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and dispersion of elastic waves
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A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and
the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order
statistical smoothing approximation applied to Biot’s equations of poroelasticity, a model for elastic
wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous
poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the
spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is
typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion
are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane
compressional wave is proportional to the square of frequency. At high frequencies the attenuation
coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory
shows that attenuation is of the same order but slightly larger in 3-D random media. Several
modeling choices of the approach including the effect of cross correlations between fluid and solid
phase properties are demonstrated. The potential application of the results to real porous materials
is discussed. €2005 Acoustical Society of AmericdDOI: 10.1121/1.1894792
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I. INTRODUCTION fluid diffusion length(that is, the wavelength of Biot's slow
wave. Furthermore, at higher frequencies® ., attenu-
One major cause of elastic wave attenuation in heteroation (expressed through the reciprocal quality fac@or')
geneous porous media is wave-induced flow of the pore fluidor both periodic and random layers has the same asymptotic
between heterogeneities of various scales. It is believed th@fehaviorQ "'« w2 However, attenuation is different in
for frequencies below 1 kHz most important is the wave-the low-frequency limitw<way: it is proportional to fre-
induced flow between mesoscopic inhomogeneities, Whickiuencyw for periodic layering and ta/w for random layer-
are large compared with the typical individual pore size, bufng. These findings underline the importance of spatial dis-
small compared to the wavelength. Various laboratory exyribution of inhomogeneities for modeling mesoscopic-flow
periments in some natural porous materials provide evidencgitenuation and dispersion.
for the presence of centimeter-scalémesoscopic The situation is naturally more complex in porous ma-
heterogeneitieS? Attenuation and dispersion due to mesos-erigls with three-dimensional inhomogeneities. In such me-
copic flow can be modeled using Biot's equations of po-gis the behavior of attenuation as a function of frequency
roelasticity with spatially varying coefﬂuenfs. . depends on the distribution and shape of inhomogeneities.
The simplest model of mesoscopic heterogeneities is Blowever, recently JohnsérPride and Berrymafand Pride
horizontally layered(1-D) structure. In such structures an et al° showed that in porous media with a regular distribu-
elastic wave passing perpendicular to layers causes gy, of igentical inhomogeneities @iy fixed shape, the re-
inter-layer” flow, that is the flow of the pore fluid from ., qca1 quality factoQ~* scales withw at low frequencies
more compressible into stiffer layers during a compression, . 4 with w2 for high frequencies. In real porous compos-

cycle of the wgve(an(; \é{ce versa gurmg ?XteTSDO'E]!?St'C ites heterogeneities are more likely to have a random spatial
wave attgnuatlon and dispersion due to mtgr ayer Now Welgjistripution. Given the 1-D results guoted earlier, it is there-
first studied for structures with periodic stratificatibhMore fore natural to ask how the random distribution of inhomo-

recently, Gureylch and L.opatn!k6and Gelinskyet aI.. ana- eneities will influence the magnitude and frequency depen
lyzed attenuation and dispersion for structures with randong

Igyered struct_ures were somgwhat d|fferer_1t. In t_mth Sltuabution of 3-D inhomogeneities. Applying the method of sta-
tions attenuation and dispersion have their maximum at

freauenc here (typical) layer thickness equals the Bstical smoothing’ to Biot's equations of poroelasticity with
QUENCY ®max W ypi Y ! qu spatially variable coefficients, they derived an explicit ex-
pression for a complex-valued, effective wave number of a
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frequency dependence of attenuation and velocity dispersiofl) was obtained by assuming that the parameter§, and
caused by wave-induced fluid flow in poroelastic randomC=«M have a random component. The correlation proper-
media. Specifically, we derive closed-form expressions foties of the random inhomogeneities are characterized by the
elastic wave attenuation and dispersion as functions of theormalized correlation functio®(r), which for the three
correlation properties of the inhomogeneitigec. 1). We  random functiondd, G, andC assumes the same functional
show that these wave field attributes are mutually related bjorm. The variances of the relative fluctuations are denoted
the Kramers-Kronig relations, and therefore represent as o3, 0&g ando2c. The cross variance of the relative
causal pair(Sec. Il. For most commonly used correlation fluctuations arer?s, oc, ando2 . Approximation(1) for
models we obtain simple, analytic expressions for attenuathe effectiveP-wave number has a restricted range of appli-
tion and dispersion and demonstrate their behavior using nweability, which can be expressed through the conditidmsa
merical examplegSec. I\). We also analyze the low- and detailed analysis see paper |

high-frequency asymptotic behavior of both velocity and at-

tenuation(Sec. V). Finally, in Sec. VI we discuss our results max{Aq([kpsla)® Azb<1 @)
in the light of existing theories for wave propagation in po-and
roelastic media, in thermoelastic media, and in suspensions

of solid particles in a viscous fluid. The conclusions are pre-

sented in Sec. VII.

