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A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and
the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order
statistical smoothing approximation applied to Biot’s equations of poroelasticity, a model for elastic
wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous
poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the
spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is
typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion
are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane
compressional wave is proportional to the square of frequency. At high frequencies the attenuation
coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory
shows that attenuation is of the same order but slightly larger in 3-D random media. Several
modeling choices of the approach including the effect of cross correlations between fluid and solid
phase properties are demonstrated. The potential application of the results to real porous materials
is discussed. ©2005 Acoustical Society of America.@DOI: 10.1121/1.1894792#
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I. INTRODUCTION

One major cause of elastic wave attenuation in hete
geneous porous media is wave-induced flow of the pore fl
between heterogeneities of various scales. It is believed
for frequencies below 1 kHz most important is the wav
induced flow between mesoscopic inhomogeneities, wh
are large compared with the typical individual pore size,
small compared to the wavelength. Various laboratory
periments in some natural porous materials provide evide
for the presence of centimeter-scale~mesoscopic!
heterogeneities.1,2 Attenuation and dispersion due to meso
copic flow can be modeled using Biot’s equations of p
roelasticity with spatially varying coefficients.3

The simplest model of mesoscopic heterogeneities
horizontally layered~1-D! structure. In such structures a
elastic wave passing perpendicular to layers causes
‘‘inter-layer’’ flow, that is the flow of the pore fluid from
more compressible into stiffer layers during a compress
cycle of the wave~and vice versa during extension!. Elastic
wave attenuation and dispersion due to interlayer flow w
first studied for structures with periodic stratification.4,5 More
recently, Gurevich and Lopatnikov6 and Gelinskyet al.7 ana-
lyzed attenuation and dispersion for structures with rand
layering. These 1-D studies revealed that frequency dep
dencies of attenuation and velocity in periodic and rand
layered structures were somewhat different. In both sit
tions attenuation and dispersion have their maximum a
frequencyvmax where ~typical! layer thickness equals th
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fluid diffusion length~that is, the wavelength of Biot’s slow
wave!. Furthermore, at higher frequencies,v@vmax attenu-
ation ~expressed through the reciprocal quality factorQ21)
for both periodic and random layers has the same asymp
behaviorQ21}v21/2. However, attenuation is different in
the low-frequency limitv!vmax: it is proportional to fre-
quencyv for periodic layering and toAv for random layer-
ing. These findings underline the importance of spatial d
tribution of inhomogeneities for modeling mesoscopic-flo
attenuation and dispersion.

The situation is naturally more complex in porous m
terials with three-dimensional inhomogeneities. In such m
dia the behavior of attenuation as a function of frequen
depends on the distribution and shape of inhomogenei
However, recently Johnson,8 Pride and Berryman,9 and Pride
et al.10 showed that in porous media with a regular distrib
tion of identical inhomogeneities ofany fixed shape, the re-
ciprocal quality factorQ21 scales withv at low frequencies
and withv21/2 for high frequencies. In real porous compo
ites heterogeneities are more likely to have a random sp
distribution. Given the 1-D results quoted earlier, it is the
fore natural to ask how the random distribution of inhom
geneities will influence the magnitude and frequency dep
dency of wave attenuation. To address this question, Mu¨ller
and Gurevich11 developed a theory for elastic wave propag
tion in a fluid-saturated porous medium with random dis
bution of 3-D inhomogeneities. Applying the method of st
tistical smoothing12 to Biot’s equations of poroelasticity with
spatially variable coefficients, they derived an explicit e
pression for a complex-valued, effective wave number o
compressional wave~P-wave! which accounts for the effec
of wave-induced flow.

In this paper we use the results of Mu¨ller and Gurevich11

~referred below as paper I! to analyze the magnitude an

7
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frequency dependence of attenuation and velocity disper
caused by wave-induced fluid flow in poroelastic rand
media. Specifically, we derive closed-form expressions
elastic wave attenuation and dispersion as functions of
correlation properties of the inhomogeneities~Sec. II!. We
show that these wave field attributes are mutually related
the Kramers-Kronig relations, and therefore represen
causal pair~Sec. III!. For most commonly used correlatio
models we obtain simple, analytic expressions for atten
tion and dispersion and demonstrate their behavior using
merical examples~Sec. IV!. We also analyze the low- an
high-frequency asymptotic behavior of both velocity and
tenuation~Sec. V!. Finally, in Sec. VI we discuss our resul
in the light of existing theories for wave propagation in p
roelastic media, in thermoelastic media, and in suspens
of solid particles in a viscous fluid. The conclusions are p
sented in Sec. VII.

II. ATTENUATION AND DISPERSION DUE TO WAVE-
INDUCED FLOW

According to paper I, the effectiveP-wave numberk̄p in
3-D poroelastic random media can be written as a sum of
homogeneous backgroundP-wave numberkp and a correc-
tion term which accounts for the conversion scattering fr
fast into slowP-waves due to the presence of randomly d
tributed inhomogeneities

k̄p5kpS 11D21D1kps
2 E

0

`

rB~r !exp@ ikpsr #dr D , ~1!

whereD1 andD2 are the dimensionless coefficients

D15
a2M

2Pd
S sHH

2 22sHC
2 1sCC

2 1
32

15

G2

H2
sGG

2

2
8

3

G

H
sHG

2 1
8

3

G

H
sGC

2 D , ~2!

D25D11
1

2
sHH

2 2
4

3

G

H
sHG

2 1S 4G

H
11D 4

15

G

H
sGG

2 , ~3!

andkps denotes the wave number of Biot’s slow wave

kps5Aivh

k0N
. ~4!

