION STRESS AND ENERGY DISSIPATION IN THE SURF ZONE

The solutions deriﬁed above can theoretically be used right from the
breaking'point and shorewards, but it has often been pointed out (see e.qg.,
I) that the flow in the so—cal;ed "outer region" immediately shoreward of the
breaking point.is significantly different from the conditions in the inner

region. 'The transitions in the outer region will be discussed in Section 7.

First, however, values of the dimensionless parameters B, P and D

are determined in the inner region.

The important feature dominating the wave motion in this region is
the surface roller, which in essence is a volume of water carried shorewards
with the breaker. Fig. 6 shows a typical situation, and also indicates a

typical velocity distribution along a vertical at the front of the wave.

The roller is defined as the recirculating part of the flow above

the dividing streamline (in a coordinate system following the wave). Since

{7

it is resting on the front of the wave the absolute mean velocity in the rollex

equals the propagation speed c for the wave, and in the following we use this

~ value for the velocity in the roller, neglecting the z-variation.

From this.it follows that the roller represents a significant

enhancement of the ordinary Stokes drift QS. Thus a surf zone wave potentially

represents a much bigger mass transport than non-breaking waves. The actual

net mass flux, however, is in any situation determined by the boundary conditions

in the x-direction, and in the general three dimensional case it will also




Fig. 7

depend strongly on the longshore variations of bottom topography and wave

heights.

In the present two dimensional study we assume a zero net mass flux
ds = 0), which of course implies that there is a return flow compensating for

the surface drift.

From observations we know that in the inner region the change in

wave shape is slow so the instantaneous volume flux

n
Q= [ u(x,z,t)dz ' (5.1)
-h

may be determined as

Q=cn+Q=ud + 9 (5.2)

where the surface profile is specified so that n = 0. U is the wave particle

velocity averaged over depth. As mentioned we shall further assume that §'= 0.

Although it is a crude simplification'the velocity distribution shown
in Fig. 7 will contain all the primary informatioﬁ outlined above and we will
use that. The thickness e of the surface roller will be zero except in the.
front which is implicitly understood in the following derivations. Hence we

get
0 =ocn = ce + uo(d—e) - ) (5.3)
Outside the roller we have

u, = c(n - e)/(d - e) (5.4a)




and in the roller

u=ac E | (5.4b)
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The pressure in the wave motion is of course not static. In combination

with the rather crude assumptions made above, however, it is consistent to assume

a static pressure variation corresponding to the local, instantaneous position

of the free surface. That is, using (2.3)

by = P9N (5.5)

The Energy Flux B

With these assumptions we first calculate the non-dimensional energy
flux B defined by (2.9). Substituted into (2.7) this yields {omitting the

” which indicates the turbulent ensemble averaging)

(5.6)

n . Lal
= B c1 2 2
B > f4 Pyt 3 p(u® + w7y udz

PgcH -h
Introducing the assumptions outlined above - which also implies

neglecting the'wz—contribution - we first get from (2.7)

- " 13 ‘
Ef,w = J—h pyu + E-Qu dz = Ef’0 + Ef,l (5.7)
where Ef 0 is the first term in the integral and Ef l,the second. (5.5) gives
1 14
Jn- n
E = p_udz = J pgnudz (5.8)
0
£, -h D -h

which by virtue of (5.2b) becomes

2 2 | '
B, , = ogen” = pgcH’ (n/H) (5.9)
14




Fig. 8

5-4
Thus the roller does not contribute to this term. Foxr Eg 1 We get
. ’
_ -1
n-e n
1 3 3
Ef,l_zpj uodz+J cdzJ
-h n-e .
3 T
1 2H In 1 31
x 5 PgcH ¢ [H] t3pc g [0 edt (5.10)

2 ‘ , . - .
where ¢~ ~ gh and n << h has been used in the first term. Since n = 0 we will

find that (U/H)3 << (n/H)Z, the latter being an integral of a non-negative

quantity (see Hansen, 1980). -

The area A of the surféce roller is defined as

LA
JT edt = = j edx = 2 (5.11)
0 ) ¢

where A is the length of the roller (see Fig. 6). In (5.10) this yields

3

i 3aA 1 _ .2 A
E = > pc L >3 PgH ¢

HZ

(5.12)

I

which shows that the contribution to the energy flux from the surface roller

is proportional to its area in the vertical plane.
, ‘ .