II. ATTENUATION AND DISPERSION DUE TO WAVE-
INDUCED FLOW

According to paper I, the effectiie-wave numbe?p in

roN
a?s> 7]2) , )
B

where wg= ¢ 7/ (kgps) IS the characteristic Biot frequency
with p; denoting fluid density ana the correlation length,
that is, a characteristic length scale of the inhomogeneities.
Condition(7) expresses the weak-contrast assumption which
is necessary for the derivation of the effectReavave num-

3-D poroelastic random media can be written as a sum of theer, whereas conditiof8) arises from the use of the low-

homogeneous backgrouriiwave numbeik, and a correc-

frequency approximation to Biot's equations of poroelastic-

tion term which accounts for the conversion scattering fromity.

fast into slowP-waves due to the presence of randomly dis-

tributed inhomogeneities

kp=kp

1+A2+AlkgsforB(r)exp[ikpsr]dr), (1)

whereA; andA, are the dimensionless coefficients

M, ., , 326G,
AlZZ_Pd UHH_ZUHC+UCC+1_SEUGG
8G , 8G ,
BECNGMETRETE @
1, 4G, (4G 4G ,
A2:A1+§UHH_§ﬁO—HG+ W‘I‘l 1_5ﬁO'GG, (3)

andk,s denotes the wave number of Biot’s slow wave

lion
kps: KO_N (4)

In Egs.(2) and(3) P4 andH are respectively dry and satu-
rated P-wave moduli of the background material, which are

related by the Gassmann equation

H=Py+ a’M, 5
where
M=[(a—¢)/Ky+ p/K(] L, (6)

a=1-Ky/Kj is the Biot-Willis coefficient,¢ is background
porosity, andN=MP4/H while Ky, Ky, andK; denote the

Equation(1) for the effective wave number enables us to
derive expressions for the attenuation and dispersion due to
the presence of mesoscopic inhomogeneities. By definition,
the real part ok, yields the phase velocity

v(w)za)/%{?p}Zvo[l—Az-i- 2A1I2

xfxrB(r)exp:—?r]sin(?r)dr , 9
0

wherev is the constant backgrouritdwave velocity defined
asvo=+H/p (p is the bulk densityandk denotes the real
part of the slowP-wave numbek

?(a))= \/ﬁw.

The imaginary part of the wave number yields the attenua-
tion coefficient y and the reciprocal quality facto® 2,
which for low-loss media can be written as

Qt=29/R{ky} = 2T{ky}/ %k}

Then, from(1) we find

(10

11)

Q*l(w)=4A1?2f:r8(r)exp[—?r]cos(?r)dr. (12)

From Egs.(9) and (12) the meaning of the coefficient®)
and (3) becomes clear. The attenuatio * and the
frequency-dependent part ofare proportional ta\;. Thus
A, is the measure of the magnitude of attenuation and veloc-

bulk moduli of the solid phase, the drained frame, and thety dispersion, that is, the dynamic effects. In contras,
pore fluid, respectively. The shear modulus is denote@.as produces a frequency-independent velocity shiftdn

In Eqg. (4) w is angular frequencyx, is the background per-

In the following we analyze general properties of veloc-

meability, andz is the viscosity of the pore fluid. Equation ity and attenuation as given by Eq9) and(12), and com-

J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005

T. M. Muller and B. Gurevich: Wave-induced flow in porous random media 2733



pute closed-form expressions for attenuation and phase ve 1

locity for several specific correlation models.

Ill. GENERAL PROPERTIES OF ATTENUATION AND
VELOCITY DISPERSION

A. Alternative representation using the fluctuation
spectrum

To gain further insight into the general properties of the

results for attenuation and velocity dispersi@nd to ana-
lyze their analytic structure, cf. the next secbidgnis useful

to express the equatior8) and(12) in terms of the fluctua-
tion spectrum(power spectrum that is, the spatial Fourier

transform of the correlation function. In statistically isotropic

random media the fluctuation spectrubix) and the corre-
lation function B(r) are related through the three-
dimensional Hankel transform

4

B(r)= f k®(k)sin(«r)dx. (13

0
Note that Eq.(13) implies that the integral over the fluctua-
tion spectrum is finite ifB(0), i.e., the variance is finite.
Substituting expressiofi3) into Egs.(9) and(12), changing
the order of integration, and integrating owewe obtain

. k4K2
v(w)=vg 1—A2+1677A1j0mq)(K)dK (14
and
Q_l(w)=167TA1J Py CI)(K)dK (15

08

06
O(ka)
04

0.2

0
0

FIG. 1. The spectral filte© as a function of dimensionless spatial wave

numberxa for varyingka. The general behavior of the fluctuation spectrum
® is also shown(circles. Elastic wave attenuation due to fluid flow is

proportional to the product ob and©. Maximal attenuation occurs &a
~1.

becomes small again. In other words, in the high-frequency
(unrelaxed regime only the behavior o at largeka is
important. o

There is an intermediate regime wika~1 where®O
(andQ 1) attains its maximum. Since in our approximation
attenuation due to wave-induced flow and the process of con-
version scattering from fast into sloR-waves are equiva-
lent, maximum attenuation is observed at the “resonance”
condition\g=a

The interplay betwee® and© is illustrated in Fig. 1.