In Eqs.~2! and ~3! Pd andH are respectively dry and satu
ratedP-wave moduli of the background material, which a
related by the Gassmann equation

H5Pd1a2M , ~5!

where

M5@~a2f!/Kg1f/K f #
21, ~6!

a512Kd /Kg is the Biot-Willis coefficient,f is background
porosity, andN5M Pd /H while Kg , Kd , andK f denote the
bulk moduli of the solid phase, the drained frame, and
pore fluid, respectively. The shear modulus is denoted aG.
In Eq. ~4! v is angular frequency,k0 is the background per
meability, andh is the viscosity of the pore fluid. Equatio
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M. Müller
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~1! was obtained by assuming that the parametersH, G, and
C5aM have a random component. The correlation prop
ties of the random inhomogeneities are characterized by
normalized correlation functionB(r ), which for the three
random functionsH, G, andC assumes the same function
form. The variances of the relative fluctuations are deno
as sHH

2 , sGG
2 , and sCC

2 . The cross variance of the relativ
fluctuations aresHG

2 , sHC
2 , andsGC

2 . Approximation~1! for
the effectiveP-wave number has a restricted range of app
cability, which can be expressed through the conditions~for a
detailed analysis see paper I!

max$D1~ ukpsua!2,D2%!1 ~7!

and

a2@
k0N

hvB
, ~8!

wherevB5fh/(k0r f) is the characteristic Biot frequenc
with r f denoting fluid density anda the correlation length,
that is, a characteristic length scale of the inhomogeneit
Condition~7! expresses the weak-contrast assumption wh
is necessary for the derivation of the effectiveP-wave num-
ber, whereas condition~8! arises from the use of the low
frequency approximation to Biot’s equations of poroelast
ity.

Equation~1! for the effective wave number enables us
derive expressions for the attenuation and dispersion du
the presence of mesoscopic inhomogeneities. By definit
the real part ofk̄p yields the phase velocity

v~v!5v/R$k̄p%5v0F12D212D1k̄2

3E
0

`

rB~r !exp@2 k̄r #sin~ k̄r !drG , ~9!

wherev0 is the constant backgroundP-wave velocity defined
as v05AH/r ~r is the bulk density! and k̄ denotes the rea
part of the slowP-wave numberkps

k̄~v!5A h

2k0N
v. ~10!

The imaginary part of the wave number yields the atten
tion coefficient g and the reciprocal quality factorQ21,
which for low-loss media can be written as

Q2152g/R$k̄p%52T$k̄p%/R$k̄p%. ~11!

Then, from~1! we find

Q21~v!54D1k̄2E
0

`

rB~r !exp@2 k̄r #cos~ k̄r !dr. ~12!

From Eqs.~9! and ~12! the meaning of the coefficients~2!
and ~3! becomes clear. The attenuationQ21 and the
frequency-dependent part ofv are proportional toD1 . Thus
D1 is the measure of the magnitude of attenuation and ve
ity dispersion, that is, the dynamic effects. In contrast,D2

produces a frequency-independent velocity shift in~9!.
In the following we analyze general properties of velo

ity and attenuation as given by Eqs.~9! and ~12!, and com-
2733and B. Gurevich: Wave-induced flow in porous random media
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pute closed-form expressions for attenuation and phase
locity for several specific correlation models.

III. GENERAL PROPERTIES OF ATTENUATION AND
VELOCITY DISPERSION

A. Alternative representation using the fluctuation
spectrum

To gain further insight into the general properties of t
results for attenuation and velocity dispersion~and to ana-
lyze their analytic structure, cf. the next section! it is useful
to express the equations~9! and~12! in terms of the fluctua-
tion spectrum~power spectrum!, that is, the spatial Fourie
transform of the correlation function. In statistically isotrop
random media the fluctuation spectrumF~k! and the corre-
lation function B(r ) are related through the three
dimensional Hankel transform

B~r !5
4p

r E
0

`

kF~k!sin~kr !dk. ~13!

Note that Eq.~13! implies that the integral over the fluctua
tion spectrum is finite ifB(0), i.e., the variance is finite
Substituting expression~13! into Eqs.~9! and~12!, changing
the order of integration, and integrating overr we obtain

v~v!5v0F12D2116pD1E
0

` k̄4k2

4k̄41k4
F~k!dkG ~14!

and

Q21~v!516pD1E
0

` k̄2k4

4k̄41k4
F~k!dk. ~15!

From Eq.~15! we observe that the dynamic behavior of a
tenuation is controlled by the integrand, that is, by the pr
uct of fluctuation spectrumF~k! and the function

U~k,k̄!5
k̄2k4

4k̄41k4
. ~16!