Very little information is available about the size of the surface
roller. Duncan (1981) has measured A in a breaker behind a towed hydrofoil,
and his results are shown in Fig. 8. For the present application we will

approximate these results with

A~ 0.9 B2 "(5.13)

and hence we get'for E
£f,w

2 n-2 h
Ef,w = pgcH [hﬂ + 0.45 EJ {5.14)




Fig. 9

Fig. 10
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and from (5.6) for B
T 2. 2 T 2
1 ANy 1 A ¢ ~1¢ n h
B==| R ae+liB e =1 n .45 2 5.15
T Jo [H] 5 Hz o m . H dt + 0.45 = (5.15)

Here L is a -lecal quantity defined as ¢T, not the physical distance

between two consecutive wave crests.

Values of B0 defined as
T -2
B == =1 dt
? T o H
are shown for waves in the surf zone in Fig. 9. The measurements are all
taken on a 1/34.3 slope at ISVA and the results only show the trend in the
variation. Clearly there is a significant amount of scattering but also some

systematic variation with wave parameters (such as the deep water steepness

HO/LO) which needs further documentation and analysis.

The main tendency, however, is quite obviously that from the point

- of breaking B0 increases rapidly from a rélaﬁively small value (indicating a

féther peaky wave profile representing a small energy flux for a given wave
height) towards values around 0.07 - 0.08. The variation may be further
illustrated by the examples diven in Table 1 for some simple surface profiles.
Of particular interest are ﬁhe value 0.083 and 0.089 for triangular and
parabolic wave‘shapes respectively, because surf zone wave profiles often

resemble such shapes as Fig. 10 shows.
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Table 1

\
m|s
I
n
|..l
o1
-a|;‘r
(vs]

0
Q
o
)
ul

I

o

. 1
cnoidal any Bo < g
2
n. e _L =
q [T] 3 B 0.089
n_t_1 = =L
| H T > Bo 0.083 12

The Radiation Stress P

The radiation stress defined by (2.2) represents the time averaged
momentum flux. In (2.2) is included the effect of the turbulent normal

stresses as well aé,any net volume flux superimposed on the wave.

The latter, however, we are excluding heref The contribution from
the turbulent stresses was analysed by stive & Wwind (1982) on the basis of
éxperimental data. .They concluded that this effect only increases the radiation
stress by some 5%. Part of the reason for this modest effect of sﬁrong
turbulence is that-thé vertical velocity fluctuations reducé the pressure

whereas the horizontal fluctuations increase the momentum flux. Hence in

the present context we may neglect the turbulent contribution to Sxx'

Using (5.5) we then get for Fp in (2.2)

n 1 2
Fo= J pgndz - 3 Pgn = 3 PIN (5.17)
P/

which by means of (5.16) may be written
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F o= ngZBo ' (5.18)

P

D[ b

For Fm we get, using (5.4a,b)

n
F = J puzdz = p[u 2(d-e) + cze] {(5.19)
m -h o :

Here

2 n2 - 2ne + e2

2 _ ‘ .
. uO (d-e) = c‘ 1= e (5.20)

which we approximate by using e << d. We also notice that since e # Q0 almost

symmetrically around n = 0 the value of Tle must be very small. Hence we get

—

2 2 2 2 —

2 |n e - o] 21 In e} . eh

-~ R, — ~ . — +-—. +_.
FpPe |g*g e et H U 2 (5.21)

From Duncan's results can be found that e/H ~ 0.3 and since e = 0

over most of the wave profile it follows that (e/h)2 << (n/H)2 so that we

for Fm get (again using c¢ ~ Ygh)