B. The causal relationship between attenuation and

From Eq.(15) we observe that the dynamic behavior of at- dispersion

tenuation is controlled by the integrand, that is, by the prod-

uct of fluctuation spectrurd(«) and the function
K2k

O(xk,k) = (16)

4@-{— Pal

The function© («, k) acts like a filter and controls which

It can be shown that in any passive, linear medium the
attenuation and phase of a wave are mutually related by the
Kramers-Kronig relatior’§ or, more generally, satisfy a dis-
persion relation witm subtractiongfor a recent exposition

of these theorems we refer to Mobley al'®). Mathemati-
cally this means that the attenuation coefficient and the phase

part of the fluctuation spectrum yields a relevant contributiorvelocity, or the real and imaginary part of the complex wave
to attenuation. A similar filter function can be deduced fromnumber(1), are related through a Hilbert transform. Physi-

Eq. (14). In analogy to the acoustic scattering probtémve

refer to© as the spectral filter function. Analyzing the prod-

cally, this relation between attenuation and dispersion is a
consequence of the causality of a pulse signal. The propagat-

uct @O in terms of the dimensionless, spatial wave numbeiing pulsep can be represented as a convolution integral

xa (a is the characteristic length scale of the inhomogene-
ities) we identify three different regimes for different values

of ka.
If ka<1 then O («a, ka) behaves likeka and, there-

p(z,t)=f:h(z—z’,t—t’)s(z’,t’)dt’, (17

where h(L,7) is the impulse response arsis the source

fore, the product®© and, hence, the attenuation, becomeswavelet. Causality implies that(L,7<0)=0.

small. Sincek is inverse proportional to the diffusion wave-

In our model the Fourier transform of the impulse re-

length A y=+xoN/ w7, this case corresponds to the reIaxedsponseh(L ), is given by exfikpL], wherek, is the com-
or low-frequency regime where the induced pore pressure iglex P-wave numbefEg. (1)]. Instead ofn we analyze the

equilibrated during one wave cycle. o
In the opposite case, ifka>1, then O(ka,ka)
~(ka)*(ka)?. This means that the contribution df at

analytic properties of its logarithmic decrement( w)
=Inh/L=ik,. The real and imaginary parts o w) form a
Hilbert transform pair provided thai(z= w+iy) is analytic

small spatial wave numbers is suppressed but its contributioim the complex upper-half plan@inimum phase condition

at large wave numbers is amplified. However, sireg)
becomes very small for large, the product of® and ©
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square integrable: EGL4) shows thaty(w) diverges aso?! if Here a denotes the correlation length, i.e., a characteristic
w—o. To circumvent this difficulty we use the method of length scale associated with the inhomogeneities. More pre-
subtraction® and form a new complex functioh which is  cisely, the correlation length is the length scale at which

square integrable: B(r) assumes the value *. The choice of a single correla-
- - tion functionB(r) implies that the correlation length is the
Aw)= Yw) ¥(0) 1 i}(w)| N (19  same for the three random functiohgr), G(r), andC(r)
@2 w?: owdo =0 (note that in general the results of paper | allow the use of

different correlation lengths associated with each random

The function A(w) is gnalytic in the upper-half complex function). Substituting correlation functiof23) into Egs.(9)
zplane. But alsoA(w) is convergent to zero dg|—= and (12) we find

square integrable. The functiok forms a so-called disper-
sion relation with two subtractions and subtraction frequency

—, =
wo=0.2° The real and imaginary components A&fform a Q Yw)=A, 4(ak)“(2ka+1) (24)
Hilbert transform pair (1+2ka+ 2k%a?)?
1 °° TN (o'
%A(w)=H[‘IA(w)]=—Pf do'—2@) g and
a — w —w
—, =
1 (* RA(w) I P 4(ak)*(1+ka) -
zA(w)z—H[mA(w)]z—;Pﬁmdw — vle)=vo Lt At o) 2 (25
(20)
. . For th -call i lation functi
whereP [ denotes the Cauchy principal value of the integral. or the so-called Gaussian correlation function
Using expressiongl4) and(15) the real and imaginary parts
ongcanpbe Writtfrl1 ;s 1 e B(r) =ex —r*/a’], (26)
% g(x) we obtain
%A(w)=—cf dK(D(K)z—, (21
0 0 +9(k) - Jr & —
) e Q Yw)=2A,(ak)? 1—TZ:§Z) akz
TA(w)=—Cj dx® (k) —/——, (22 -
0 w?+g(k) _ _
2
where g(K):K4KgN2/7]2 and c=4m7An/(vorgN). 1t is xexi(akz) MJerfc[akZ/z]}' @7
easy to verify that21) and(22) are related througfl9) and
(20) if we remember the basic Hilbert transform pair _Jm =
H[—x/(1+x3)]=—1/(1+x?). v(w)=vg| 1+A,(ak)>~—— >, akz*
Thus, the attenuation coefficient and phase velocity sat- =z
isfy a twice-subtracted dispersion relation. In other words, o -
formulas(19) and(20) allow us to compute attenuation and X exf] (akz)?/4)erfd akz/2]— A, |, (28
dispersion from each other. It is important to note that this

causal relationship is an intrinsic property of our model and

not a prerequisite. wherez, =1+i, z_=1-i, z* denotes complex conjuga-
tion, and erfc is the complementary error function. Another
widely used correlation model is the von iaan function