The functionU(k,k̄) acts like a filter and controls which
part of the fluctuation spectrum yields a relevant contribut
to attenuation. A similar filter function can be deduced fro
Eq. ~14!. In analogy to the acoustic scattering problem13 we
refer toU as the spectral filter function. Analyzing the pro
uct FU in terms of the dimensionless, spatial wave num
ka ~a is the characteristic length scale of the inhomoge
ities! we identify three different regimes for different value
of k̄a.

If k̄a!1, thenU(ka,k̄a) behaves likek̄a and, there-
fore, the productFU and, hence, the attenuation, becom
small. Sincek̄ is inverse proportional to the diffusion wave
length ld5Ak0N/vh, this case corresponds to the relax
or low-frequency regime where the induced pore pressur
equilibrated during one wave cycle.

In the opposite case, ifk̄a@1, then U(ka,k̄a)
'(ka)4/( k̄a)2. This means that the contribution ofF at
small spatial wave numbers is suppressed but its contribu
at large wave numbers is amplified. However, sinceF~k!
becomes very small for largek, the product ofF and U
2734 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M
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becomes small again. In other words, in the high-freque
~unrelaxed! regime only the behavior ofF at large k̄a is
important.

There is an intermediate regime withk̄a'1 whereFU
~andQ21) attains its maximum. Since in our approximatio
attenuation due to wave-induced flow and the process of c
version scattering from fast into slowP-waves are equiva-
lent, maximum attenuation is observed at the ‘‘resonan
conditionld5a.

The interplay betweenF andU is illustrated in Fig. 1.

B. The causal relationship between attenuation and
dispersion

It can be shown that in any passive, linear medium
attenuation and phase of a wave are mutually related by
Kramers-Kronig relations14 or, more generally, satisfy a dis
persion relation withn subtractions~for a recent exposition
of these theorems we refer to Mobleyet al.15!. Mathemati-
cally this means that the attenuation coefficient and the ph
velocity, or the real and imaginary part of the complex wa
number~1!, are related through a Hilbert transform. Phy
cally, this relation between attenuation and dispersion i
consequence of the causality of a pulse signal. The propa
ing pulsep can be represented as a convolution integral

p~z,t !5E
2`

`

h~z2z8,t2t8!s~z8,t8!dt8, ~17!

where h(L,t) is the impulse response ands is the source
wavelet. Causality implies thath(L,t,0)50.

In our model the Fourier transform of the impulse r
sponse,h̃(L,v), is given by exp@ik̄pL#, wherek̄p is the com-
plex P-wave number@Eq. ~1!#. Instead ofh̃, we analyze the
analytic properties of its logarithmic decrementg̃(v)
[ ln h̃/L5ik̄p . The real and imaginary parts ofg̃(v) form a
Hilbert transform pair provided thatg̃(z5v1 iy) is analytic
in the complex upper-half plane~minimum phase condition!
and is square integrable. From Eqs.~14! and ~15! we can
deduce thatg̃(z) is analytic for y.0. However,g̃ is not

FIG. 1. The spectral filterU as a function of dimensionless spatial wav
numberka for varying k̄a. The general behavior of the fluctuation spectru
F is also shown~circles!. Elastic wave attenuation due to fluid flow i
proportional to the product ofF andU. Maximal attenuation occurs atk̄a
'1.
. Müller and B. Gurevich: Wave-induced flow in porous random media
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square integrable: Eq.~14! shows thatg̃(v) diverges asv1 if
v→`. To circumvent this difficulty we use the method
subtractions15 and form a new complex functionL which is
square integrable:

L~v!5
g̃~v!

v2
2

g̃~0!

v2
2

1

v

d

dv
g̃~v!uv050 . ~18!

The function L~v! is analytic in the upper-half comple
z-plane. But also,L~v! is convergent to zero asuzu→` and
square integrable. The functionL forms a so-called disper
sion relation with two subtractions and subtraction freque
v050.15 The real and imaginary components ofL form a
Hilbert transform pair

RL~v!5H@TL~v!#5
1

p
PE

2`

`

dv8
TL~v8!

v82v
, ~19!

TL~v!52H@RL~v!#52
1

p
PE

2`

`

dv8
RL~v8!

v82v
,

~20!

whereP* denotes the Cauchy principal value of the integr
Using expressions~14! and~15! the real and imaginary part
of L can be written as

RL~v!52cE
0

`

dkF~k!
g~k!

v21g~k!
, ~21!

TL~v!52cE
0

`

dkF~k!
Ag~k!v

v21g~k!
, ~22!

where g(k)5k4k0
2N2/h2 and c54pD1h/(v0k0N). It is

easy to verify that~21! and~22! are related through~19! and
~20! if we remember the basic Hilbert transform pa
H@2x/(11x2)#521/(11x2).

Thus, the attenuation coefficient and phase velocity
isfy a twice-subtracted dispersion relation. In other wor
formulas~19! and ~20! allow us to compute attenuation an
dispersion from each other. It is important to note that t
causal relationship is an intrinsic property of our model a
not a prerequisite.