2 A h
Fm ~ pgH (BO + = L) . (5.22)
H
Tn combination with (5.18) and (5.13) this yields for SXx
2,3 h' '
sxx = pgH (2 Bo + 0.9 L) . . (5.23)
or
3 h
P = E-Bo + 0.9 I . (5.24)

With the results from Fig. 9 for BO and a typical value of 0.05 - 0.10 for
h/L we see that the presence of the surface roller roughly doubles the

radiation stress.
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The Energy Dissipation D

The third parameter in the equations is the dimensidnless enexgy
dissipation D. A detailed analysis of D is quite complicated and is considered
unnecessary in combination with the simplifying assumptions introduced at a
number of other points. Svendsen & Madsen (1981l) showed that neglecting the

form change the'energy dissipation in a. suxrf zone wave can be determined by

2
(Bt-at)c + (ac-at)c - (Bc-at)
atg -,

D =1+C+l

{5.25)
Dbore ‘ (I;—l)2

where o, B are coefficients for depth averaged velocity and pressure contributions
in the momentum and energy equations, and " and c rafer to trough and crest
respectively. With the assumptions outlined above, however, this expression

simplifies to

D =D . o (5.26)

where Dbore is the energy dissipation in a bore of the same heigﬁt as the wave.

The dimensional form of Dbore is (¢ = dc/dé)

3
= (z-1) '

AE = édet ~ir v ' (5.27)
(see e.g., Henderson (1966)). 1In a wave Q = utdt = ch so this may also be
written

H3
AE = pgch aa . (5.28)
tc

Tf we assume that each breaker suffers a similar dissipation per

N . 2 . . s
second then the mean dissipation per m bottom area 1is AE/L. Bnd substituting
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this for Dt in (2.11) then yields

2
h
D = 3 a (5.29)
tc
Introducing the crest elevation n. instead of dc and dt we get
dc = h + n. ; a_ = h + n, - H | ’ (5.30)
and thus
n, n :
H c ‘
[}1 + h ) (1 + ™ (H - l){} (5.31)

which shows that for fixed nc/H D does depend slightly on H/h. Fig. 1l shows
the variation and Fig. 12 gives values of e from the expe;iments quoted

above. BAs was the case for Bo the results for nC/H show sighificant scattering
but in the inner region of the surf zone the value is.mostly 0.6 - 0.7 which

from Fig. 11 is seen to represent a D nearly independent of H/h.

Fig. 11 alsa shows that D only varies slightly with-nc/H. In other
words, the primary variation of the energy dissipation is represented by the

3 o .
H /h dependency already accounted for in the definition (2.11).
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6. COMPARISON WITH MEASUREMENTS

The outer and the inner region

The original concept of an outer (transition) region and an inner
(bore) region was primarily based on the visual observationé of wave behaviour
after breaking (see I). The impression is one of a gradual change towards the
boxre shape'.foundfin the inner region. Consequently no attémpt was made to
define a proper limit between.the fwo regions and wave height‘measurements

truly do not suggest a natﬁral definition.

The situation is quite different when the.variations in mean water
level are considered.‘ Fig. 13 shows some examples from Hansen & Svendsen
(1979) covering a wide range of degp water steepnesses. They all exhibit a
marked change in the élope of the mean water level at some distance shoreward
from the breaking point. A similar variation can also be: seen in other
invéstigations such as Bowen et al. (1968) and Stivé & Wwind (1982). .The mean
water level is horizontal or weakly sloping over a distance of 5—8‘times the
breaker depth and then a rather sharp increase in slope occurs. The distance
of nearly horizontal mean water level is comparable to the distance of the most
obvious transformations of the wave shape following after the initiation of
breaking, and so it will be coherent with the.original concept to define the
limit between the outer and the inner region as the point where the slope of

the mean water level changes. In the following this is termed the transition

point.
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Wave conditions in the inner region