IV. ANALYTICAL EXPRESSIONS AND MODELING P\
CHOICES B(r)zzl”rl(v)(5> K,(r/a), (29
A. Analytical expressions

We now give exp|icit results foQ_l andv for several where K, is the modified Bessel function of third kintac-
correlation functions of practical interest. Ideally, the corre-Donald function and I denotes the gamma function. The
lation function should be inferred from experimental datavon Kaman correlation function involves an additional pa-
such as X-ray images of rock samp|es_ In many circumfameter, the so-called Hurst COfoIClelﬂWhIC,h is assumed
stances the true correlation behavior can be well approxito be 0<v=1. For the case=; the von Kaman function is
mated by simple correlation functions such as an exponentidflentical to the exponential correlation functit8). Its fluc-
correlation function or combinations of them. A review of tuation spectrum is given by
frequently used correlation functions in random media is
provided by Klimes'® a’r'(v+3)

First, let us assume that the inhomogeneities are expo- P (k)= (o) (L4 K2ad)
nentially correlated so th&(r) becomes

B(r)=exd —|r|/a]. (23)  Substituting(30) into (15) and (14) gives

(30
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TABLE |. Parameters of the background solid and fluid phases used for the
computation of the numerical examples.

Q Hw)=c14,

Elily P 3 e
023272+2, EZZ_(a)

Porous material

1 3 3 v K, (GPa) 40
/4— vl
— 50| v+35|(2v+3)B” 34 2coa{ 77 3/A K. (GPa) 45
G (GPa) 9
5 — pg (kg/n?) 2650
4T vt 2|B 94 12(2(ak)? cog oAl ¢ 017
Ko (MD) 250
. Pore fluid
+ Slr[ch]}} , (31 K (GPa) 2.17
7 (Pas 0.001
pi (kg/n) 1000
E _ 102 Poroelastic parameters
v(@)=vo| 1-A4p~ 5 Al( 4cy(1+v)(ak) 3F2(111 P, (GPa) 165
« 0.89
LY 3+v 35 42k M (GPa) 10.4
Py _;_1_1_ a H(GPa) 24.7
2'2 2'4’4 N (GPa) 6.9
1 r 1 2 3 B—3/4— vi2 3 v A we (K2 o0
+§ +§ ( v+ )C3 CcO Z+E
3)(3 —5/4— /2 102
+T v+§ §+v B {2(ak)* cog c;A]
+sin C3A]}) } : (32 0.02
where  we  used c;=16y7(ak)¥/(I'(v)(2v+3)), 0.015

c,=T(v+1)(2v+3)/(2Vmak),  c3=(U4+v2), A
=2 arctan(2%k?), andB=1+4(ak)*. 5F, is the generalized
hypergeometric function.

1/Q

B. Modeling choices

Let us consider various scenarios how mesoscopic inho- 0005 |
mogeneities can affect attenuation and dispersionPof
waves. The above results allow us to model signatures o
wave-induced flow due to fluctuations in the solid phase,
drained frame, and fluid parameters. In all numerical ex-
amples we assume that the background material is a porou
sandstone with parameters specified in Table I.

0 . . .
(a) 1e-06 1e-05 0.0001 0.001 0.01 0.1
e

3260 a=icm ——

In the first example, we assume that the correlation func- azioom —
tion is of exponential typg(23) with varying correlation 3240 | quasi.st:ﬁclimi: N
no-flow limit -----

lengtha. Further, we assume that there are fluctuations of all
bulk moduli and the shear modulus specified through their
variancesiog x =0.12, aﬁgKg: 0.02,035=0.1, ando .
=0.14. The fluctuations oKy, Ky, andG are fully corre-
lated so that the coefficient of correlation for two different
random fieldR= 02,/ \Jo2xo2 is equal to one. In our case, s}
the cross variances becoméng= 0.049,0% =0.110, and

aéKg=O.O48. The fluctuations of porous material parameters 3140

and fluid bulk modulus are uncorrelated. Using these vari- ., , , , ,
ances we compute the variances of the poroelast|c param g, 1606 16-05 0.0001 0.001 0.01 0.1
stersH, C, andG: crHH—O 051, 0%.=0.081, 0% c=0.098, ffe

04c=0.025, andrg.=0.098. The frequency dependence of FIG. 2. (a) Reciprocal quality factor as a function of frequeraprmalized
attenuation and phase velocity for this model according tdy Biot's critical frequencyf ~100 kHz) for different correlation lengths.