IV. ANALYTICAL EXPRESSIONS AND MODELING
CHOICES

A. Analytical expressions

We now give explicit results forQ21 andv for several
correlation functions of practical interest. Ideally, the cor
lation function should be inferred from experimental da
such as x-ray images of rock samples. In many circu
stances the true correlation behavior can be well appr
mated by simple correlation functions such as an expone
correlation function or combinations of them. A review
frequently used correlation functions in random media
provided by Klimes.16

First, let us assume that the inhomogeneities are ex
nentially correlated so thatB(r ) becomes

B~r !5exp@2ur u/a#. ~23!
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M. Müller
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Here a denotes the correlation length, i.e., a characteri
length scale associated with the inhomogeneities. More
cisely, the correlation lengtha is the length scale at which
B(r ) assumes the valuee21. The choice of a single correla
tion function B(r ) implies that the correlation length is th
same for the three random functionsH(r ), G(r ), andC(r )
~note that in general the results of paper I allow the use
different correlation lengths associated with each rand
function!. Substituting correlation function~23! into Eqs.~9!
and ~12! we find

Q21~v!5D1

4~ak̄!2~2k̄a11!

~112k̄a12k̄2a2!2
~24!

and

v~v!5v0F11D1

4~ak̄!3~11 k̄a!

~112k̄a12k̄2a2!2
2D2G . ~25!

For the so-called Gaussian correlation function

B~r !5exp@2r 2/a2#, ~26!

we obtain

Q21~v!52D1~ak̄!2F12
Ap

4 (
z5z2

z1

ak̄z

3exp@~ak̄z!2/4#erfc@ak̄z/2#G , ~27!

v~v!5v0F11D1~ak̄!2
Ap

4 (
z5z2

z1

ak̄z*

3exp@~ak̄z!2/4#erfc@ak̄z/2#2D2G , ~28!

where z1511 i, z2512 i, z* denotes complex conjuga
tion, and erfc is the complementary error function. Anoth
widely used correlation model is the von Ka´rmán function

B~r !5212nG21~n!S r

aD n

Kn~r /a!, ~29!

where Kn is the modified Bessel function of third kind~Mac-
Donald function! and G denotes the gamma function. Th
von Kármán correlation function involves an additional pa
rameter, the so-called Hurst coefficientn which is assumed
to be 0,n<1. For the casen51

2 the von Kármán function is
identical to the exponential correlation function~23!. Its fluc-
tuation spectrum is given by

F~k!5
a3G~n1 3

2!

p3/2G~n!~11k2a2!n13/2
. ~30!

Substituting~30! into ~15! and ~14! gives
2735and B. Gurevich: Wave-induced flow in porous random media
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Q21~v!5c1D1Fc2 3F2S 1,
1

2
1

n

2
,11

n

2
;
1

4
,
3

4
;24~ak̄!4D

2
1

2
GS n1

3

2D ~2n13!B23/42n/2 cosF S 3

4
1

n

2DAG
1GS n1

5

2DB25/42n/2$2~ak̄!2 cos@c3A#

1sin@c3A#%G , ~31!

v~v!5v0F12D22
c1

2
D1S 24c2~11n!~ak̄!2

3F2S 1,1

1
n

2
,
3

2
1

n

2
;
3

4
,
5

4
;24~ak̄!4D

1
1

2
GS n1

1

2D ~2n13!c3B23/42n/2 cosF S 3

4
1

n

2DAG
1GS n1

3

2D S 3

2
1n DB25/42n/2$2~ak̄!2 cos@c3A#

1sin@c3A#% D G , ~32!

where we used c1516Ap(ak̄)3/(G(n)(2n13)),
c25G(n11)(2n13)/(2Apak̄), c35(1/41n/2), A
52 arctan(2a2k̄2), andB5114(ak̄)4. 3F2 is the generalized
hypergeometric function.

B. Modeling choices

Let us consider various scenarios how mesoscopic in
mogeneities can affect attenuation and dispersion oP
waves. The above results allow us to model signatures
wave-induced flow due to fluctuations in the solid pha
drained frame, and fluid parameters. In all numerical
amples we assume that the background material is a po
sandstone with parameters specified in Table I.

In the first example, we assume that the correlation fu
tion is of exponential type~23! with varying correlation
lengtha. Further, we assume that there are fluctuations o
bulk moduli and the shear modulus specified through th
variances:sKdKd

2 50.12, sKgKg

2 50.02, sGG
2 50.1, andsK fK f

2

50.14. The fluctuations ofKd , Kg , andG are fully corre-
lated so that the coefficient of correlation for two differe
random fieldsR5sXY

2 /AsXX
2 sYY

2 is equal to one. In our case
the cross variances becomesKdKg

2 50.049,sKdG
2 50.110, and

sGKg

2 50.048. The fluctuations of porous material paramet

and fluid bulk modulus are uncorrelated. Using these v
ances we compute the variances of the poroelastic pa
etersH, C, and G: sHH

2 50.051,sCC
2 50.081,sHG

2 50.098,
sHC

2 50.025, andsGC
2 50.098. The frequency dependence

attenuation and phase velocity for this model according
Eqs. ~24! and ~25! is shown in Fig. 2. The frequency i
normalized by Biot’s critical frequencyf c . From Fig. 2 we
can observe that even weak fluctuations of the bulk mo
2736 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M
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FIG. 2. ~a! Reciprocal quality factor as a function of frequency~normalized
by Biot’s critical frequencyf c'100 kHz) for different correlation lengths
~b! P-wave velocity versus frequency for the same models. It can be
served that for larger correlation lengths the dispersion curves are sh
toward lower frequencies. The horizontal curves denote the quasi-static
no-flow limits, respectively.