Physical explanations for these changes are éought in section 7.
First, however, we notice that since the results derived above for the parameters
B, P and D are based on the wave properties in the inner zone comparisons with
experimental data gshould start in that region. It is convenient to use the
same reference péint in all computations. To étart computations'ét the abave
defined transition point (and emphasize the arbitrariness of the reference

point) we therefore write (3.6) as

1 _ Hr ht . h DKS3
R—zl“acBTJ dh+J b (6.1)
d rr h h b'd
r t
which upon definition of
H h, DK “dh
Lo Jt S (6.2)
Kt 8chrT h. hhx
r
can be written
3
H h DK . -
1 1 X J s
—_—— = - dh . , (6.3)
Kd Kt SchrT h hhx

t

(which can also be obtained directly from (3.5)). For the wave height this means

h' -1 .
H _ -1/2 |1 f Ddh’ ,
— = (c'B") =~ K ———— - (6.4)
Hy l}t h! (c'B')s/zh']

where we in analogy to (4.1lb) have defined
Vo= 1 . L
c c/c.r : B B/Br ) (6.5)

K is given by (3.10b) and Kt by (6.2) which can also be written (see (3.3) and

(3.7))




a2
o]

= .—.E- = —E t.Rpt 1/2
Ky = g7/ %t H_ (cg By) (6.6)

In all these expressions index £ indicates values at the transition point.

Using this (slightly more general) version of the solution derived in
section 3 we are still free to let the reference point also be, for examplé,
the transition point. In the following computations, however, and the corre-

sponding figures we have chosen the breaker point (B) as reference.

' The momentum equation (2.1) is solved simultaneously with the
determination of the wave height. Hence (3.11) is used for h in (6.4).

With (2.10) and (5.24) substituted (2.1) becomes

d 1 d 3
e [ (=

dx h+;. 2

h 2
Bo + 0.9 L)H ] ‘ '(6,7)
. In the computations we neglect the variation of'Bo and assume that h/L
« vh'. It is emphasized again that this means ¢ is proportional to Ygh, not

equal to (see I). For Bo and nc is used Bo = 0.075 (see Fig. 9) and nc/H

= 0.6 (Fig. 12). -

Discussion of results

Figs. 14, 15 ana 16 show a comparison with results for three rather
different wave steepnesées, all on a plane slope 1/34.3. 1In general the
agreement is quite good particularly for the set-up. The latter is of particular
interest because the calculations show that N is much more sensitive to the
assumptions made than is the wave height variation. As can be expected from

what was said above the H variation is virtually independent of the choice of

nc/H.




%

6-4

It is noticed that in some of the cases the 5~variation is slightly less
curved ‘than corresponding to the best fit of measurements, and the values of
H grow a little too large. This tendency will be further amplified if a larger
value for nc/H is used (see Figs. il and 12). Both these points can be adjusted
by using a value of D perhaps 20-30% larger than given by (5.31), which is
quite consistent with the results reported earlier (see I and Svendsen & Madsen,
1981) that the actual energy dissipation in a surf zone wave is larger than in

a hydraulic jump of the same height.

The effect of including the sufféce roller in B can be undeistggd by
cqnsidering the energy equation in the form (4.4). 1In the f;rst bracket repre-
senting the shoaling mechanism Bx/B is much smaller than the other t&o texms.
So thé value of B mainly"entéfs‘the last - term. Hencé‘tha‘increase in B due to
the roller is equivalent to a similar decrease in D, and the observation above

that D is too small cguld also be due to an overestimation of B.

In Figs. 14-16 are also included refplts obtained by omitting the
surface roller(ﬁqttedicurva corresponding to B = Bo and P = 3/2 BO). The
effect is quite appreciable. On the other hand,vconsidering thaf the presence
of tﬁe surface roller nearly doubles energy flux and radiation stress the
difference between the full and the dotted lines in these figures indicates
that the effect of also including turbulence, deviation from static pressure,

etc. would hardly be discernible.

The strongest justification, however, for the importance of the surface

roller is obtained by considering the motion in the trangition region.




7. THE WAVE MOTION IMMEDIATELY AFTER BREAKING

It is tempting and illustrative first to try if the solution presented
in the previous chapters also applies to the region of rapid transition right

after the initiation of breaking.