(b) P-wave velocity versus frequency for the same models. It can be ob-
Egs. (24) and (25) is shown in Flg. 2. The frequency is served that for larger correlation lengths the dispersion curves are shifted

normalized by Biot's critical frequencyc- From Fig. 2 we toward lower frequencies. The horizontal curves denote the quasi-static and
can observe that even weak fluctuations of the bulk modulho-flow limits, respectively.

3220 F

3200

3180 | P

P-wave velocity [m/s]
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0.01 : . : :
=" 100kH>
21m0pf

0.008 | 3D —

S
0.006 | -

Qg
0.004 | 1
0.002 | 10Hz 100Hz ™ .
-

0 | 1
1e-08 0.0001 0.001

@ 16-05 0.01 0.1
frfc
3230 i . , |
3220 3D |
quasi-static limit ---------

3210 no-flow limit - ]
e
I ]
2
o
S 90 f _
>
g
§ 3180} _
o

3170 |

3160 |

3150 ! ) . .

1e-06 1e-05 0.0001 0.001 0.01 0.1

(b)

fic

FIG. 3. Attenuation in terms o®~! (a) and velocity dispersiorib) as a
function of normalized frequency for a model with fluctuations in the pa-
rameterK; with aﬁfozo.z anda=25cm. For the same parameters the
result of the 1-D poroelastic extension of the ODA theory is also shown
(dashed curve

can produce significant attenuation of the fdatwave
(Q 1=0.01).

0.03

R=0 ——
R=1
0.025 | LA |
P
~
0.02 | . _

1/Q

0.015

0.01

0.005

1e-05 0.0001

te

3300

3250

3200

P-wave velocity [m/s]

3150 |

quasi-static limit

0.001
fffc

¥ 0(‘I) 06
8-
(b)

16-05 0.0001 0.01 0.1

FIG. 4. (8 Q! versus normalized frequency for differently correlated fluc-
tuations. A significant amount of attenuatio® {*>0.01) can be observed

if the fluctuation of the solid and frame material are negatively correlated
with the fluctuations of the fluid bulk modulughat means a soft frame
inhomogeneity contains a fluid with increased bulk moduliide correla-

tion length is constanta(= 25 cm). (b) P-wave velocity for the same model.

It can be observed that for negative cross correlation the dispersion effect is

most pronounced.

We also compare the result for the attenuation with thoseide for the two cases. This is, however, a consequence of the

obtained in the 1-D case. For this purpose we use the resul

tonstant shear modulus in this exampdee also next sec-

of the poroelastic extension of the O’Doherty-Anstey theorytion).

[Eq. (17) in Gelinskyet al.”]. For the same sandstone model
as above we comput@ ! in the case that only parametéf
exhibits fluctuations withry =0.2 anda=25cm(Fig. 3. It

Next, we consider the influence of the cross correlations
of the fluctuations. Obviously, if there is an inhomogeneity
with low P-wave modulus but relatively high fluid bulk

can be observed that the magnitude of attenuation in 1-D andlodulus(that is, negatively correlated fluctuationsig and |
3-D random media is of the same order. However, note tha), we expect an increased wave-induced fluid flow during

the attenuation in 3-D is slightly larger. Maximal attenuation

in the 3-D case is observed at
w3 =2koN/ay, (33

whereas in the 1-D case it is observedagf), = xN/a?7.

Thus, the maximum of attenuation in 3-D occurs at a fre-

the compression cycle of the wave. This means that both the
dispersion and attenuation characteristics should be more
pronounced than in the case of uncorrelated fluctuations.
Such a behavior can be observed in Fig. 4, wheneave
velocity and attenuation are computed for the above sand-
stone model witho « =0.10, aﬁgKg:o.oz, 045=0.08,

quency twice as large as compared with the 1-D case. In o@Nd o ¢, =0.16. The fluctuations oKy, K, and G are
example, this difference has important implications for thepositively correlated. The fluctuations of the fluid bulk

observability of the attenuation mechanism: For typical seis
mic frequencieg10-100 Hz the attenuation due to wave-

modulus and those of all other fluctuating parameters are
either positively(coefficient of correlatiorR=1) or nega-

induced fluid flow is larger in 3-D inhomogeneous structuregively (R=—1) correlated. The case of uncorrelated fluctua-