TABLE I. Parameters of the background solid and fluid phases used fo
computation of the numerical examples.

Porous material
Kg (GPa) 40
Kd (GPa) 4.5
G (GPa) 9
rg (kg/m3) 2650
f 0.17
k0 (mD) 250

Pore fluid
K f (GPa) 2.17
h ~Pa s! 0.001
r f (kg/m3) 1000

Poroelastic parameters
Pd (GPa) 16.5
a 0.89
M (GPa) 10.4
H (GPa) 24.7
N (GPa) 6.9
vB (kHz) 680
. Müller and B. Gurevich: Wave-induced flow in porous random media
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can produce significant attenuation of the fastP wave
(Q21*0.01).

We also compare the result for the attenuation with th
obtained in the 1-D case. For this purpose we use the re
of the poroelastic extension of the O’Doherty-Anstey theo
@Eq. ~17! in Gelinskyet al.7#. For the same sandstone mod
as above we computeQ21 in the case that only parameterK f

exhibits fluctuations withsK f

2 50.2 anda525 cm~Fig. 3!. It

can be observed that the magnitude of attenuation in 1-D
3-D random media is of the same order. However, note
the attenuation in 3-D is slightly larger. Maximal attenuati
in the 3-D case is observed at

vmax
3D 52k0N/a2h, ~33!

whereas in the 1-D case it is observed atvmax
1D 5k0N/a2h.

Thus, the maximum of attenuation in 3-D occurs at a f
quency twice as large as compared with the 1-D case. In
example, this difference has important implications for t
observability of the attenuation mechanism: For typical se
mic frequencies~10–100 Hz! the attenuation due to wave
induced fluid flow is larger in 3-D inhomogeneous structu
~this is indicated by the arrow in Fig. 3!. It can be also
observed that the low- and high-frequency velocities co

FIG. 3. Attenuation in terms ofQ21 ~a! and velocity dispersion~b! as a
function of normalized frequency for a model with fluctuations in the p
rameterK f with sK fK f

2 50.2 anda525 cm. For the same parameters t
result of the 1-D poroelastic extension of the ODA theory is also sho
~dashed curve!.
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cide for the two cases. This is, however, a consequence o
constant shear modulus in this example~see also next sec
tion!.

Next, we consider the influence of the cross correlatio
of the fluctuations. Obviously, if there is an inhomogene
with low P-wave modulus but relatively high fluid bulk
modulus~that is, negatively correlated fluctuations inKd and
K f), we expect an increased wave-induced fluid flow dur
the compression cycle of the wave. This means that both
dispersion and attenuation characteristics should be m
pronounced than in the case of uncorrelated fluctuatio
Such a behavior can be observed in Fig. 4, whereP-wave
velocity and attenuation are computed for the above sa
stone model withsKdKd

2 50.10, sKgKg

2 50.02, sGG
2 50.08,

and sK fK f

2 50.16. The fluctuations ofKd , Kg , and G are

positively correlated. The fluctuations of the fluid bu
modulus and those of all other fluctuating parameters
either positively~coefficient of correlationR51) or nega-
tively (R521) correlated. The case of uncorrelated fluctu
tions (R50) betweenK f and all other moduli is also dis
played in Fig. 4. We note that such scenarios may produc

-

n

FIG. 4. ~a! Q21 versus normalized frequency for differently correlated flu
tuations. A significant amount of attenuation (Q21.0.01) can be observed
if the fluctuation of the solid and frame material are negatively correla
with the fluctuations of the fluid bulk modulus~that means a soft frame
inhomogeneity contains a fluid with increased bulk modulus!. The correla-
tion length is constant (a525 cm).~b! P-wave velocity for the same model
It can be observed that for negative cross correlation the dispersion effe
most pronounced.
2737and B. Gurevich: Wave-induced flow in porous random media
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significant amount of P-wave attenuation (0.01,Q21

,0.1) even if the relative fluctuations in the medium para
eters are small.

To demonstrate the influence of the correlation funct
on the frequency dependence of attenuation and velocity
persion, in Fig. 5 we showQ21 and P-wave velocity for
exponential, Gaussian, and von Ka´rmán correlation func-
tions. Note that all curves are generated using the same
dium parameters~those from Fig. 4!. The resulting differ-
ences in magnitude and frequency dependence of attenu
are only due to the use of a different correlation model@see
Eqs. ~23!, ~26!, and ~29!#. Maximal attenuation is obtaine
for the Gaussian correlation model. Whereas at low frequ
cies the frequency dependence is the same for all correla
models, one can observe that at high frequencies diffe
asymptotes are obtained. Only the Gaussian correla
model is symmetric with respect to its maximum. T
asymptotic frequency behavior of our attenuation mode
analyzed below. The variability of both attenuation and v
locity dispersion for different correlation models indicat
the importance of the geometrical shape of mesoscopic in
mogeneities for the wave-induced flow.