Fig. 17 shows a computatioh of the wave height variation,-starting at
the breaking point. The agreemént is surprisingly good. (Again eithex D is .
slightly too émall or B too largé.) This, however,.does not apply to Fig. 18,
-which gives a similar comparison for the.set-up EthWS' The two figures
together-éhow~the~pafadoxical fact already hinted at earlier that the
radiation stress in the transition ﬁegion stays nearly constant even with a
30-40% decrease in wave height. Recalling (2.10) this can only be true if P

. s : o -2
is increasing, roughly-as H ..

By considering what happens when the breaking starts, it becomes clear
that the collapée of the wave cannot immediately be matched by dissipation of
a’similar amount of energy. In the first transformation a large amount of the
lost poteﬁtial energy is converted into forward momentum flux which eventually
is concentrated mainly in the roller, and this must be the reason for the

simultaneous increase in P.

This is also consistent with the fact that P for very high waves -is
rather small. AThere are no results available for the skew waves at the breaking
point, but the high order results for Stokes waves presented by Cokelet (1977)
can'be used to determine P for very high, symmetrical waves. Fig. 19 shows

the variation of P with H/h for two values of h/L. Notice that for the highest




waves P is less than half the value of 3/16 for linear long waves and

considerably less than P for cnoidal waves of the same height.

The increase in P, however, is inevitably associated with a
similar increase in B, the ehergy flux for a wave of unit height and
propagation speed. The problem is the same as for P: very steep waves
with peaky cresfs represent a very small energy flux relative to theix
height (Fig. 20 shows results similar to those for P) and the collapse o£
the crest in the initial stage of breaking léads to a significant increase

in B.

As we will see shortly thése.shifts in P. and B are also consistent
with the. result found in Chapter 5, that waves in the inner regicn represent
rather high values of -radiation stress and energy flux relative to:their

height and speed.

But even with no energy dissipation an increase in:B will in itself
require a-decreasing wave -height. - Hence the-question arises: how much of the
wave height decrease in the outer transition region is actually due to re-

distribution of energy (represented by the changes in P and B) and how much

is real energy dissipation?

This problem and the change in B and P can be analysed by considering
the conservation of momentum and energy over the transition region as a whole
in analogy to the jump conditions that applies to bores and. hydraulic jumps

in open channel flow and to shocks in compressible flows.




Between the breaking point (denoted with suffix B) and the transition

point (t) we have from (2.8)
2

E - E = I Dax = D (7.1)

1
0
where & is the width of the transition region. We are interested in determining
how large a fraction.vl is of the energy dissipation we would have had, had B
stayed constant and equal to BB' This energy dissipation would obviously have

been

0 = pgB (c,H 2 _cu® =g hnr

Ht]2 . '
Bt t B B “fB' Ot [‘“} - (7.2)

by virtue of (2.9). Using (2.9) in (7.1) as well yields

_t (7.3)

' H.\2 B
D) = EgyUhy h?% 5

B

jod]

$o0 that -the ratio we are looking for is

A=

D aB )B -1 H 2
la B2 —/'"(t] (7.4)

D a-1 . -
m .

In the momentum equation (2.1) we have an/%% = 0 and hence,

using (2.10)

2
P, = PB(HB/Ht) (7.5)

Finally since Pt and B_ are given by (5.24) and (5.15), respectiwvely,

t

we have by elimination of Bo between those two

Be

i

2 ; '
3 Pt O.lSVht hB/LB | (7.6)




Thus if we know the properties of the wave at breaking we can determine
Bt' Pt and A. In need of more correct information we use (from Figs. 19 and

20) for an example with hB/LB = 0.057

BB = 0.05 ’ PB = 0.07

and assume the transition point is at hé = 0.85 with‘Ht/HB = 0.65. We then

get from (7.4)
A= 0.33 ;

which means that only 33% of the enérgy that corresponds to the decrease in
wave height is actually lost. The increase in B accounts for the rest. We

further get

0.152

Il

(7.5): P 0.166 against (5.24): P

t t

0.094

]

(7.6): B

n

0.103 against (5.15): B

t t

Thus the value of Pt and B, required to account for the gross change

t
ig the radiation stress/mean water level and the wave height over the transition

region agrees well with the values we can determine for a wave at the start of

the bore region .using the ideas from section 5.