(this is indicated by the arrow in Fig.)3It can be also

tions (R=0) betweenK; and all other moduli is also dis-

observed that the low- and high-frequency velocities coinplayed in Fig. 4. We note that such scenarios may produce a
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0.03 T ' ' ' V. ASYMPTOTIC BEHAVIOR AT LOW AND HIGH
Exponiuss ° FREQUENCIES
0.025 | vonKarman, v=0.1 - i )
von Karman, v=0.3 - A. Attenuation
von Karman, v=0.9 -
002 | &, | One goal of our study is to infer the low- and high-
s i frequency asymptotic behavior of attenuation due to wave-
9 ool TN i induced fluid flow. At low frequencies we can approximate
. S N ¢ the exponential in Eq(1) by 1 becauseB(r) will vanish
oot | before the exponential term changes noticeably from its
. value at small arguments. Obviously, an asymptote only ex-
0005 | e ists if the resulting expressiofydr rB(r) has a finite posi-
’ - tive value. This is the case for a large class of correlation
o = ’ . . oo functions. Then we havexw? or, in terms of the quality
(@  1eos 1e-05 0.0001 0.001 0.01 0.1 factor,
tifc
: : Q 'xw. (34)
3260 Gauss o 1 . .
(o EXponential —— It is important to note that the same low-frequency behavior
s240 | von Karman, v-0.3 ] is reported for 1-D and 3-D periodic structurgs® The uni-
_ Yo o Tt ———— versality of this relation is discussed in Sec. VII.
g s uesismiclmit oo T At high frequencies only the behavior B{r) at small
g— e | arguments is important. Assuming that the correlation func-
3 tion can be expanded in power series around the origin
2 st S0 7L . ,
F B(r/a)=1—r/a+0O((r/a)?), (35
3160 1
we can evaluate the integral in Ed.) and obtain
340 L e 1
1
3120 . : . ' Q "o —. (36)
() 10 16-05 0.0001 0.001 0.01 0.1 Jo

f/fc
FIG. 5. Q! andP-wave velocity as a function of normalized frequency for The same asymptote has .been found ”?] 1-D/3-D periodic and
Gaussian, exponential, and von ri¢an (the Hurst coefficient is denoted 1-D random structures. It is, however, Important to note that
in the legenyl correlation functions. The model parameters are the same aghe scaling(36) it not universal for any kind of disordésee
in Fig. 4, where the fluctuations &f; are uncorrelated with those &f;, G also Fig_ 4. For example' the Gaussian correlation function
andKg. (26) yields at high frequencies the proportionalip ™!
«1/w, a much faster decrease of attenuation with frequency
as compared to Eq36). The reason for this discrepancy is
significant amount of P-wave attenuation (0.81Q "  that the Gaussian correlation function behaves differently at
<0.1) even if the relative fluctuations in the medium param-small argument. Instead of35) we have BS§r/a)=1
eters are small. +0(r?/a®), which means that on small scal&a the me-

To demonstrate the influence of the correlation functiondium is almost homogeneous. As a consequence, at high fre-
on the frequency dependence of attenuation and velocity digtuencies the passing wave will create less fluid flow as com-
persion, in Fig. 5 we shov@ ! and P-wave velocity for ~ pared with a medium characterized t85) and, therefore,
exponential, Gaussian, and von rign correlation func- the decrease o' with frequency is stronger. In other
tions. Note that all curves are generated using the same miords, the smoother the medium at small spatial scales, the
dium parametergthose from Fig. 4 The resulting differ- €ss wave-induced flow takes place.
ences in magnitude and frequency dependence of attenuation
are only due to the use of a different correlation mddele
Egs. (23), (26), and (29)]. Maximal attenuation is obtained B. Velocity
for the Gaussian correlation model. Whereas at low frequen- Having studied the low- and high-frequency asymptotes

cies the frequency dependence is th.e same for a!l correlatio& the wave attenuation, we now analyze the asymptotic be-
models, one can observe that at high frequencies differenf, ior of phase velocity in the cases of low- and high fre-

asymptotes are obtained. Only the Gaussian correlatioguencies. In both cases the phase velocity has a finite limit.
model is symmetric with respect to its maximum. TheThe physical situation, however, is different for these two
asymptotic frequency behavior of our attenuation model igimits: in the low-frequency limit, there is enough time dur-
analyzed below. The variability of both attenuation and ve-ing the wave cycle to equilibrate the induced pore pressure.
locity dispersion for different correlation models indicatesWe refer to this relaxed limit as “quasi-static” and denote the
the importance of the geometrical shape of mesoscopic inh@orresponding phase velocity ags. In the high-frequency
mogeneities for the wave-induced flow. limit, there is no time to develop a wave-induced fluid flow.
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This situation is called the no-flowunrelaxed limit and we  random media is exactly the same as the quasi-static velocity
denote the phase velocity as;. From Fig.(2) it can be  resulting from the so-called poroelastic Backus averaging.
observed that The coincidence of the quasi-static velocities in 1-D and 3-D

space can be also observed in Fig. 3. In the no-flow limit the

Unf=Vgs- 37) porous material behaves like an elastic composite. In the case
Physically, this relation can be explained by the additionalof constant shear modulus the no-flow limit can be computed
stiffening of the porous frame in the no-flow limit. using the Hill average of the saturatBevave moduliH:

From Eq.(9) it is straightforward to deduce,s. The .
low-frequency limit is obtained by neglecting the third term H* = <i> (45)
in (9). We obtain Hf

Vgs=vo(1—A4y). (38)  which in the weak fluctuation limit yields

The no-flow velocity is determined if we compute the limit
w—x in EQ. (9). Since in the limitw—~ only the value oB vnfzvo( 1—
at zero correlation lag yields a contributipgee Eq(35)] we

can replaceB(r) by B(0)=1. Thus the third term in9)

a*M?