FIG. 5. Q21 andP-wave velocity as a function of normalized frequency f
Gaussian, exponential, and von Ka´rmán ~the Hurst coefficientn is denoted
in the legend! correlation functions. The model parameters are the sam
in Fig. 4, where the fluctuations ofK f are uncorrelated with those ofKd , G
andKg .
2738 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M
-

n
is-

e-

ion

n-
on
nt
n

s
-

o-

V. ASYMPTOTIC BEHAVIOR AT LOW AND HIGH
FREQUENCIES

A. Attenuation

One goal of our study is to infer the low- and high
frequency asymptotic behavior of attenuation due to wa
induced fluid flow. At low frequencies we can approxima
the exponential in Eq.~1! by 1 becauseB(r ) will vanish
before the exponential term changes noticeably from
value at small arguments. Obviously, an asymptote only
ists if the resulting expression*0

`dr rB(r ) has a finite posi-
tive value. This is the case for a large class of correlat
functions. Then we haveg}v2 or, in terms of the quality
factor,

Q21}v. ~34!

It is important to note that the same low-frequency behav
is reported for 1-D and 3-D periodic structures.5,8,10The uni-
versality of this relation is discussed in Sec. VII.

At high frequencies only the behavior ofB(r ) at small
arguments is important. Assuming that the correlation fu
tion can be expanded in power series around the origin

B~r /a!512r /a1O~~r /a!2!, ~35!

we can evaluate the integral in Eq.~1! and obtain

Q21}
1

Av
. ~36!

The same asymptote has been found in 1-D/3-D periodic
1-D random structures. It is, however, important to note t
the scaling~36! it not universal for any kind of disorder~see
also Fig. 4!. For example, the Gaussian correlation functi
~26! yields at high frequencies the proportionalityQ21

}1/v, a much faster decrease of attenuation with freque
as compared to Eq.~36!. The reason for this discrepancy
that the Gaussian correlation function behaves differently
small argument. Instead of~35! we have BGauss(r /a)51
1O(r 2/a2), which means that on small scaler !a the me-
dium is almost homogeneous. As a consequence, at high
quencies the passing wave will create less fluid flow as co
pared with a medium characterized by~35! and, therefore,
the decrease ofQ21 with frequency is stronger. In othe
words, the smoother the medium at small spatial scales,
less wave-induced flow takes place.

B. Velocity

Having studied the low- and high-frequency asympto
of the wave attenuation, we now analyze the asymptotic
havior of phase velocity in the cases of low- and high f
quencies. In both cases the phase velocity has a finite li
The physical situation, however, is different for these tw
limits: in the low-frequency limit, there is enough time du
ing the wave cycle to equilibrate the induced pore press
We refer to this relaxed limit as ‘‘quasi-static’’ and denote t
corresponding phase velocity asvqs . In the high-frequency
limit, there is no time to develop a wave-induced fluid flo

as
. Müller and B. Gurevich: Wave-induced flow in porous random media



na

m

it

on
ria
ry

it-
er

iu
e
he

r
s

e
e
t

lie

city
g.
-D
the
ase
ted

e

and
the
e
ro-
is
er,
the
sis-

D
the
e
tic

on-
sion

ive

tive
are
This situation is called the no-flow~unrelaxed! limit and we
denote the phase velocity asvn f . From Fig. ~2! it can be
observed that

vn f>vqs . ~37!

Physically, this relation can be explained by the additio
stiffening of the porous frame in the no-flow limit.

From Eq. ~9! it is straightforward to deducevqs . The
low-frequency limit is obtained by neglecting the third ter
in ~9!. We obtain

vqs5v0~12D2!. ~38!

The no-flow velocity is determined if we compute the lim
v→` in Eq. ~9!. Since in the limitv→` only the value ofB
at zero correlation lag yields a contribution@see Eq.~35!# we
can replaceB(r ) by B(0)51. Thus the third term in~9!
gives

2D1k̄2E
0

`

r exp@2 k̄r #sin~ k̄r !dr5D1 , ~39!

so that

vn f5v0~11D12D2!. ~40!

From Eqs.~38! and ~40! it follows that the relative magni-
tude of the dispersion effect is

vn f2vqs

v0
5D1 ~41!

with D1 defined in Eq.~2!. It is interesting to note that the
limiting velocities do not depend either on the correlati
function or on the transport properties of the porous mate
In other words,vqs andvn f are independent of the geomet
of the inhomogeneities.