This is taken as another indication that the ideas presented in that
section for the properties of waves in the inner region are at least qualitatively

correct.

'As mentioned above the constant radiation stress in the transition

region must imply
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P<*H (7.7)
Most measurements further show that H varies approximately linearly, i.e.,
H « Hb - ax (7.8)

after breaking. Since the variation of H is much faster than the variation

in depth, and since Ef = /E'Hz we may neglect C, in (2.8) and write

f~"x 20 DH : (7.9)

However if we in this equation - in analogy with the situation in the bore
region represented by (7.6) - assume that B « P + const, then (7.9) yields
D = 0 which cleaxrly is not correct. Hence (7.9) is not suitable for assessing

D on the basis of some reasonable conjecture for B.

So if one wants to be able to extend the method described in this paper
to the transition region there is room for both further experimental investi-
gations and for some empirical interpolation formulas for the develop-
mgnt of D from zero at the breaking pointA;§ the wvalue given by (5.31)

at the transition point.

In the absence of such results there is always the possibility of using
(7.7) . for P in the transition ?egion to get the correct n-variation and let B
and D be given by the bore values (5.15) and (5.31) right from the breaking
point (which we have seen will give approximately the correct H-varia?ion),

It is just that this means B is discontinuous at the breaking point (which,
of course is not true) and it is also an unsatisfactory procedure from a physical

point of view because it obviously does not model the real processes.




8. SUMMARY AND CONCLUDING REMARKS

The physical mechanisms behind the variation of wave heights and
set-up in the surf zone have-been analysed and a theoretical model has been
suggested. It is based on rather simple approximations for the integral
properties of the wave motion. Comparison in the inner region of the surf

zone with experiments shows acceptable agreement.

An attempt has been made to explain the nature of the transformations

of the waves in the transition zone right after breaking (Section 7).

The methéds for determining the non-dimensional energy flux B,
radiation stress P and energy dissipation D can easily be refined, the crest
elevation nc/H may perhaps more correctly be determined by a linearly de-~
creasing function, etc. Such improvements, however, are not likeiy to change
the basic conciusion that the major difference between surf zone waves and
ordinary waves is represented by the surface roller. And as a first approxi-
mation the roller can beAconsidered as a volume of water carried shoreward
with the wave. This picture is found to be in accordance both with the motion,

alleged for the inner region and with the changes occurring over the transition

region.

The author gratefully acknowledges access to the unpublished data

sent by J. Buhr Hansen and used in some of the figures.
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The roller of a surf zone wave.

The approximation for the horizontal velocity profile.

Cross section area A for a roller. Measurements by Duncan (1981).
Measured values of Bo defined by (5.16). (Data from Hansén, 1982).
Wave profiles in ﬁhe surf zone. Derived from measurements in I.
The variation of D with H/h and nc/H according to (5.31).
Measurements of nc/H in the surf zone.. (Data from Hansen, 1982).

Measurements of the mean water level shoreward of the breaking point.
Also shown is the value of local wave height to breaker height, H/HB'

(Measurements from Hansen & Svendsen, 1979).




14.

15.

1e.

17.

18.

19.

20.

Wave heights and set-up for a

Theory using (6.4) and

. Measurements by Hansen

Wave heights and set-up for a

Theory using (6.4) and

- Measurements by Hansen

Wave heights and set-up for a

Theory using (6.4) and

. Measurements by Hansen

Wawve height using (6.4) and (6.7) from the breaking point.

Measurements by Hansen

Set=-up using (6.4) and (6.7) from the breaking point.

Measurements by Hansen

The non-dimensional radiation
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wave with deep water steepness Ho/Lo = 0.024.
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