2 o

1
U%/IM) :Uo<1_§‘fﬁm .

We notice that Eq(46) is also valid in 1-D random medfa.

gives Again, the coincidence of both limiting velocities can be
— [~ — = observed in Fig. 3.
244k JO rexd —kr]sinkrjdr=4,, (39) The above consideration yields the same quasi-static and
no-flow velocities as the 1-D approach and only requires the
so that exact mixing laws of Wood and Hill. This could lead to the
Vn=vo(1+A;—A,). (400  conclusion that the poroelastic Backus averaging, which pro-

vides the limiting velocities in 1-D inhomogeneous media, is
also valid in 3-D inhomogeneous media. This is, however,
merely a consequence due to neglecting fluctuations of the
shear modulus. In general, we have to analyze the consis-
Ay (4D tency of our limiting velocities with results obtained for 3-D
inhomogeneous media. In the no-flow limit, we can use the
with A, defined in Eq.(2). It is interesting to note that the yesults of Goldet al'® They derived an expression for the

limiting velocities do not depend either on the correlationeffective P-wave velocity in weakly inhomogeneous elastic
function or on the transport properties of the porous materialiandom mediagsee their equation A-28

In other wordsp s andv . are independent of the geometry

From Eqgs.(38) and (40) it follows that the relative magni-
tude of the dispersion effect is
Unf_qu:
Vo

of the inhomogeneities. . 1 A , 2 \u 5
An independent verification of the results for the limit- v =vo| 1— 2 (7\+—2)20“_ 3 ()\+—2)20“‘
ing velocities can be obtained by the following consider- " H
ation. First, we assume that only the fluid bulk modwyss 2 u? , 4 u )
fluctuating and all other parameters of the porous medium "5 02 e 15 (N2 e | (47)
are constants. This situation may arise if the pore space is (A +2u) #
filled with different fluids. It is then expedient to change the \yhere \ and x denote the Lamearameters andrﬁy the

parametrization fromH,C,G) to (Py,«,M,G) fluctuations  (¢rosg variances of the fluctuations of the Lamparameters.
because in the new parametrization only the paramiéter The no-flow limit can be obtained from E(47) by replacing
will vary. Both limiting cases must be consistent with Gas-the amieparameters with their saturated values. To demon-
smann's equatloms).for the _saturated bulk moduKsa in-  strate the equivalence between this result and our expression
volving some effective medium parameters: for v,; we have to change from th@, ) to (H,G) param-
K¥, =K%+ (a*)2M*, (42) etrizatiqn. U.sing the simple _relgtion between the relative
fluctuations in both parametrizations,= (A&, +2ue,)/H

where the superscript denotes the effective value of the andH=\+2u, where\ and x are the saturated Lanpa-
corresponding parameter. In the quasi-static limit, the averrymeters. we obtain

aging of the fluid bulk modulus should be done according to

Wood’s formula, which leads to the following effectilé*, 1 4G 16 G2
Unt=Ug 1- 08yt 5 = 0hg— = — 02
1 -1 n 2 HH 3 H HG 15H2 GG
*—( —
M* = M , (43
4G , 48
and hence ~ 15[ %66/ (48)
M o . .
Ugs= Vol 1— S M |- (44) which is exactly Eq(40). In conclusion, the no-flow velocity

according to our approach can be obtained from the effective
It is important to note that Wood'’s average can be appliedselocity in elastic random media when the elastic moduli are
regardless of the space dimension. Thereforg, for 3-D  replaced by their saturated counterparts.
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VI. DISCUSSION described as conversion scattering of the norffas) P
wave (governed by the wave equatjointo Biot's slow
wave, which is governed by the diffusion equation. Such a
The model proposed in this paper provides expressionsjtuation is not unique to poroelasticity, but occurs in a num-
for frequency-dependent attenuation and dispersion in 3-Rer of physical situations. Two most obvious situations of
randomly mhor_nogeneous_ porous media accounting for theis kind are conversion scattering of elastic waves into ther-
effect of wave-induced fluid flow. Our results are based ofy5 wayes in inhomogeneous thermoelastic materials, and
perturbation theory and, therefore, are restricted to weakscattering of acoustic waves into viscous waves in viscous
contrast media. However, we think that this approximate SOy snensions and emulsions. It is thus interesting to compare

lution reveals the exact solution’s essential dependence Of ", roefastic results with those for poroelastic solids and
frequency and medium parameters. In our approach the d)(;

. . ) . scous fluids, and find out whether they yield the same pat-
namic chgracterlstlcs erend on the correlation pro_pertles (?érns of frequency dependence for 1-D and 3-D periodically
th(ie1 medium fluctuatlons'. Closed-form expressions forand randomly inhomogeneous structures.