An independent verification of the results for the lim
ing velocities can be obtained by the following consid
ation. First, we assume that only the fluid bulk modulusK f is
fluctuating and all other parameters of the porous med
are constants. This situation may arise if the pore spac
filled with different fluids. It is then expedient to change t
parametrization from (H,C,G) to (Pd ,a,M ,G) fluctuations
because in the new parametrization only the parameteM
will vary. Both limiting cases must be consistent with Ga
smann’s equation~5! for the saturated bulk moduliKsat in-
volving some effective medium parameters:

Ksat* 5Kd* 1~a* !2M* , ~42!

where the superscript* denotes the effective value of th
corresponding parameter. In the quasi-static limit, the av
aging of the fluid bulk modulus should be done according
Wood’s formula, which leads to the following effectiveM* ,

M* 5 K 1

M L 21

, ~43!

and hence

vqs5v0S 12
a2M

2H
sMM

2 D . ~44!

It is important to note that Wood’s average can be app
regardless of the space dimension. Therefore,vqs for 3-D
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M. Müller
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random media is exactly the same as the quasi-static velo
resulting from the so-called poroelastic Backus averagin17

The coincidence of the quasi-static velocities in 1-D and 3
space can be also observed in Fig. 3. In the no-flow limit
porous material behaves like an elastic composite. In the c
of constant shear modulus the no-flow limit can be compu
using the Hill average of the saturatedP-wave moduliH:

H* 5 K 1

H L 21

, ~45!

which in the weak fluctuation limit yields

vn f5v0S 12
a4M2

2H2
sMM

2 D 5v0S 12
1

2
sHH

2 D . ~46!

We notice that Eq.~46! is also valid in 1-D random media.7

Again, the coincidence of both limiting velocities can b
observed in Fig. 3.

The above consideration yields the same quasi-static
no-flow velocities as the 1-D approach and only requires
exact mixing laws of Wood and Hill. This could lead to th
conclusion that the poroelastic Backus averaging, which p
vides the limiting velocities in 1-D inhomogeneous media,
also valid in 3-D inhomogeneous media. This is, howev
merely a consequence due to neglecting fluctuations of
shear modulus. In general, we have to analyze the con
tency of our limiting velocities with results obtained for 3-
inhomogeneous media. In the no-flow limit, we can use
results of Goldet al.18 They derived an expression for th
effective P-wave velocity in weakly inhomogeneous elas
random media~see their equation A-28!:

v* 5v0S 12
1

2

l2

~l12m!2
sll

2 2
2

3

lm

~l12m!2
slm

2

2
2

5

m2

~l12m!2
smm

2 2
4

15

m

~l12m!
smm

2 D , ~47!

where l and m denote the Lame´ parameters andsxy
2 the

~cross! variances of the fluctuations of the Lame´ parameters.
The no-flow limit can be obtained from Eq.~47! by replacing
the Laméparameters with their saturated values. To dem
strate the equivalence between this result and our expres
for vn f we have to change from the~l,m! to (H,G) param-
etrization. Using the simple relation between the relat
fluctuations in both parametrizations«H5(l«l12m«m)/H
andH5l12m, wherel andm are the saturated Lame´ pa-
rameters, we obtain

vn f5v0S 12
1

2
sHH

2 1
4

3

G

H
sHG

2 2
16

15

G2

H2
sGG

2

2
4

15

G

H
sGG

2 D , ~48!

which is exactly Eq.~40!. In conclusion, the no-flow velocity
according to our approach can be obtained from the effec
velocity in elastic random media when the elastic moduli
replaced by their saturated counterparts.
2739and B. Gurevich: Wave-induced flow in porous random media
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VI. DISCUSSION

A. Applicability to real porous materials

The model proposed in this paper provides express
for frequency-dependent attenuation and dispersion in
randomly inhomogeneous porous media accounting for
effect of wave-induced fluid flow. Our results are based
perturbation theory and, therefore, are restricted to we
contrast media. However, we think that this approximate
lution reveals the exact solution’s essential dependence
frequency and medium parameters. In our approach the
namic characteristics depend on the correlation propertie
the medium fluctuations. Closed-form expressions
Q21(v) andv(v) are obtained for several correlation fun
tions. The form of attenuation and dispersion curves are t
cal for a relaxation mechanism. The low-frequency behav
of attenuation is found to beQ21}v, whereas at high fre-
quenciesQ21}v21/2. It is interesting to note that these a
ymptotes coincide with those predicted by the periodici
based approaches.8,10 Consequently, in 3-D space th
observed frequency dependency of attenuation due to
flow has universal character independent of the type of
order ~periodic or random!. This result is somewhat unex
pected if we remember that in 1-D space the attenua
asymptotes are different for periodic and random structu

Typically in the seismic frequency band attenuation is
the order19 0.01,Q21,0.1. Despite the fact that our atten
ation model is restricted to weakly inhomogeneous media
may explain attenuation values of the order 0.01. Our mo
is also restricted to mesoscopic inhomogeneities~condition 1
in paper I!: l@a@apore, whereapore denotes any characte
istic pore-scale length. In the casel@a attenuation due to
scattering on weak inhomogeneities is negligible. Howev
if l*a, scattering attenuation becomes noticeable~scatter-
ing attenuation has a maximum forl5a). Such a case may
occur at sonic or ultrasonic frequencies. Scattering atten
tion can also be modeled in the framework of the statist
smoothing method~recall that the present approach is bas
on this approximation method!. However, since the latter ap
proximation describes signatures of the ensemble-avera
field, its application to the evaluation of scattering atten
tion in heterogeneous rocks is limited.20 Instead, a wavefield
approximation valid in single realizations of the rando
medium21 should be employed. An extension of the pres
results with proper account of scattering attenuation~i.e., to
relax the restrictionl@a) is the subject of future research

There are a few more issues that have to be address
future work. In order to construct a quantitative model f
the case of partial saturation with pore fluids having la
contrasts in their elastic properties, the present approach
to be modified in such a way that the low- and hig
frequency limits are connected with the known~exact!
bounds of Gassmann-Wood and Gassmann-Hill, respectiv
For 1-D random media such a model has been recently
veloped and used in order to interpret laboratory data.22

B. Analogy with other physical systems

As discussed in more detail in paper I, attenuation a
dispersion due to mesoscopic wave-induced flow can als
2740 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. M
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described as conversion scattering of the normal~fast! P
wave ~governed by the wave equation! into Biot’s slow
wave, which is governed by the diffusion equation. Such
situation is not unique to poroelasticity, but occurs in a nu
ber of physical situations. Two most obvious situations
this kind are conversion scattering of elastic waves into th
mal waves in inhomogeneous thermoelastic materials,
scattering of acoustic waves into viscous waves in visc
suspensions and emulsions. It is thus interesting to com
our poroelastic results with those for poroelastic solids a
viscous fluids, and find out whether they yield the same p
terns of frequency dependence for 1-D and 3-D periodica
and randomly inhomogeneous structures.

The theory of thermoelasticity is based on a system
coupled partial differential equations which has exactly
same structure as Biot’s equations of poroelasticity.23,24

Therefore, using this correspondence, results from the the
of thermoelasticity can be translated into results for poroe
ticity. In thermoelasticity, dissipation of elastic waves prop
gating in media with varying thermal conductivity is caus
by conversion into a thermal compression wave. Physica
an elastic wave causes temperature fluctuations which cr
a heat flux. There are numerous works on the description
the dissipation effect in randomly inhomogeneous, th
moelastic structures. For 1-D random thermoelastic me
Armstrong25 showed that attenuation in the low-frequen
range scales likeQ21}Av, which is the very same scalin
as in the 1-D random poroelastic case. In 3-D random th
moelastic media characterized by a von Ka´rmán correlation
function Shermergor and Baryshnikov26 showed thatQ21

}v at low frequencies. This asymptotic behavior is the sa
as found in the present work for any correlation functio
Thus the observed low-frequency asymptotes of attenua
in 1-D and 3-D thermoelastic structures are the same a
corresponding poroelastic structures.

It is also interesting to compare our results with tho
for acoustic signatures in suspensions of solid particles
viscous fluid. Acoustic wave attenuation in suspensions
caused by the viscous drag between the fluid and the
ticles during a wave cycle, i.e., by the resistance to fluid fl
around the solid particle.27 Similar to the case of wave
induced flow in poroelastic structures, it is the relative m
tion of fluid and solid phase that controls the dissipati
process. The difference is that the solid phase in suspens
is not continuous. At low frequencies one finds,27 once again,
the scalingQ21}v. Urick28 presented a simple attenuatio
formula valid for all frequencies, which agrees with expe
mental results in suspensions. Urick’s Eq.~5! yields Q21

}v at low frequencies andQ21}1/Av at high frequencies.
This is the very same scaling as obtained in exponenti
correlated poroelastic random media@Eq. ~24!#. Interestingly,
Urick’s equation for attenuation also contains a term wh
accounts for scattering at the suspended particles resultin
the Rayleigh scattering dependenceQ21}v3. From these
comparisons we can conclude that observed frequency
pendencies of attenuation~and velocity! in 1-D and 3-D pe-
riodically and randomly inhomogeneous media are comm
for many situations where wave field energy is dissipa
. Müller and B. Gurevich: Wave-induced flow in porous random media
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due to energy transfer from the coherent component o
propagating wave mode into a highly dissipative wave mo

VII. CONCLUSIONS

~1! Attenuation and dispersion of elastic waves due to wa
induced flow between 3-D mesoscopic inhomogenei
are given by simple linear integral expressions~9! and
~12! involving the autocorrelation function of heterog
neities or, alternatively, involving the power spectrum
the heterogeneities@expressions~14! and ~15!#.

~2! Attenuation and dispersion given by these expressi
satisfy a twice-subtracted dispersion relation, and t
form causal pair. Maximal attenuation occurs at the re
nance conditionld5a, i.e., if the wavelength of the Bio
slow wave equals the characteristic size of the inhom
geneities.

~3! For exponential, Gaussian, and von Ka´rmán correlation
functions attenuation and velocity are given by close
form expressions.

~4! For a large class of correlation functions mesosco
flow attenuation expressed through reciprocal qua
factor scales withv at low frequencies and withv21/2

for high frequencies.
~5! In the presence of fluid bulk modulus fluctuations on

the velocities in the low- and high-frequency limit,vqs

andvn f , are consistent with Gassmann’s equation:vqs is
obtained by harmonic averaging of the fluctuating mod
lus prior to application of Gassmann’s equation.vn f is
given by the Hill average applied to saturated modul

~6! Frequency dependencies of attenuation~and velocity! in
1-D and 3-D randomly poroelastic media are the same
for random thermoelastic media and suspensions of
ticles in a viscous fluid.
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