Q “(v) andv(w) are obtained for several correlation func- The theory of thermoelasticity is based on a system of
tions. The form of attenuation and dispersion curves are typi-

cal for a relaxation mechanism. The low-frequency behaviorCOUpled partial differential equations which has exactly the

of attenuation is found to b8~ 1xw, whereas at high fre- S2Me structure as Biot's equations of poroelastfcity.
quenciesQ o~ Y2 It is interesting to note that these as- Therefore, using this correspondencg, results from the theory
ymptotes coincide with those predicted by the periodicity—qf .thermoelasncny can be tyapslaﬁted into res'ults for poroelas-
based approaché® Consequently, in 3-D space the t|C|t_y. Ir_1 therm.oelalstlcny, Q|SS|pat|0n of elastlc. waves propa-
observed frequency dependency of attenuation due to flui§ating in media with varying thermal conductivity is caused
flow has universal character independent of the type of disPY conversion into a thermal compression wave. Physically,
order (periodic or random This result is somewhat unex- &N elastic wave causes temperature fluctuations wh|(_:h _create
pected if we remember that in 1-D space the attenuatio® heaF fIL_1x. There are numerous worl_<s on the description of
asymptotes are different for periodic and random structureghe dissipation effect in randomly inhomogeneous, ther-
Typically in the seismic frequency band attenuation is ofmoelastic structures. For 1-D random thermoelastic media
the ordet® 0.01<Q~1<0.1. Despite the fact that our attenu- Armstrong® showed that attenuation in the low-frequency
ation model is restricted to weakly inhomogeneous media, ifange scales lik€ ~*x\/w, which is the very same scaling
may explain attenuation values of the order 0.01. Our modeds in the 1-D random poroelastic case. In 3-D random ther-
is also restricted to mesoscopic inhomogeneitiesdition 1 ~ moelastic media characterized by a vonrikan correlation
in paper ). A>a>a,qe, Wherea,, denotes any character- function Shermergor and Baryshnik8vshowed thatQ !
istic pore-scale length. In the caze>a attenuation due to > w at low frequencies. This asymptotic behavior is the same
scattering on weak inhomogeneities is negligible. Howeveras found in the present work for any correlation function.
if N\=a, scattering attenuation becomes noticegBlmatter- Thus the observed low-frequency asymptotes of attenuation
ing attenuation has a maximum far=a). Such a case may in 1-D and 3-D thermoelastic structures are the same as in
occur at sonic or ultrasonic frequencies. Scattering attenuaorresponding poroelastic structures.
tion can also be modeled in the framework of the statistical It is also interesting to compare our results with those
smoothing methodrecall that the present approach is basedor acoustic signatures in suspensions of solid particles in a
on this approximation methodHowever, since the latter ap- viscous fluid. Acoustic wave attenuation in suspensions is
proximation describes signatures of the ensemble-averagedused by the viscous drag between the fluid and the par-
field, its application to the evaluation of scattering attenuaticles during a wave cycle, i.e., by the resistance to fluid flow
tion in heterogeneous rocks is limité¥instead, a wavefield around the solid particl&. Similar to the case of wave-
approximation valid in single realizations of the randominduced flow in poroelastic structures, it is the relative mo-
mediunt* should be employed. An extension of the presention of fluid and solid phase that controls the dissipation
results with proper account of scattering attenuatian, o process. The difference is that the solid phase in suspensions

relax the restrictionn>a) is the subject of future research. s ot continuous. At low frequencies one fifdsnce again
There are a few more issues that have to be addressed i scalingQ e w. Urick?® presented a simple attenuation

future work. In order to construct a quantitative model for o114 valid for all frequencies, which agrees with experi-
the case of partial saturation with pore fluids having large, antal results in suspensions. Urick's H§) yields Q1
contrasts in their elastic properties, the present approach has = . |y frequencies an® = 1/\/w at high frequencies.

to be modified in such a way that the low- and high- This is the very same scaling as obtained in exponentially

ggg::gg?; é'g;':n:r:ﬁ V?/ggge;;iidegvslghm;ii II—(|?IIO \'r(:sxa;gtivelcorrelated poroelastic random meflzy. (24)]. Interestingly,
, 1esp Yrick's equation for attenuation also contains a term which

For 1-D random media such a model has been recently d%{ccounts for scattering at the suspended particles resulting in
veloped and used in order to interpret laboratory data. 9 P P 9

the Rayleigh scattering dependen@e '« w®. From these
comparisons we can conclude that observed frequency de-
pendencies of attenuatigand velocity in 1-D and 3-D pe-

As discussed in more detail in paper |, attenuation andiodically and randomly inhomogeneous media are common
dispersion due to mesoscopic wave-induced flow can also bler many situations where wave field energy is dissipated

A. Applicability to real porous materials

B. Analogy with other physical systems
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